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Abstract: Waveform design is a crucial factor in electronic surveillance (ES) systems. In this paper,
we introduce an algorithm that designs a low probability of intercept (LPI) radar waveform. Our
approach directly minimizes the detection probability of summation detectors based on FFT filter
banks. The algorithm is derived from the general quadratic optimization framework, which inherits
the monotonic properties of such methods. To expedite overall convergence, we have integrated
acceleration schemes based on the squared iterative method (SQUAREM). Additionally, the proposed
algorithm can be executed through fast Fourier transform (FFT) operations, enhancing computational
efficiency. With some modifications, the algorithm can be adjusted to incorporate spectral constraints,
increasing its flexibility. Numerical experiments indicate that our proposed algorithm outperforms
existing ones in terms of both intercept properties and computational complexity.

Keywords: LPI; waveform design; unimodular sequences; propagation distance

1. Introduction

During radar detection and tracking, the radar waveform is susceptible to detection,
posing a significant threat to the radar’s operation and survival [1,2]. As a result, radar
systems continually demand advanced low-intercept technology. The objective is to develop
a low probability of intercept (LPI) radar systems that can effectively detect targets while
minimizing the likelihood of detection by ES systems [3]. This ensures enhanced security
for both the radar system and its associated platforms.

Indeed, the concept of LPI radar was first developed in the 1980s [4]. Over the
years, through iterative advancements, a plethora of low-interception technologies have
progressively been implemented. Currently, the development of LPI radar primarily targets
the two critical interception stages of the ES system: the power interception phase and
the radar signature interception phase [5]. The power interception phase involves the
ES’s broad reception of all electromagnetic signals, detecting signals when their amplitude
surpasses a certain threshold [6]. On the other hand, the radar signature interception phase
refers to the process where the ES system extracts and identifies features from the detected
signals [7].

The use of low-power continuous wave technology to diminish the chance of power
interception is a superior low-interception method. It minimizes the peak of instantaneous
power in the waveform by spreading the energy over an extended duration, thereby reduc-
ing the reconnaissance system’s probability of interception [8,9]. Low-side-lobe antenna
technology deliberately prevents the ES system from acquiring excess radiated energy, effec-
tively preventing energy leakage and decreasing the interception likelihood [10]. Similarly,
the dual/multi-station radar system reduces the interception probability by positioning the
radar transmitter as far from the reconnaissance receiver as possible, thereby limiting the
receiver’s energy acquisition [11].
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The frequency shortcut [12,13], pseudo-random [14], and complex waveform modula-
tion techniques [15] are employed with the aim of reducing the interception probability
of radar signatures. However, these techniques also inadvertently increase the processing
complexity of the reconnaissance system. Furthermore, the issue of designing a low proba-
bility of identification (LPID) waveforms is being examined, with a specific focus on the
aspect of time complexity [16,17].

The aforementioned tools for low-interception do not delve into the potential influence
that waveform design could have on low-interception performance. In reality, waveform de-
sign is a crucial method for impacting ES systems [18]. The design of LPI radar waveforms
has been employed as a countermeasure against ES systems as far back as the 1990s [19,20].
Among the various techniques, shortening the parameters of the waveform is an effective
low-intercept method that targets the reduction in feature interception probability [21,22].

The swift fluctuation in radar waveform parameters makes it difficult for the receiver
to accurately identify the relevant parameters of the waveform, which in turn obstructs
effective classification and identification [23]. Furthermore, the advent of innovative radar
systems has led to a heightened degree of versatility in waveform design [24]. The devel-
opment of these cutting-edge radar systems primarily focuses on MIMO radar waveform
design, utilizing waveform diversity to boost the adaptability of LPI radar waveform
design. The incorporation of transmit beamforming further enhances the radar’s stealth
detection capabilities [25].

Nonetheless, as processing power improves, an increasing number of reconnaissance
systems can intercept complex waveforms. They achieve this by analyzing and extracting
suspicious features from the received signals [26,27]. Even under low signal-to-noise ratio
conditions, contemporary low-interception systems are capable of identifying the potential
characteristics of radar waveforms [28].

In recent years, a number of scholars have utilized Kullback–Leibler (KL) divergence
for the measurement to represent the feature interception and identification process of
radar missions and ES systems, which takes into account the detection characteristics under
the joint entropy constraint for LPI waveform design, aiming to make the reconnaissance
system lose more information [29,30]. However, simply utilizing the clustering and dis-
persion characteristics of the frequency domain distribution is not well adapted to the
characteristics of modern wide-band ES systems [31,32].

To better obscure waveform features and enhance detection capabilities, a waveform
design method was developed. This method conceals the spectral features of the waveform
within the spectral features of the background noise. Under a specific received signal-to-
noise ratio, the discrepancy between the periodic spectrum of the designed waveform and
that of the Gaussian white noise is minimized. This minimization increases the complexity
of feature extraction for reconnaissance receivers, thereby boosting the waveform’s low-
interception performance.

Waveform design methods aimed at reducing the probability of power interception
in LPI radar initially distribute signal power over a wider frequency band using pulse
compression theory [33,34]. The advent of new regime radars then amplified the sig-
nal’s bandwidth, resulting in a wider signal bandwidth and a larger frequency range
for energy distribution. Furthermore, MIMO radar waveform design minimizes the
peak power captured by the interception system through the transmission beamforming
technique [35,36]. The emergence of advanced frequency diversity array (FDA) radars [37],
which utilize electronically scanned methods, further broadened the technical scope of LPI
radar waveform design research.

Undeniably, diminishing the peak radiated power of passive reconnaissance systems
is an efficacious method for low interception. However, this leads to a decline in detection
performance as the energy radiated at the target diminishes. Therefore, target detection
with low radiated power is typically accomplished through energy accumulation over the
duration of the pulse train, which unfortunately compromises radar sensitivity.
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Detecting signals that are embedded in the radio spectrum is a common challenge in
various applications, including spectrum detectors in cognitive radio systems [38], cognitive
radar systems [39], and ES systems [40]. More specifically, the challenge involves detecting
signals within a spectrum using a receiver that has an instantaneous bandwidth (IBW).

One possible solution for this challenge is to use the total power radiometer [41],
also known as the energy detector. This detector does not require a calculated frequency
spectrum and compresses the entire band (i.e., the samples) into a single detection variable.
This variable is then compared to a detection threshold. However, the frequency resolution
of these detectors is limited to the entire IBW.

Another type of detector involves calculating the detection variable for each band in
the digital spectrum, which is then compared to a threshold [42]. The frequency resolution
of these detectors is limited to the bandwidth of the band.

We chose to use the FFT filter bank-based summation detector, which is a modified
version of the basic FFT filter bank detector [43]. The FFT summation detector groups FFT
bins to correspond with the desired channelization and estimates the power contained in
each channel by summing the power computed for the individual bins.

In this paper, we present the MPI (monotonic minimizer for the probability of intercept)
algorithm, which is designed to efficiently reduce the detection probability of summation
detectors based on FFT filter banks in a monotonic manner. The MPI algorithm is derived by
applying a general quadratic optimization framework method to the probability of intercept
minimization problem, resulting in a simple closed-form solution at each iteration. The
power method-like iteration (PMLI) formulation, as mentioned in [44], provides valuable
guarantees regarding the convergence of the waveform itself. Furthermore, the algorithm’s
implementation is computationally efficient due to the utilization of fast Fourier transform
(FFT). However, the nature of the unimodular constraint may lead to the slow convergence
of the MPI algorithm, particularly for large lengths. To address this issue, we propose the
application of acceleration schemes based on the squared iterative method (SQUAREM).
Additionally, for scenarios involving spectral and similarity constraints, we developed a
modified algorithm of a similar form.

2. Problem Formulation

Figure 1 shows the LPI radar and ES system framework. Conventional LPI radars
employ a generalized low-intercept design scheme, including power control, complex
modulation, and ultra-low sidelobe, to make it more difficult to process the radar signal at
the ES side. This achieves LPI potency to some extent.

Figure 1. The sketch of the LPI radar and ES system framework.

The problem of interest is to design a complex unimodular sequence {sn}N
n=1, where

N is the length of the sequence, minimizing the probability of detection Pd, i.e.,
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{
min

s
Pd

s.t. |sn| = 1, n = 0, ..., N − 1
(1)

Next, we will restate Equation (1) from the perspective of a summation detector based
on an FFT filter bank detection algorithm.

2.1. Receiver Signal Detection

Assuming that there are M channels in the sampled bandwidth, which are uniformly
distributed in frequency, an integer number of K FFT bins are assigned per channel for
power estimation. Therefore, an FFT of length M× K is required to compute the power
for the M channels. Let W be the diagonal matrix consisting of a linear-phase FIR filter of
length MK, which can be expressed as W = Diag[w1, ..., wMK]

T.
Under the assumption of a complex Gaussian white noise background and a distribution

where n follows a mean of 0 and a variance of σ2
n, the received signal consists of a combination

of n and s. After down-conversion, the received vector r = [r1, r2, ..., r(P−1)(1−γ)MK+MK] is
divided into P overlapping sample vectors r1, ..., rP as follows:

rm =
[
rm(1−γ)MK+1, rm(1−γ)MK+2, ..., rm(1−γ)MK+MK

]T
(2)

where each vector rm has γMK samples in common with the preceding vector rm−1 and
0 ≤ γ < 1 is overlapping ratio. The step length can be expressed as L = (1−γ)MK. The vector
rm is windowed by the FIR filter matrix W, resulting in the windowed sample vector xm:

xm = [w1rmL+1, w2rmL+2, ..., wMKrmL+MK]
T (3)

For the simplicity of expression, define the selection matrix Jp, which can be expressed as:

Jp =
[
0MK×(p−1)L | IMK | 0MK×(P−p)L

]
(4)

where IMK is a unit diagonal matrix of dimension MK. The detection variable κm for the
mth channel of the FFT filter bank-based summation detector is expressed as [45]:

κm =
1
P

P

∑
p=1

(CH
mWJpr)H(CH

mWJpr)

=
ps

P

P

∑
p=1

(CH
mWJps)H(CH

mWJps) + cm

(5)

where Cm = [α(m−1)K, ..., αmK−1]
T and αk = 1/(MK) · [1, ej 2πk

MK , ..., ej 2πk(MK−1)
MK ]T. In addition,

ps is the received power of s and the scalar cm represents the detection scalar associated
with noise. When the influence of filters is disregarded, E{cm} = 1

M σ2
n , where E{·} is the

operator for mean. A signal is declared to exist in the mth channel only if κm ≥ µth, where
µth is the detection threshold. It should be noted that adjusting the value of µth can achieve
the desired false alarm probability Pf a.

In the case where the detection threshold µth and σ2
n is fixed, the waveform design

problem for LPI in the mth channel can be expressed as min
s

κm. The detection vector κ is

defined as a column vector comprising the elements κ1, κ2, ..., κM. Therefore, the output
signal-to-noise ratio (SNR) of the mth channel can be expressed as:

SNRm =
ps ∑P

p=1(C
H
mWJps)H(CH

mWJps)

Pcm
(6)
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The maximum output SNR of all channels is equal to the total output SNR of the
FFT filter bank-based summation detector. Assuming uniform noise levels across all
channels, the waveform design problem for LPI scenarios can be succinctly formulated as
min

s
max

m
κm, m = 1, ..., M. Consequently, the LPI problem (1) becomes

{
min

s
∥κ∥∞

s.t. |sn| = 1, n = 0, ..., N − 1
(7)

where ∥ · ∥∞ is the infinity norm operator.

2.2. LPI Radar Waveform Design

Assuming that the optimization variable s is an N-dimensional vector, where N
equals MK + (P− 1)L, without loss of generality. In this case, we can disregard the energy
distortion caused by FIR filters and noise, and set W equal to the identity matrix I. Then, the
sufficiency problem of Equation (7) can be formulated as follows (as proven in Appendix A):min

s
max
m,p

(CH
mJps)H(CH

mJps)

s.t. |sn| = 1, n = 0, ..., N − 1
(8)

According to Parseval’s theorem, ∑M
m=1(C

H
mJps)H(CH

mJps) = MK and it can be further
obtained that 0 ≤ max

m,p
(CH

mJps)H(CH
mJps) ≤ MK. The optimal value of Equation (8) must

be greater than K; hence, the equivalence problem for Equation (8) can be formulated
as follows: {

min
s

∑M
m=1 ∑P

p=1 ∥(CH
m Jps)H(CH

mJps)− K∥2

s.t. |sn| = 1, n = 0, ..., N − 1
(9)

It is important to note that the number of channels is not a priori information, and
therefore, Equation (9) can be formulated more appropriately as follows:{

min
s

∑MK
m=1 ∑P

p=1 ∥(αH
mJps)H(αH

mJps)− 1∥2

s.t. |sn| = 1, n = 0, ..., N − 1
(10)

Expanding the square in the objective function yields:
min

s
∑MK

m=1 ∑P
p=1(((α

H
mJps)H(αH

mJps))2

−2(αH
mJps)H(αH

mJps) + 1)
s.t. |sn| = 1, n = 0, ..., N − 1

(11)

Using Parseval’s theorem, it can be shown that the second term in the objective
function is a constant, i.e., ∑MK

m=1 ∑P
p=1(α

H
mJps)H(αH

mJps) ≡ PMK. Therefore, by ignoring
the constant terms, the problem can be simplified as follows:{

min
s

∑MK
m=1 ∑P

p=1((α
H
mJps)H(αH

mJps))2

s.t. |sn| = 1, n = 0, ..., N − 1
(12)

Let us denote the sliding window matrix as S.

S =
[
J1s | · · · | JPs

]
(13)
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Equation (12) can be rewritten as{
min

s
∑MK

m=1((α
H
mS)H(αH

mS))2

s.t. |sn| = 1, n = 0, ..., N − 1
(14)

For the sake of better expression, let us define X = SSH and Am = αmαH
m . With these

definitions, Equation (12) can be rewritten as:{
min

s
∑MK

m=1 Tr(XAm)2

s.t. |sn| = 1, n = 0, ..., N − 1
(15)

It is worth noting that Equation (15) changes the quartic function on S into a quadratic
function on X.

2.3. Optimization Problem

The optimization problem for LPI radar waveform design against a summation detec-
tor based on FFT filter bank, as denoted by (15), lacks the capability to construct a fuzzy
function for the waveform. This limitation prevents the guarantee of certain desirable
properties, such as a lower integrated sidelobe level (ISL).

Similarity constraints refer to the requirement that the designed waveform has a
certain degree of similarity or correlation among its different components. Several studies
have shown that enforcing a similarity constraint on a waveform can control the shape of
its ambiguity function [46,47], partially circumventing issues such as significant modulus
variation, poor range resolution, and/or high peak sidelobe levels. In Equation (15), we
consider the following similarity constraint:

∥ŝ− s0∥∞ ≤ ξ (16)

where s0 denotes the reference waveforms, ξ is a use-specific parameter which rules the
size of similarity region. For a given ξ > 0, (16) can be transformed into the following
optimization problem: 

min
s

∑MK
m=1 Tr(XAm)2

s.t. |sn| = 1, n = 0, ..., N − 1
∥ŝ− s0∥∞ ≤ ξ

(17)

Furthermore, in practical applications, radar systems must satisfy spectral constraints
in addition to having good autocorrelation properties. For example, certain spectral powers
must be below specified levels.

Spectral constraints, such as limiting the power in a certain frequency band, denoted
by the set of indices Ω ⊂ [1, MK], can be expressed as follows: the power in Ω should be
lower than a certain threshold ϵ.

∑
k∈Ω

∥αH
k S∥2

2 ≤ ϵ (18)

From (16) and (18), the optimization problem (15) can be rewritten as:
min

s
∑MK

m=1 Tr(XAm)2

s.t. |sn| = 1, n = 0, ..., N − 1
∥ŝ− s0∥∞ ≤ ξ

∑k∈Ω ∥αH
k S∥2

2 ≤ ϵ

(19)
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3. Optimization Development

In this section, we develop an algorithm for LPI waveform design based on the general
quadratic optimization framework.

3.1. Monotonic Minimizer for Probability of Intercept

As Tr(XAm) = vec(X)H · vec(Am), Equation (15) can be considered as a quadratic
optimization problem of generic form as follows:{

min
s

vec(X)HΦvec(X)

s.t. |sn| = 1, n = 0, ..., N − 1
(20)

where Φ is a positive definite and Φ = ∑MK
m=1 vec(Am) · vec(Am)H. Because of Φ ⪯ I,

Equation (20) is NP-hard for the constraint set [48,49]. A monotonically decreasing objective
of (20) can be achieved by iteratively updating vec(X) by solving the following nearest
problem at each iteration, where G = Φ− I:{

max
s
∥vec(X)−Gvec(X)(i)∥2

s.t. |sn| = 1, n = 0, ..., N − 1
(21)

where X(i) = S(i)(S(i))H at iteration k. However, according to (21), vec(X) is a quadratic
form of vec(S), unimodular constraints are equivalent to making the (p− 1)MK + pth
element of vec(X) equal to MK. To solve the problem given in Equation (21), an efficient
way is to expand it as follows:

max
s

vec(X)Hvec(X)− 2Re(vec(X)HGvec(X(i)))

+ vec(X(i))H(GHG)vec(X(i))

s.t. |sn| = 1, n = 0, ..., N − 1

(22)

Additionally, we have MKP2 ≤ vec(X)H · vec(X) ≤ (MKP)2 (proof in Appendix B),
which is just a constant. After ignoring the constant term in Equation (23), the majorized
problem of Equation (22) is given by:{

min
s

Re(vec(X)HGvec(X(i)))

s.t. |sn| = 1, n = 0, ..., N − 1
(23)

which can be rewritten as{
min

s
∑MK

m=1 Re(Tr(X(i)Am) · Tr(XAm))− Tr(X(i)X)

s.t. |sn| = 1, n = 0, ..., N − 1
(24)

We define T(i) = AHS(i), where A is the discrete Fourier transform (DFT) matrix given
by A = 1√

MK
[α1, ..., αMK]

T, and q(i) ∈ CMK. The m-th element of q(i) can be expressed as

q(i)m = t(i)m · (t
(i)
m )H, where (t(i)m ) is the m-th row vector of T(i). Let Q = Diag{q(i)}, then

Equation (24) can be written as:{
min

s
Re(Tr(SH(AQ(i)AH − S(i)(S(i))H)S(i)))

s.t. |sn| = 1, n = 0, ..., N − 1
(25)
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It is worth noting that Q is essentially a spectral power sum matrix that encompasses
all bands and Equation (25) is a quadratic function on S. Due to AHA = I, Equation (25)
can be formulated as: {

min
s

Re(Tr(SH(AHΨ(i)A)S(i)))

s.t. |sn| = 1, n = 0, ..., N − 1
(26)

where Ψ(i) = Q(i) − T(i)(T(i))H, let M(i) = Ψ(i) − q(i)maxI, where q(i)max = max
p
{q(i)p : p =

1, ..., MK}. Equation (27) can be written as:{
min

s
Re(Tr(SH(AM(i)AH)S(i)))

s.t. |sn| = 1, n = 0, ..., N − 1
(27)

By defining Z(i) = −AM(i)T(i), when we only consider the unimodular constraint,
the majorized problem of Equation (27) can be simplified as follows:{

min
s
∥S− Z(i)∥Fro

s.t. |sn| = 1, n = 0, ..., N − 1
(28)

∥ · ∥Fro in (28) represents the Frobenius norm operator. It is easy to see that the problem
given in Equation (27) has a closed-form solution, which is given by:

S = ejarg(Z(i)) (29)

It is important to note that the solution of (29) considers only unimodular constraints,
specifically |sn| = 1, n = 0, ..., N − 1, and the solution of the similarity constraint and
the spectral constraints in (19) will be presented in Section 4.2. The overall algorithm
is summarized in Algorithm 1. While local optimization algorithms typically ensure
a monotonic behavior of the optimization objective and eventual convergence through
the optimization process, the monotonic minimizer for probability of intercept (MPI)
formulation itself provides useful insights, as demonstrated in Appendix C.

Algorithm 1 MPI-Monotonic minimizer for probability of intercept

Require: the size of S, i.e., MK, P
1: Set k = 0,initialize S(0)

2: repeat
3: T(i) = AHS(i),Q(i) = Diag(q(i))

4: Ψ(i) = Q(i) − T(i)(T(i))H

5: q(i)max = max
p
{q(i)p : p = 1, ..., MK}

6: M(i) = Ψ(i) − q(i)maxI
7: Z(i) = −AM(i)T(i)

8: S(i) = ejarg(Z(i))

9: k←− k + 1
10: until convergence

The sliding window matrix S, defined by Equation (13), can be uniquely obtained
from s. However, the converse is not true. According to the mapping relation, s can be
mapped by several columns of S, with the number of mappings depending on the overlap
time of the receiver window. To better extract s from S, waveform extraction approaches
are introduced based on the number-first and length-first principles, respectively.
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3.1.1. Number-First

In this subsection, we present a sequence extraction approach based on the time-
domain circular shift theorem, which yields a sequence characterized by a constant envelope
in the time–frequency domain.

Theorem 1. Let S∗ be an optimized sliding window matrix, where sm represents the mth column of
S∗. Assuming that ∥Asm∥2

2 ≤ ϱ, where ϱ is a positive number, there exists a unique transformation
ŝm(n) = sm(mod(n, MK)). This transformation guarantees that the resulting sliding window
matrix Ŝm satisfies the inequality ∥AŜm∥2

Fro ≤ Pϱ.

Proof of Theorem 1. From Equation (13), the sliding window matrix of ŝm is

Ŝm =
[
J1ŝm | · · · | JP ŝm

]
(30)

Let Ûm = AŜm and um
p , p = 1, ..., P is the pth colomn of Ûm. According to the time-

domain cyclic shift theorem [50]

∥Asm∥2
2 = ∥um

p ∥2
2 ≤ ϱ, p = 1, ..., P (31)

∥Ûm∥2
Fro can be expanded as

∥Ûm∥2
Fro =

P

∑
p=1

MK

∑
i=1
|um

i,p|2

=
P

∑
p=1
∥um

p ∥2
2

=P · ∥um
p ∥2

2 ≤ P · ϱ, p = 1, ..., P

(32)

where um
i,p is the (i, p)th element of Ûm. Proof is complete.

From Theorem 1, we can obtain the expression for s from the sliding window matrix
S as follows:

ŝi(n) = si(mod(n, MK)), n = 1, ..., N, i = 1, ..., P (33)

where si denotes the i-th column vector of S. It should be noted that any column in S is
convergent. Therefore, we can obtain at most P distinct ŝ from S. However, the cyclic
nature of ŝ leads to a deterioration in the correlation property. When N is relatively large,
this approach is not suitable for constructing the sequence.

3.1.2. Length-First

In this subsection, we introduce a length-first extraction method. As mentioned in the
previous section, the number-first extraction approach, while better conforming to (14), is
not suitable for constructing long sequences when N is relatively large due to the cyclic
nature of the time-domain. In such cases, we can extract ŝ as follows:

ŝ = vec(S) (34)

Clearly, the ŝ extracted in this way has a maximum length of PMK. It is worth
mentioning that the sequence obtained by this extraction will be somewhat distorted
for γ > 0. However, due to Theorem 1, the sequence is somewhat robust. For ease of
discussion, in this paper, we only consider the length-first extracted method.
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3.2. Minimizer Constrained by Similarity Constraint and Spectral Constraint

In this subsection, we provide optimized solutions for similarity constraints and
spectral constraints for MPI.

3.2.1. Constrained by Similarity Constraint

The similarity constrain in Equation (16) is equivalent to Re(ŝ∗ns0(n)) ≥ 1− ξ2/2 for
n = 1, 2, ..., N, implying that arg(ŝn) ∈ [γn, γn + δ], where γn = arg(s0(n))− arccos(1−
ξ2/2), δ = 2arccos(1− ξ2/2). Letting φn be the phase of ŝn, the optimal solution φ∗n can be
given as [51]:

φ∗n =

{
γn + δ, i f cos(φn + γn + δ) ≥ cos(φn + γn)

γn, i f cos(φn + γn + δ) < cos(φn + γn)
(35)

3.2.2. Constrained by Spectral Constraint under Similarity Constraint

As shown in Equation (18), the optimization problem is utilized to enforce similarity
constraints and spectral constraints, ensuring that the designed waveforms satisfy these
requirements.

For a given ϵ > 0 in (19), we can always find a ρ such that problem (14) can be
transformed into the following equivalent problem:

min
S

∑MK
m=1((α

H
mS)H(αH

mS))2 + ρ ∑k∈Ω (αH
k S)H(αH

k S)

s.t. |sn| = 1, n = 0, ..., N − 1
∥ŝ− s0∥∞ ≤ ξ

(36)

where Ω is the low-power frequency band. From here, we can follow the derivation of MPI
to obtain the spectral-MPI algorithm for problem (26), and (26) can be rewritten as:

min
S

Re(Tr(TH(Q̂(i) − T(i)(T(i))H)(T(i))H))

s.t. |sn| = 1, n = 0, ..., N − 1
∥ŝ− s0∥∞ ≤ ξ

(37)

where Q̂(i) = Diag{q̂(i)}, and the m-th element of q̂(i) can be rewritten as

q̂(i)m =

{
t(i)p (t(i)p )H + ρ/2, m ∈ Ω
t(i)p (t(i)p )H, otherwise.

(38)

By defining q̂(i)max = max
m
{q̂(i)m : m = 1, ..., n0}, Ψ̂(i) = Q̂(i) − T(i)(T(i))H and M̂(i) =

Ψ̂(i) − q̂(i)maxI, the problem can be recast as shown in (28):
min

S
Re(Tr(SH(AM̂(i)AH)S(i)))

s.t. |sn| = 1, n = 0, ..., N − 1
∥ŝ− s0∥∞ ≤ ξ

(39)

This problem has the same form as problem (28), for which the similarity constraint
solution is shown in Equation (35). Therefore, we can follow the same steps as before to
derive the spectral-MPI algorithm, the main steps of which are listed in Algorithm 2.
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Algorithm 2 Spectral-MPI

Require: the size of S, i.e., MK, P
1: Set k = 0,initialize S(0)

2: repeat

3: q̂(i)m =

{
t(i)p (t(i)p )H + ρ/2, m ∈ Ω
t(i)p (t(i)p )H, otherwise.

4: T(i) = AHS(i),Q̂(i) = Diag{q̂(i)}
5: Ψ̂(i) = Q̂(i) − T(k)(T(k))H

6: q̂(i)max = max
m
{q̂(i)m : m = 1, ..., n0}

7: M̂(i) = Ψ̂(i) − q̂(k)maxI
8: Ẑ(i) = −AM̂(i)T(i)

9: S(i) = ejarg(Ẑ(i))

10: k←− k + 1
11: until convergence

3.3. Computational Complexity of the Minimizer

The computational complexity of each iteration in MPI is primarily dominated by
two matrix multiplications involving A, as shown in Algorithm 1. These computations
can be easily performed using FFT and IFFT operations. Specifically, in the i-th iteration,
the i-th column of T(i) corresponds to the MK-FFT operation of the i-th column of S(i),
with a computational complexity of O(MKP log(MK)). The matrix product T(i)(T(i))H

needs to be computed only once, and Q can be obtained from a diagonal vector, with a
computational complexity of O(MK + P(MK)2). Similarly, the matrix Z(i) can be obtained
by P MK-IFFT operation, with a computational complexity of O(MKP log(MK)). Addi-
tionally, the computational complexity of performing complex angle operations on Ẑ(i)

is denoted by O(MKP). In summary, the computational complexity of each iteration can
be expressed as O(2MKP log(MK) + MK(MKP + P + 1)). The MPI algorithm exhibits
high computational efficiency by using P FFT and IFFT operations, making it suitable for
designing long sequences.

3.4. Acceleration Scheme

We also propose an improved version of the MPI algorithm to speed up the conver-
gence process.

The MPI algorithm is derived based on the majorization–minimization principle, and
the nature of the majorization functions determines the convergence rate of the algorithm.
However, numerical simulations have shown that MPI converges very slowly when N
is large. In this subsection, we address this issue and propose an acceleration scheme to
improve the convergence speed of the algorithm. The acceleration scheme is called the
squared iterative method (SQUAREM), which was originally proposed in [52] to accelerate
any EM algorithm. Here, we outline the main steps of SQUAREM and modify it accordingly
to address the waveform design problem we encounter.

Let F denote the fixed-point mapping during the iterations of the proposed MPI
algorithm (noting that the mapping varies with the enforced constrains), i.e.,

S(i+1) = F(S(i)) (40)

Motivated by the Cauchy–Barzilai–Borwein (CBB) method for accelerating the conver-
gence of the classical Cauchy method for solving linear equations, the SQUAREM method
iterates as follows:

S(i+1) = ej arg(S(i)−2α(i)R(i)+(α(i))2V(i)) (41)



Remote Sens. 2024, 16, 2021 12 of 22

where R(i) = F(S(i))− S(i), V(i) = F(F(S(i)))− F(S(i))− R(i), and α(i) is the step-length
in i-th iteration. Follow the step update approach as follows:

α(i) = −∥R∥Fro

∥V∥Fro
(42)

where ∥ · ∥Fro is the Frobenius norm. To ensure the descent property, a backtracking
strategy is adopted. This strategy repeatedly halves the distance between α(i) and −1
(i.e., α(i) ←− (α(i) − 1)/2) until the descent property is maintained. Monotonicity can
be determined by checking whether ∥AHS(i+1)∥Fro ≤ ∥AHS(i)∥Fro holds or not. The
accelerated MPI based on SQUAREM is summarized in Algorithm 3.

It is worth noting that in each iteration, the acceleration scheme requires the computa-
tion of S(i+1) and S(i+2), as well as the Frobenius norm and angle operations associated
with MKP, which increases the computational complexity of the acceleration scheme. How-
ever, the acceleration scheme can significantly reduce the number of iterations, thereby
achieving a faster convergence time.

Algorithm 3 Accelerate-MPI

Require: the size of S, i.e., MK, P.
1: Set k = 0,initialize S(0)

2: repeat
3: R(i) = F(S(i))− S(i),
4: V(i) = F(F(S(i)))− F(S(i))− R(i),
5: α(i) = − ∥R∥Fro

∥V∥Fro

6: S(i+1) = ej arg(S(i)−2α(i)R(i)+(α(i))2V(i))

7: while ∥AHS(i+1)∥Fro ≤ ∥AHS(i)∥Fro
8: α(i) ←− (α(i) − 1)/2
9: S(i+1) = ej arg(S(i)−2α(i)R(i)+(α(i))2V(i))

10: end while
11: k←− k + 1
12: until convergence

4. Numerical Results and Analysis

In this section, we provide several numerical examples to demonstrate the performance
of the proposed algorithm. All experiments were performed on a PC with a 2.9 GHz AMD-
Ryzen7-4800HS CPU and 24 GB RAM.

4.1. Convergence Performance

We first compared the convergence speed of the MPI algorithm with the accelerated
MPI algorithm, measured by the square root of (14), denoted by Λ(i). For all algorithms
in this experiment, the stopping criterion was set to |Λ(i+1) −Λ(i) ≤ 10−8|, and the initial
sequence {x(0)n }N

n=1 was chosen to be {ej2πθn}N
n=1, where {θn}N

n=1 are independent random
variables uniformly distributed in [0, 1]. In the spectrum-MPI of this subsection, the low
power frequency band Ω is set to [0.2, 0.8] and ρ = 1. To reduce the amount of computation,
the sequence extraction approach in this paper is based on the principle of length-first.

Figure 2 shows the convergence properties of the MPI algorithm and the spectral MPI
algorithm with their respective acceleration schemes for different parameters. We observe
that the proposed MPI and spectral-MPI algorithms always converge monotonically, and
the accelerated algorithm is effective in increasing the convergence rate. Additionally,
Figure 3 compares the convergence time of the MPI, accelerated MPI, and CAN [53]
algorithms with respect to the sequence length N. The results show that the accelerated
MPI algorithm has a faster convergence time than the MPI algorithm. Moreover, since the
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size of the FFT operation is related to the size of MK, the convergence time of the proposed
algorithm does not significantly increase with the sequence length, unlike the case of CAN.

(a) N = 256, M = 8, K = 8 (b) N = 256, M = 8, K = 8

(c) N = 512, M = 8, K = 16 (d) N = 512, M = 8, K = 16

(e) N = 512, M = 16, K = 16 (f) N = 512, M = 16, K = 16

Figure 2. Comparison of the convergence between MPI and spectral-MPI with different parameters
and their respective accelerated versions.
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Figure 3. Comparison of the convergence time of the spectral-MPI and accelerate-spectral-MPI.

4.2. LPI Performance

Subsequently, an experiment is conducted to illustrate the superior interference per-
formance of the proposed sequence in comparison to commonly utilized sequences like
SIN, LFM, CAN, and Golomb [54]. Among these, SIN and LFM can be respectively defined
as a sine signal represented by exp(j0.2πn) and a linear frequency modulated signal rep-
resented by exp(j0.2πn2/N). Assuming a free-space propagation model and neglecting
gain and loss, the relationship between the maximum propagation distance rmax and the
minimum received power psmin can be expressed as [55]:

rmax =

(
PtGtGrλ2

(4π)2 psmin

)1/2

(43)

where Pt, λ, Gt, and Gr represent the transmit power, wavelength, transmit gain, and
receive gain, respectively. In this experiment, we only consider the cases where Gt = 1
and Gr = 1. On one hand, Pt = 102 watts and λ = 0.1 meters. The sequence is pa-
rameterized by N = 512, M = 16, K = 16. The minimum output power pomin after
processing with the FFT filter bank-based summation detector can be represented as

pomin = psmin ·
max

m
∑P

p=1(C
H
mWJps)H(CH

mWJps)

PK .
Figure 4 compares the intercept distances between common sequences and the pro-

posed sequence for psmin ∈ [−90,−70] dBm and ES system setting: M = 8, K = 16. In this

configuration, if
max

m
∑P

p=1(C
H
mWJps)H(CH

mWJps)

PK = 1, the theoretical lower bound is computed.
Obviously, the proposed sequences have a smaller maximum propagation distance than the
normal sequence under the same psmin, especially for SIN with LFM sequences. Moreover,
the proposed sequence almost reaches the theoretical lower bound.
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Figure 4. Comparison of the maximum propagation distance of common sequence and accelerated-
MPI initialized by different sequences.

Figure 5 compares the maximum intercept distance of the proposed waveform for
a minimum received power psmin of −80 dBm and window lengths MK ranging from
80 to 256. The results demonstrate that the proposed algorithm does not require prior
knowledge of the receiver window length MK and maintains a low interception property
across different window lengths.

(a) Changing the channel number M (b) Changing the FFT size K

Figure 5. Comparison of the maximum propagation distance between normal waveforms and
accelerated-MPI with different MK.

4.3. Autocorrelation Performance

To investigate the degree to which the similarity constraint improves the autocorrela-
tion properties of the sequence, we conducted an experiment to evaluate the merit factor
(MF) under a different ξ. The MF is defined as the ratio of the central lobe energy to the
total energy of all other lobes, as proposed by Golay in 1972 [56].

MF =
|r0|2

2 ∑k=N−1
k=1 |rk|2

(44)

where rk denotes aperiodic autocorrelations which can be defined as:

rk =
N−k

∑
n=1

xnx∗n+k = r∗−k, k = 0, ..., N − 1 (45)
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The accelerated-MPI algorithm initialized by Golomb or random (RN) sequence are
applied to the following lengths: N = 27, 28, 29, 210, 211, 212, with ξ = 0.01. We chose
the CAN sequence with superior MF properties as the reference sequence. The MF of
the resulting sequences is shown in Figure 6. We observe that the MF of the proposed
algorithm is almost independent of the sequence length. Figure 7 compares the MF of the
accelerated-MPI initialized by Golomb and RN, respectively, versus ξ from 0 to 1, and the
proposed sequence is parameterized by N = 512, M = 8, K = 16. The results demonstrate
that the similarity constraint can improve certain properties as ξ increases, which increases
the flexibility of the design.

In addition, we considered the design of spectral constraints with low spectral power
in frequency bands [0, 0.2)

⋃
(0.3, 0.5)

⋃
(0.8, 1]. Figure 8 shows the time–frequency energy

flow of the output sequence generated by spectral-MPI when initialized with a Golomb
sequence and ρ = 1. To observe the change in time–frequency energy more intuitively due
to spectral constraints, Figure 9 shows the time–frequency energy flow without spectral
constraints. We observe that the power in the pre-specified frequency bands has been
suppressed, and the time–frequency flow is similar to the constant-envelope smooth.

Figure 6. Comparison of the merit factor of common sequences and accelerated-MPI initialized by
different sequences.

Figure 7. Comparison of the merit factor of accelerated-MPI initialized by different sequences versus ξ.
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Figure 8. Time–frequency energy flow of spectral-MPI with low spectral power in frequency bands
[0, 0.2)

⋃
(0.3, 0.5)

⋃
(0.8, 1].

Figure 9. Time–frequency energy flow of spectral-MPI with low spectral power in frequency bands [0, 1].

5. Conclusions

We have introduced the MPI algorithm, an efficient method for minimizing the prob-
ability of intercept. This algorithm is derived from the general quadratic optimization
framework. In scenarios involving spectral and similarity constraints, we also developed
the spectral-MPI algorithm to achieve enhanced properties within the same framework as
MPI. Additionally, we have explored acceleration schemes to expedite the MPI algorithm.
Numerical results demonstrate that, when applied to FFT filter bank-based summation
detectors, the proposed MPI algorithm can generate sequences with a lower probability
of intercept compared to common sequences. Moreover, it can be utilized to design se-
quences with suppressed spectral power in arbitrary frequency bands. Importantly, all of
the proposed algorithms can be efficiently implemented using FFT and have demonstrated
computational efficiency in practical applications.
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Appendix A

Proof of sufficiency of (7). To prove that (8) is a sufficient condition for (7), we need
to prove

max
m,p

(CH
mHJpr)H(CH

mHJpr) ≥ ∥κ∥∞ (A1)

Assuming that there exist m0 and p0 such that

max
m,p

(CH
mHJpr)H(CH

mHJpr)

= (CH
m0

HJp0
r)H(CH

m0
HJp0

r)
(A2)

When P = 1, it is obvious that

(CH
m0

HJp0
r)H(CH

m0
HJp0

r) ≡ ∥κ∥∞ (A3)

When P > 1, assuming there exists m1 such that

∥κ∥∞ =
1
P

P

∑
p=1

(CH
m1

HJpr)H(CH
m1

HJpr) (A4)

Let p = p1 be the maximal term in the summation on the right-hand side of (A4), i.e.,

(CH
m1

HJp1
r)H(CH

m1
HJp1

r)

≥ (CH
m1

HJpr)H(CH
m1

HJpr), ∀p ∈ [1, P]
(A5)

Therefore, we have:

(CH
m1

HJp1
r)H(CH

m1
HJp1

r)

≥ 1
P

P

∑
p=1

(CH
m1

HJpr)H(CH
m1

HJpr)

= ∥κ∥∞

According to the definition,

(CH
m0

HJp0
r)H(CH

m0
HJp0

r)

≥ (CH
m0

HJp0
r)H(CH

m0
HJp0

r)

≥ ∥κ∥∞

This proves that (8) is a sufficient condition for (7). The proof is complete.

Appendix B

Proof of upper and lower bounds for vec(X)H · vec(X). The matrix S can be represented as:

S =


s1 sL+1 · · · s(P−1)L+1
s2 sL+2 · · · s(P−1)L+2
...

...
. . .

...
sMK sL+MK · · · s(P−1)L+MK

 (A6)



Remote Sens. 2024, 16, 2021 19 of 22

Since X = SSH, the elements of X, denoted by xij, can be expressed as:

xij =
P

∑
p=1

s∗i+(p−1)Lsj+(p−1)L (A7)

Given that sHeH
n ens = 1, for n = 0, ..., N − 1, we can express vec(X)H · vec(X) as:

vec(X)H · vec(X) =
MK

∑
i=1

MK

∑
j=1

∣∣∣∣∣ P

∑
p=1

s∗p+(i−1)Lsp+(j−1)L

∣∣∣∣∣
2

=
MK

∑
i=1

MK

∑
j=1 j ̸=i

∣∣r̃i,j
∣∣2 + MKP2

=
MK

∑
i=1

MK

∑
j=1 j ̸=i

∣∣∣sH
i · sj

∣∣∣2 + MKP2

(A8)

where r̃i,j is the inner product of the vectors of the i-th and j-th windows. When ∀i, j, sH
i ·

sj = 0, we have vec(X)H · vec(X) = MKP2. When ∀i, j, sH
i · sj = P, we have vec(X)H ·

vec(X) = MK2P2. Thus, we can conclude that:

MKP2 ≤ vec(X)H · vec(X) ≤ (MK)2P2 (A9)

The proof is complete.

Appendix C

Proof of convergence of the MPI algorithm. S(i+1) can be expressed as from (30):

RS(i) =
[
Rs(i)1 | · · · | Rs(i)P

]
(A10)

where R = −AM(i)AH and s(i)p is the pth column of S(i). It is easy to know that R is a
positive definite. The monotonicity of the MPI algorithm requires proof of the following
equation:

P

∑
p=1

(s(i+1)
p )HRs(i+1)

p −
P

∑
p=1

(s(i+1)
p )HRs(i+1)

p ≥ 0 (A11)

Note that

∥S(i+1) − RS(i)∥2
Fro

=
P

∑
p=1
∥s(i+1)

p − Rs(i)p ∥2
2

(A12)

Expanding each term in (A12), we have

P

∑
p=1
∥s(i+1)

p − Rs(i)p ∥2
2

=const−
P

∑
p=1

2Re((s(i+1)
p )HRs(i))

(A13)
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For each p, s(i+1)
p is equivalently the maximizer of the criterion Re((s(i+1)

p )HRs(i)).

Moreover, if s(i+1)
p ̸= s(i)p , clearly, we have

P

∑
p=1

(s(i+1)
m )HRs(i+1) >

P

∑
p=1

2Re((s(i+1)
p )HRs(i))−

P

∑
p=1

(s(i)m )HRs(i)

>
P

∑
p=1

(s(i)m )HRs(i)
(A14)

as Re((s(i+1)
p )HRs(i)) > (s(i)m )HRs(i), p = 1, ..., P. The proof is complete.
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