
Citation: Zheng, S.; Zhou, L.; Lu, C.;

Lv, G. A GPU-Based Integration

Method from Raster Data to a

Hexagonal Discrete Global Grid.

Remote Sens. 2024, 16, 2022.

https://doi.org/10.3390/rs16112022

Academic Editors: Marco Painho and

Yongze Song

Received: 1 March 2024

Revised: 7 May 2024

Accepted: 3 June 2024

Published: 4 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

A GPU-Based Integration Method from Raster Data to a
Hexagonal Discrete Global Grid
Senyuan Zheng 1,2,3, Liangchen Zhou 1,2,3,*, Chengshuai Lu 1,2,3 and Guonian Lv 1,2,3

1 Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University,
Nanjing 210023, China; 211301033@njnu.edu.cn (S.Z.); 201345040@njnu.edu.cn (C.L.); gnlu@njnu.edu.cn (G.L.)

2 State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province),
Nanjing 210023, China

3 Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and
Application, Nanjing 210023, China

* Correspondence: zhoulch@njnu.edu.cn; Tel.: +86-13913968090

Abstract: This paper proposes an algorithm for the conversion of raster data to hexagonal DGGSs
in the GPU by redevising the encoding and decoding mechanisms. The researchers first designed a
data structure based on rhombic tiles to convert the hexagonal DGGS to a texture format acceptable
for GPUs, thus avoiding the irregularity of the hexagonal DGGS. Then, the encoding and decoding
methods of the tile data based on space-filling curves were designed, respectively, so as to reduce
the amount of data transmission from the CPU to the GPU. Finally, the researchers improved
the algorithmic efficiency through thread design. To validate the above design, raster integration
experiments were conducted based on the global Aster 30 m digital elevation dataDEM, and the
experimental results showed that the raster integration accuracy of this algorithms was around 1 m,
while its efficiency could be improved to more than 600 times that of the algorithm for integrating
the raster data to the hexagonal DGGS data, executed in the CPU. Therefore, the researchers believe
that this study will provide a feasible method for the efficient and stable integration of massive raster
data based on a hexagonal grid, which may well support the organization of massive raster data in
the field of GIS.

Keywords: DGGS; raster data; GPU; data resampling; encoding and decoding; thread design

1. Introduction

Discrete global grid systems (DGGSs) are frameworks for a digital Earth that enable
the division of the Earth’s surface into seamless non-overlapping multilevel collections of
regional cells for fitting the Earth’s surface at different resolutions [1,2]. The raster data
model is a data model that selectively displays, locates, and stores real-world environments
in a regular grid system, suitable for expressing continuous spatial data. However, with
the expansion of GIS application areas, the volume of raster data is also growing larger
and larger, and how to efficiently organize and manage massive raster data has become
a challenge for GIS researchers. Previous studies have found that DGGSs are more suit-
able for large-scale applications than traditional local geospatial data organization models
and can be structured to support efficient multi-resolution geospatial data processing [3].
Furthermore, rasters may result in an imbalanced generalization in different directions.
Compared to the rasters, a hexagon has a consistent connectivity and isotropic neighbor-
hoods, and the results of the hexagon-based method are more balanced in all neighborhood
directions, as hexagons match better with the original polygons and have smoother simpli-
fied boundaries [4]. In view of this, it would be desirable to devise an efficient algorithm to
manage massive raster data with DGGS data organization and scheduling, thus providing
a solution to the massive raster data organization and management problems in the current
GIS field.

Remote Sens. 2024, 16, 2022. https://doi.org/10.3390/rs16112022 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16112022
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs16112022
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16112022?type=check_update&version=1

Remote Sens. 2024, 16, 2022 2 of 27

In recent years, several scholars have conducted research on DGGS-based raster data
integration. For example, Rui Wang [5] developed an indexing method based on icosahedral
mixed-aperture hexagonal grids and implemented a raster integration algorithm design
based on this. Mingke Li [6] investigated multi-resolution raster integration in a hexagonal
DGGS environment and manipulated the data after integration with descriptive statistics,
terrain parameters, and terrain metrics. Andrew Rawson [7] used grid centroids to resample
the raster surface to achieve raster integration. However, these research results are currently
implemented based on CPUs and, thus, do not allow for efficient data integration when
confronted with massive multi-resolution raster data. The root of this problem is that the
integration of massive raster data is inherently a computationally intensive application, and
the computational performance of CPUs is not sufficient to support such a large amount
of computation. When the resolution is high, due to the rapid growth of computational
complexity, the computational time and efficiency of CPUs are often inadequate to meet the
demands of real-time operation, resulting in the inability to obtain the integration results
within a reasonable time.

It is also known that parallel processing is a commonly adopted computational strategy
for big data processing and analysis [8], and it is a good idea to use parallel computing
techniques to solve the efficiency problems posed by computationally intensive applications.
There are various ways to utilize parallelism to improve the performance of data-intensive
applications, among which GPUs are the dominant platform [9]. Many GIS algorithms can
benefit from the GPU-based parallel computing of geospatial data, such as map matching,
view analysis, spatial connectivity, spatial overlay [10], etc. Therefore, many scholars have
also conducted research on GPU-based raster computation and analysis. However, a raster
is a regular grid structure with the characteristics of a clear spatial relationship and a simple
calculation mechanism, and it has a high adaptability to the threaded grid structure of the
GPU, while a global discrete grid is not regularly arranged and does not have the nature of
a regular grid, so it is difficult to directly apply research results in the form of regular grids
to global discrete grids.

Proceeding from previous studies, the authors of this paper devised an algorithm,
the core idea of which was to first organize hexagonal DGGS data with a rhombic tile
structure, so as to convert them into data with a GPU-acceptable texture structure. Then,
the corresponding encoding and decoding methods were designed. On this basis, the
acceleration of the algorithm was realized by parallel computing of the GPU. For this
purpose, the thread structure between the GPU and the CPU was devised. The rest of this
paper is organized as follows: Section 2 provides a review of related studies and an overview
of the methodology of this paper. Section 3 presents the basic ideas and the implementation
flow design of the GPU-based hexagonal grid integration algorithm. Section 4 discusses
and implements the basic ideas and key issues based on the implementation flow proposed
in Section 2. The algorithmic flow proposed in this paper is experimentally verified through
a case study in Section 5. The major ideas and findings of this study are finally discussed
and summarized in Sections 6 and 7.

2. Related Work

The efficiency of GPU-based integration algorithms from raster data to DGGSs is
mainly affected by three parameters. The first comprises the encoding methods of DGGSs,
the second one consists of the specific algorithm of raster data integration based on DGGSs,
and the third one is the application of GPU technology. Therefore, this paper summarizes,
compares, and analyzes related research in terms of the above three aspects.

2.1. Encoding Methods of DGGSs

In DGGSs, the cell indexing method usually serves the purpose of providing access
to the data. For each cell present in a DGGS, the indexing method assigns an index that
uniquely identifies the cell [11]. For DGGS-based raster data integration algorithms, an
efficient DGGS index can enhance the efficiency of the algorithm.

Remote Sens. 2024, 16, 2022 3 of 27

In recent years, many scholars have studied the indexing method of hexagonal cells,
such as Tong [12], who improved the generalized balanced ternary system (GBT) of satellite
remote sensing data, designed hexagonal DGGS hierarchical encoding, which allocates
low-level hexagonal cells to multiple high-level hexagonal cells, and realized the seamless
representation and processing of global multi-resolution remote sensing data. Vince [13]
proposed an indexing method for hexagonal grids based on the hierarchical index structure
PYXIS, but the method was designed for hexagonal grids with aperture 3, which required
the hierarchical indexing of odd and even levels, leading to complex indexing calculations.
White [14] used Morton space-filling curves to index grid data based on polyhedral rhombic
surfaces, which improved the retrieval and computational efficiency of grid data, but it
did not further subdivide the rhombic surfaces and, thus, did not have a hierarchical
structure to support parent–child relationship search, distance search, and range search
for the grid data stored inside the rhombus. Tong [15] proposed the hexagonal quaternary
balanced structure (HQBS) and established hierarchical relationships among different levels
of hexagonal grids on the icosahedral triangle. However, operations frequently roll back
when code normalization fails, resulting in a low efficiency [16]. A Mahdavi-Amiri [17]
presented a general hierarchical indexing mechanism for hexagonal cells resulting from the
refinement of a triangular spherical polyhedral. However, this encoding method is limited
to the A3H DGGS, and, because the A3H DGGS rotates between different levels, there are
inevitably a lot of logical judgments when decoding the codes. Ali Mahdavi-Amiri [18]
implemented general mapping between DGGS grids and exercised a possible solution for
extracting a rhombic tile structure from an hexagonal grid by splitting hexagons. Although
this research successfully converted an hexagonal DGGSs to a rhombic texture, it did
not use a GPU-friendly encoding method. The main coding method used in the current
research is the one proposed in the literature [18], which requires additional vertices to
be recorded at the time of coding and needs to be decoded twice while performing raster
integration operations in the GPU, i.e., by first decoding the rhombic code into a hexagonal
code and then decoding the hexagonal code into geographic coordinates. Coding and
decoding methods are the cores of DGGSs; therefore, the shortcomings of coding and
decoding methods inevitably have a great impact on the efficiency of the conversion from
raster data to DGGSs in the GPU.

It can be seen from the above results that the encoding research on hexagonal DGGSs
is quite mature, but the above encoding schemes often entail a lot of condition judgments
or need to use a pre-calculated code addition table when conducting hexagonal cell search,
neighborhood query, parent–child relationship query, and other operations. For example,
PYXIS needs to first judge the parity of the DGGS level when conducting a topology
query, and HQBS needs to match the codes to the code addition table when conducting a
topology query.

In computers, CPUs are good at process control and logic processing and are able to
handle irregular data structures, while GPUs are good at the parallel computation of data
with regular data structures and not good at computing irregular data, which is due to
the architectural differences between CPUs and GPUs, as shown in Figure 1. The CPU
is composed of about 25% ALUs (Arithmetic Units), 25% Control (Logic Control Units),
and 50% Cache (Cache Units). It is adept at handling small and complex tasks: a typical
example of this is the intersection operation between rays and some irregular objects in the
same space. The GPU, on the other hand, is composed of 90% ALUs, 5% Control, and 5%
Cache. Compared to the CPU, the GPU has more computing units, but the units responsible
for logic control only account for a small portion of it, so the GPU is more adept at dealing
with simple tasks which require a large number of calculations and less adept at executing
tasks which require a large number of logical judgments. The condition judgment affects
the computation speed of the algorithm in the GPU, and the code addition table occupies a
considerable part of the GPU video memory and bandwidth. Therefore, the above DGGS
encoding is not efficient enough in topology query and hierarchical query on the GPU.

Remote Sens. 2024, 16, 2022 4 of 27

Remote Sens. 2024, 16, x FOR PEER REVIEW 4 of 27

executing tasks which require a large number of logical judgments. The condition judg-
ment affects the computation speed of the algorithm in the GPU, and the code addition
table occupies a considerable part of the GPU video memory and bandwidth. Therefore,
the above DGGS encoding is not efficient enough in topology query and hierarchical
query on the GPU.

Figure 1. Differences in architecture between the CPU and the GPU. (The light blue rectangles
represent the Control Unit, the dark blue rectangles represent the Arithmetic Logic Unit (AU), the
red rectangles represent the Cache Memory, and the brown-yellow rectangles represent the Dy-
namic Random-Access Memory (DRAM)).

2.2. Integration Methods from Raster Data to DGGSs
In recent years, many scholars have also studied the integration algorithms of hexag-

onal grids and rasters. For example, Rui Wang [4] implemented a raster integration algo-
rithm design based on a generalized hierarchical indexing method for the icosahedral
mixed-aperture hexagonal grid, which can reduce the data volume by 38.5% compared to
the pure-aperture algorithm design. Mingke Li [5], on the other hand, focused on the
study of multi-resolution topographic map integration based on a hexagonal grid, which
was achieved through the calculation of descriptive statistics, topographic parameters,
and topographic indices for raster integration. Andrew Rawson [6] performed raster inte-
gration by resampling the raster surface using grid centroids and experimentally demon-
strated the applicability of DGGSs as spatial data structures for maritime risk analysis.
Jinxin Wang [19] proposed an algorithm for raster computation in the context of the Earth
system space based on the spatial topological characteristics of 3D DGGS and the concept
of dimensionality reduction. A Mahdavi-Amiri [20] presented a general hierarchical in-
dexing mechanism for hexagonal cells resulting from the refinement of a triangular spher-
ical polyhedral and applied it to the mapping of geospatial data to a DGGS. However,
their method only considers the hierarchy of the hexagons themselves and does not en-
code the structure of rhombic tiles loaded with hexagonal grid cells. As a result, when the
volume of data is very large, reading and searching the data become problems. Further-
more, this method does not limit the number of tiles by setting a threshold or tile merging,
which generates a large amount of tile data when the amount of raster data is large. It
requires the retrieval and reading of a large amount of tile data when performing the con-
version of raster data to DGGSs, which has an impact on the integration efficiency.

As mentioned above, although many scholars have carried out research on DGGS-
based raster data integration algorithms, their methods are designed for CPUs and are
difficult to be implemented in GPUs, so they are limited by CPU performance and, usu-
ally, can only be used to convert low-resolution or localized high-resolution raster data to
DGGSs.

Figure 1. Differences in architecture between the CPU and the GPU. (The light blue rectangles
represent the Control Unit, the dark blue rectangles represent the Arithmetic Logic Unit (AU), the
red rectangles represent the Cache Memory, and the brown-yellow rectangles represent the Dynamic
Random-Access Memory (DRAM)).

2.2. Integration Methods from Raster Data to DGGSs

In recent years, many scholars have also studied the integration algorithms of hexago-
nal grids and rasters. For example, Rui Wang [4] implemented a raster integration algorithm
design based on a generalized hierarchical indexing method for the icosahedral mixed-
aperture hexagonal grid, which can reduce the data volume by 38.5% compared to the
pure-aperture algorithm design. Mingke Li [5], on the other hand, focused on the study
of multi-resolution topographic map integration based on a hexagonal grid, which was
achieved through the calculation of descriptive statistics, topographic parameters, and
topographic indices for raster integration. Andrew Rawson [6] performed raster integration
by resampling the raster surface using grid centroids and experimentally demonstrated
the applicability of DGGSs as spatial data structures for maritime risk analysis. Jinxin
Wang [19] proposed an algorithm for raster computation in the context of the Earth system
space based on the spatial topological characteristics of 3D DGGS and the concept of di-
mensionality reduction. A Mahdavi-Amiri [20] presented a general hierarchical indexing
mechanism for hexagonal cells resulting from the refinement of a triangular spherical
polyhedral and applied it to the mapping of geospatial data to a DGGS. However, their
method only considers the hierarchy of the hexagons themselves and does not encode the
structure of rhombic tiles loaded with hexagonal grid cells. As a result, when the volume
of data is very large, reading and searching the data become problems. Furthermore, this
method does not limit the number of tiles by setting a threshold or tile merging, which
generates a large amount of tile data when the amount of raster data is large. It requires
the retrieval and reading of a large amount of tile data when performing the conversion of
raster data to DGGSs, which has an impact on the integration efficiency.

As mentioned above, although many scholars have carried out research on DGGS-
based raster data integration algorithms, their methods are designed for CPUs and are
difficult to be implemented in GPUs, so they are limited by CPU performance and, usu-
ally, can only be used to convert low-resolution or localized high-resolution raster data
to DGGSs.

2.3. GPU-Based Raster Data Integration and Organization

One of the main challenges that all digital Earth systems face is the sheer immensity
of the amount of data available [11]. Massive raster data computation is difficult to load
into a CPU, so many scholars choose to use GPU parallel computing to solve this problem.
For example, Liheng Tan [21] proposed a method for the contour generation of DEM
data based on a programmable GPU pipeline for a DGGS. Retief Lubbe [22] conducted
an analysis of a GPU-based DEM parallel space partitioning algorithm, which provided
guidance for further research in the field of GPU-based DEM collision detection and

Remote Sens. 2024, 16, 2022 5 of 27

its application in geotechnical engineering. Karnewar [23] implemented the processing
and analysis of land remote sensing images based on the GPU. Lu Min [24] designed a
CPU/GPU heterogeneous hybrid parallel model and performed the fast computation of
raster data terrain factors based on this model. Lin Bo [25] implemented the GPU-based
parallel computation of a linear integral convolution algorithm for ocean data visualization.
Stojanovic [26] conducted the view analysis of digital elevation data based on the CUDA
programming framework, etc.

Some scholars have also carried out research on the application of DGGSs to raster
data organization, integration, and visualization in GPUs. For instance, M. J. Sherlock [27]
proposed the method of mapping from hexagons to rhombuses and used a GPU for the
efficient visualization of DGGS datasets. However, the essence of this research was to
convert hexagonal DGGSs to rhombic DGGSs. However, in this method, when the amount
of data was large, the volume of data being transmitted became a problem. In addition
to this, the above-mentioned study used a coding system from the literature [18] to code
hexagonal cells, so the hexagons also needed to be split during coding, and the spatial
information of the extra vertices besides the centroid of the cell needed to be recorded.
Xiaochuang Yao [28] designed a raster data integration method for hexagonal grids called
HexTile on the Spark platform, which uses hexagonal tiles for raster data integration and
adopts a distributed database for storage to solve the problems caused by map projection
deformation. However, their method organizes the data by tiling each layer and does not
use a rhombic tile structure, so the complex computation of neighborhood and hierarchical
relationships by the hexagon itself inevitably affects the scheduling efficiency of the data in
the integration process.

2.4. Summary of the Current Status of the Research

To sum up, the application of GPU technology to traditional raster data is quite mature,
and the biggest difference between a raster and a hexagonal DGGS in terms of structure is
that raster data are regular and can be passed to the GPU in the form of texture. Therefore,
in this paper, we introduce a rhombic tile structure, so as to apply the research results
of regular grids to a hexagonal DGGS, aiming to further improve the efficiency of the
integration algorithm through the encoding and decoding mechanism of the DGGS and
the design of GPU thread optimization.

3. Basic Idea and Overall Design

As stated above, the core idea of the method in this paper is to construct a hexagonal
DGGS data structure based on rhombic tiles by combining the characteristics of hexagonal
DGGSs with an icosahedron, so as to transform hexagonal DGGS data into a texture type
acceptable for the GPU. On this basis, we designed the organization scheme of hexagonal
DGGS data and the scheduling strategy of the corresponding raster data and created a
conversion method from GPU-based raster data to hexagonal DGGS data through thread
scheduling between the GPU and the CPU. The overall operation, which is divided into
four steps, is shown in Figure 2.

Remote Sens. 2024, 16, 2022 6 of 27Remote Sens. 2024, 16, x FOR PEER REVIEW 6 of 27

Figure 2. Pipeline scheduling.

(1) Structural Design: Given the distribution characteristics of a hexagonal DGGS on an
icosahedron, the basic rhombic surfaces of the icosahedron are used to define a kind
of data structure to organize hexagonal cells so as to achieve the organization of hex-
agons by rhombuses.

(2) Organization and Encoding Method: The rhombus-based hexagonal DGGS data or-
ganization scheme is then defined based on the constructed data structure, and the
rhombus data as well as the hexagonal cells inside the rhombus are encoded as
shown in Figure 2, where the hexagonal DGGS data are organized in a way that ap-
proximates the rhombic tiles of the rhombus, and the codes of the hexagonal cells are
encoded in a relative coordinate system with respect to the tile codes of the rhombus.

Figure 2. Pipeline scheduling.

(1) Structural Design: Given the distribution characteristics of a hexagonal DGGS on
an icosahedron, the basic rhombic surfaces of the icosahedron are used to define a
kind of data structure to organize hexagonal cells so as to achieve the organization of
hexagons by rhombuses.

(2) Organization and Encoding Method: The rhombus-based hexagonal DGGS data
organization scheme is then defined based on the constructed data structure, and the
rhombus data as well as the hexagonal cells inside the rhombus are encoded as shown
in Figure 2, where the hexagonal DGGS data are organized in a way that approximates
the rhombic tiles of the rhombus, and the codes of the hexagonal cells are encoded in
a relative coordinate system with respect to the tile codes of the rhombus.

Remote Sens. 2024, 16, 2022 7 of 27

(3) Scheduling Strategy and Resampling Algorithm: The geospatial extent of the rhombic
tiles based on the level of hexagonal DGGS data and the encoding of the rhombic tiles
is determined, and then the raster data are scheduled in the corresponding spatial
extent based on the spatial extent of the rhombic tiles. After completing the scheduling,
the rhombic tile data and the raster data corresponding to the spatial range are passed
into the GPU, where the decoding of tile data is performed, and the raster data are
resampled into the tile data.

(4) Pipeline Scheduling: Finally, in order to optimize the performance of the CPU and
GPU, a parallel computing architecture of the GPU is designed to reduce its delay of
the GPU in data reading and computation, and the operations in the whole process
are divided into IO-intensive and compute-intensive parts according to the type
of application, with IO-intensive applications executed in the CPU and compute-
intensive applications executed in the GPU, so as to give full play to the parallel
computing performance of the GPU, which is specifically used to achieve an efficient
GPU-based conversion algorithm from raster data to hexagonal DGGS data.

4. Methodology

As the irregularity of hexagonal DGGSs is the fundamental reason why they are
difficult to adapt to the GPU structure, the first problem to be solved in this research is
how to express a hexagonal DGGS in the GPU. After this problem has been solved, we will
proceed to design the scheduling strategy and resampling method for the raster data in
the GPU, and, finally, through the asynchronous co-design between the GPU and the CPU,
we will further enhance the computational performance of the GPU and create an efficient
algorithm for the conversion of raster data to hexagonal DGGS data.

4.1. Representation of a Hexagonal DGGS in the GPU
4.1.1. The Hexagonal Organization Method Based on Rhombic Tiles

The grid dissection method based on polyhedral dissection is one of the basic dis-
section methods of DGGSs, where the triangular faces of an octahedron or icosahedron
can be recursively subdivided into a hexagonal grid system [1]. In this paper, the ISEA4H
generated by DGGRID, which is an open-source command-line application written in
C++ [29], has been used, where A4 stands for an aperture size of 4. The aperture size
is the ratio of the area occupied by coarse hexagonal cells to the area occupied by fine
hexagonal cells [11]. In order to avoid the problem of the distribution of hexagonal cells
on triangular surfaces, this study combines twenty triangular surfaces into ten rhombic
surfaces in two groups, creating basic rhombic surfaces. There are 2level × 2level uniformly
distributed hexagonal cells on each basic rhombic surface, and in order for the hexagonal
DGGS to cover the globe, there must exist 12 pentagons at the vertices of the ten rhombic
faces. Taking the hexagonal grid with level 2 as an example, the icosahedral schematic and
the arrangement of the hexagonal cells on the basic rhombic surface are shown in Figure 3.

Remote Sens. 2024, 16, x FOR PEER REVIEW 7 of 27

(3) Scheduling Strategy and Resampling Algorithm: The geospatial extent of the rhom-
bic tiles based on the level of hexagonal DGGS data and the encoding of the rhombic
tiles is determined, and then the raster data are scheduled in the corresponding spa-
tial extent based on the spatial extent of the rhombic tiles. After completing the sched-
uling, the rhombic tile data and the raster data corresponding to the spatial range are
passed into the GPU, where the decoding of tile data is performed, and the raster
data are resampled into the tile data.

(4) Pipeline Scheduling: Finally, in order to optimize the performance of the CPU and
GPU, a parallel computing architecture of the GPU is designed to reduce its delay of
the GPU in data reading and computation, and the operations in the whole process
are divided into IO-intensive and compute-intensive parts according to the type of
application, with IO-intensive applications executed in the CPU and compute-inten-
sive applications executed in the GPU, so as to give full play to the parallel computing
performance of the GPU, which is specifically used to achieve an efficient GPU-based
conversion algorithm from raster data to hexagonal DGGS data.

4. Methodology
As the irregularity of hexagonal DGGSs is the fundamental reason why they are dif-

ficult to adapt to the GPU structure, the first problem to be solved in this research is how
to express a hexagonal DGGS in the GPU. After this problem has been solved, we will
proceed to design the scheduling strategy and resampling method for the raster data in
the GPU, and, finally, through the asynchronous co-design between the GPU and the
CPU, we will further enhance the computational performance of the GPU and create an
efficient algorithm for the conversion of raster data to hexagonal DGGS data.

4.1. Representation of a Hexagonal DGGS in the GPU
4.1.1. The Hexagonal Organization Method Based on Rhombic Tiles

The grid dissection method based on polyhedral dissection is one of the basic dissection
methods of DGGSs, where the triangular faces of an octahedron or icosahedron can be re-
cursively subdivided into a hexagonal grid system [1]. In this paper, the ISEA4H generated
by DGGRID, which is an open-source command-line application written in C++ [29], has
been used, where A4 stands for an aperture size of 4. The aperture size is the ratio of the
area occupied by coarse hexagonal cells to the area occupied by fine hexagonal cells [11]. In
order to avoid the problem of the distribution of hexagonal cells on triangular surfaces, this
study combines twenty triangular surfaces into ten rhombic surfaces in two groups, creating
basic rhombic surfaces. There are 2௩ × 2௩ uniformly distributed hexagonal cells on
each basic rhombic surface, and in order for the hexagonal DGGS to cover the globe, there
must exist 12 pentagons at the vertices of the ten rhombic faces. Taking the hexagonal grid
with level 2 as an example, the icosahedral schematic and the arrangement of the hexagonal
cells on the basic rhombic surface are shown in Figure 3.

Figure 3. Arrangement of hexagonal cells. Figure 3. Arrangement of hexagonal cells.

Remote Sens. 2024, 16, 2022 8 of 27

If the centroids of the hexagonal cells are used to identify the hexagonal cells, the
hexagonal grid can be transformed into a regular 2D rectangular array on the basic rhombic
surface, which can be regarded as a kind of rhombic tile structure, as shown in Figure 4.

Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 27

If the centroids of the hexagonal cells are used to identify the hexagonal cells, the hex-
agonal grid can be transformed into a regular 2D rectangular array on the basic rhombic
surface, which can be regarded as a kind of rhombic tile structure, as shown in Figure 4.

Figure 4. Organization of hexagonal cells based on rhombic tiles. (The blue hexagonal cells are the
cells attributed to this basic rhombic surface, and the gray hexagonal cells are the cells that do not
belong to the current basic rhombic surface.)

The core idea of the method in this paper is to consider the underlying rhombic sur-
face of a polyhedron as a kind of rhombic tile, construct its tree structure, and design the
corresponding encoding and decoding mechanisms for the rhombic tiles, so as to organize
the hexagonal cells into an approximately regular mesh structure, so that they could be
received by the GPU in the form of a texture, based on which fast data access can be
achieved. The hexagonal cells generated by the DGGRID are encoded to uniquely identify
their position on the rhombic tiles, and the level of the tiles is the same as that of the hex-
agonal DGGS. The traditional tile quadtree structure is cut according to the level, but
when the amount of data is large, this method affects the efficiency of the algorithm.
Therefore, we designed a method for segmenting data according to their amount, and we
set a threshold for it. When the amount of data reaches a certain threshold, the base rhom-
bus is divided into four parts according to the threshold in accordance with the principle
of quadtree slicing. From the above, it can be seen that, for the DGGS, the number of hex-
agonal cells is directly related to the level, so the threshold value can be formulated
through the level of the DGGS. If one were to let the threshold level be 𝑀, then, when the
grid level is less than 𝑀, there is a one-to-one linear relationship between the parent and
child tiles, and only the hexagonal cells inside the tiles increase. When the grid level is
greater than 𝑀, there is a one-to-four quadtree relationship between the parent and child
tiles.

4.1.2. Encoding of Hexagonal Cells and Rhombic Tiles
There are two main ways to encode hexagonal cells on the DGGS: they are either

given a unique 𝐼𝐷 or referred to by their basic rhombic surface number of the icosahe-
dron (a rhombus made up of two triangular faces), numbered 0–9, and a two-dimensional
coordinate on that quadrant, 𝑞2𝑑𝑖 [30]. The 𝑞2𝑑𝑖 is essentially a coordinate system code,
which can be expressed in the form of a ternary, such as Cell(𝑄, 𝑅, 𝐶), where 𝑄 is the basic
rhombic surface number of the icosahedron, 𝑅 is the row number of the hexagonal cells
on the underlying rhombic surface, and 𝐶 is the column number of the cells on the un-
derlying rhombic surface.

The method of unique 𝐼𝐷 encoding can be regarded as a simplification of 𝑞2𝑑𝑖, while 𝑞2𝑑𝑖 encoding of the hexagonal cells (𝑄, 𝑅, 𝐶) is implicit in the ID, and the encoding con-
version method is shown in Equation (1).

Figure 4. Organization of hexagonal cells based on rhombic tiles. (The blue hexagonal cells are the
cells attributed to this basic rhombic surface, and the gray hexagonal cells are the cells that do not
belong to the current basic rhombic surface).

The core idea of the method in this paper is to consider the underlying rhombic
surface of a polyhedron as a kind of rhombic tile, construct its tree structure, and design
the corresponding encoding and decoding mechanisms for the rhombic tiles, so as to
organize the hexagonal cells into an approximately regular mesh structure, so that they
could be received by the GPU in the form of a texture, based on which fast data access
can be achieved. The hexagonal cells generated by the DGGRID are encoded to uniquely
identify their position on the rhombic tiles, and the level of the tiles is the same as that of
the hexagonal DGGS. The traditional tile quadtree structure is cut according to the level,
but when the amount of data is large, this method affects the efficiency of the algorithm.
Therefore, we designed a method for segmenting data according to their amount, and
we set a threshold for it. When the amount of data reaches a certain threshold, the base
rhombus is divided into four parts according to the threshold in accordance with the
principle of quadtree slicing. From the above, it can be seen that, for the DGGS, the number
of hexagonal cells is directly related to the level, so the threshold value can be formulated
through the level of the DGGS. If one were to let the threshold level be M, then, when
the grid level is less than M, there is a one-to-one linear relationship between the parent
and child tiles, and only the hexagonal cells inside the tiles increase. When the grid level
is greater than M, there is a one-to-four quadtree relationship between the parent and
child tiles.

4.1.2. Encoding of Hexagonal Cells and Rhombic Tiles

There are two main ways to encode hexagonal cells on the DGGS: they are either
given a unique ID or referred to by their basic rhombic surface number of the icosahedron
(a rhombus made up of two triangular faces), numbered 0–9, and a two-dimensional
coordinate on that quadrant, q2di [30]. The q2di is essentially a coordinate system code,
which can be expressed in the form of a ternary, such as Cell(Q, R, C), where Q is the basic
rhombic surface number of the icosahedron, R is the row number of the hexagonal cells on
the underlying rhombic surface, and C is the column number of the cells on the underlying
rhombic surface.

The method of unique ID encoding can be regarded as a simplification of q2di, while
q2di encoding of the hexagonal cells (Q, R, C) is implicit in the ID, and the encoding
conversion method is shown in Equation (1).

ID = Q × 2level × 2level + R × 2level + C (1)

Remote Sens. 2024, 16, 2022 9 of 27

Compared with the way of using unique IDs to encode the grid, q2di indexing is a
choice related to the texture structure. However, the code of q2di is extremely lengthy when
the grid level is high: assuming that q2di is to be used to encode the cells in the 18th level
of the DGGS (with an approximate resolution of 30 m), the encoding of each cell will be
up to 14 bits long, which will affect the efficiency of the encoding and decoding process
and also make it difficult to adapt to the quadtree structure of the rhombic tiles. Therefore,
we decided to shorten the number of bits encoded in the DGGS cells based on q2di by first
encoding the rhombic tiles and later building the encoding coordinate system of the DGGS
cells inside the rhombic tiles, in order to improve the efficiency of encoding and decoding.

Firstly, we encoded the rhombic tiles. From Section 4.1.1 of this paper, we know that
the root nodes of the rhombic tiles are the ten basic rhombic surfaces of the icosahedron,
which is a linear structure before the amount of data reaches the threshold, and a quadtree
structure takes its place after the amount of data reaches the threshold. According to this
characteristic, we defined a rhombic tile indexing method based on space-filling curves.
The first byte of the code was Q, meaning the decimal form of the basic rhombus surface
number, coded in the range 0–9, with the north and south poles denoted using N and
S, respectively. The second byte was L, meaning the level of the grid, and, in order to
avoid too many bits occupied by the level encoding, we used the thirty-sixth decimal form,
ranged 0–36. The subsequent bytes were S, meaning the encoding based on the space-filling
curve, which served to uniquely identify the subtiles obtained from the quadtree cut, as
shown in Table 1.

Table 1. Encoding structure of rhombic tile.

First Character of the Code Second Character of the Code Subsequent Bytes of
the Code

Decimal form of the basic
rhombic surface numbering:

0–9, N, S.

Level of the grid, using
thirty-sixth decimal

representation.

Unique identification of the
binary code using

space-filling curves.

If one were to let the code of the rhombic tile be the Morton curve, then the code of the
rhombic tile quadtree would be that shown in Figure 5.

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 27

𝐼𝐷 = 𝑄 × 2௩ × 2௩ + 𝑅 × 2௩ + 𝐶 (1)

Compared with the way of using unique IDs to encode the grid, 𝑞2𝑑𝑖 indexing is a
choice related to the texture structure. However, the code of 𝑞2𝑑𝑖 is extremely lengthy
when the grid level is high: assuming that 𝑞2𝑑𝑖 is to be used to encode the cells in the 18th
level of the DGGS (with an approximate resolution of 30 m), the encoding of each cell will
be up to 14 bits long, which will affect the efficiency of the encoding and decoding process
and also make it difficult to adapt to the quadtree structure of the rhombic tiles. Therefore,
we decided to shorten the number of bits encoded in the DGGS cells based on 𝑞2𝑑𝑖 by first
encoding the rhombic tiles and later building the encoding coordinate system of the DGGS
cells inside the rhombic tiles, in order to improve the efficiency of encoding and decoding.

Firstly, we encoded the rhombic tiles. From Section 4.1.1 of this paper, we know that
the root nodes of the rhombic tiles are the ten basic rhombic surfaces of the icosahedron,
which is a linear structure before the amount of data reaches the threshold, and a quadtree
structure takes its place after the amount of data reaches the threshold. According to this
characteristic, we defined a rhombic tile indexing method based on space-filling curves. The
first byte of the code was 𝑄, meaning the decimal form of the basic rhombus surface num-
ber, coded in the range 0–9, with the north and south poles denoted using N and S, respec-
tively. The second byte was 𝐿, meaning the level of the grid, and, in order to avoid too many
bits occupied by the level encoding, we used the thirty-sixth decimal form, ranged 0–36. The
subsequent bytes were S, meaning the encoding based on the space-filling curve, which
served to uniquely identify the subtiles obtained from the quadtree cut, as shown in Table
1.

Table 1. Encoding structure of rhombic tile.

First Character of the Code Second Character of the Code Subsequent Bytes of the Code
Decimal form of the basic rhombic surface

numbering: 0-9, N, S.
Level of the grid, using thirty-sixth decimal

representation.
Unique identification of the binary code us-

ing space-filling curves.

If one were to let the code of the rhombic tile be the Morton curve, then the code of
the rhombic tile quadtree would be that shown in Figure 5.

Figure 5. Rhombic tile encoding structure.

According to the relationship between the hexagonal DGGS and the rhombic tiles,
the 𝑞2𝑑𝑖 indexing range of the hexagonal cells in each rhombic tile can be calculated based
on the tile code. If one were to let the grid level be 𝑀(𝑀 ∈ 𝑁ା), then the index of the
rhombic tile would be 𝐼𝑛𝑑𝑒𝑥 = 𝑄 · 𝐿 · 𝑆, where Q is the basic rhombic surface number,
L is the grid level, S is the space-filling curve code, and the subscript 𝑟 represents the
rhombic tile. For the hexagonal cells inside the tile, 𝑄 = 𝑄. If the cut threshold of the
quadtree is not reached, the encoding range of the hexagonal cells is 𝑅 = 𝐶 =ሾ0, 2), 𝐿 ≤ 𝑀, where the subscript 𝑟𝑎𝑛𝑔𝑒 represents the encoding range, 𝑅represents the

Figure 5. Rhombic tile encoding structure.

According to the relationship between the hexagonal DGGS and the rhombic tiles, the
q2di indexing range of the hexagonal cells in each rhombic tile can be calculated based on
the tile code. If one were to let the grid level be M(M ∈ N+), then the index of the rhombic
tile would be Indexr = Qr·L·S, where Q is the basic rhombic surface number, L is the grid
level, S is the space-filling curve code, and the subscript r represents the rhombic tile. For

Remote Sens. 2024, 16, 2022 10 of 27

the hexagonal cells inside the tile, Qcell = Qr. If the cut threshold of the quadtree is not
reached, the encoding range of the hexagonal cells is Rrange = Crange =

[
0, 2L), L ≤ M,

where the subscript range represents the encoding range, R represents the row where
the hexagonal cell resides, and C represents the column where the hexagonal cell resides.
When the cut threshold of the quadtree is reached, Rrange and Crange can be calculated using
Equations (2) and (3).

Rrange =

{ [
0, 2L−1), S = 0, 1[

2L−1, 2L), S = 2, 3
, L = M + 1 (2)

Crange =

{ [
0, 2L−1), S = 0, 2[

2L−1, 2L), S = 1, 3
, L = M + 1 (3)

In order to avoid the redundancy of the q2di code, a relative coordinate system can be
defined so that the code of the hexagonal cells is transferred from the global q2di code to the
q2di encoding relative to the rhombic tiles. The process can be divided into the following
five steps, as shown in Figure 6, the pseudo-code of which is given in Figure A1.

Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 27

row where the hexagonal cell resides, and 𝐶 represents the column where the hexagonal
cell resides. When the cut threshold of the quadtree is reached, 𝑅 and 𝐶 can be
calculated using Equations (2) and (3). 𝑅 = ൜ ሾ0, 2ିଵ), 𝑆 = 0, 1ሾ2ିଵ, 2), 𝑆 = 2, 3 , 𝐿 = 𝑀 + 1 (2)

𝐶 = ൜ ሾ0, 2ିଵ), 𝑆 = 0, 2ሾ2ିଵ, 2), 𝑆 = 1, 3 , 𝐿 = 𝑀 + 1 (3)

In order to avoid the redundancy of the 𝑞2𝑑𝑖 code, a relative coordinate system can be
defined so that the code of the hexagonal cells is transferred from the global 𝑞2𝑑𝑖 code to the 𝑞2𝑑𝑖 encoding relative to the rhombic tiles. The process can be divided into the following
five steps, as shown in Figure 6, the pseudo-code of which is given in Figure A1.
• Step1: Determine whether the grid level 𝐿 is greater than the threshold 𝑀.
• Step2: If the grid level 𝐿 is greater than𝑀, skip to step 4, and, if the grid level 𝐿 is

less than or equal to 𝑀, the rhombic tiles are encoded without the space-filling curve
code 𝑆. They will simply be encoded as 𝐼𝑛𝑑𝑒𝑥 = 𝑄 · L.

• Step3: The hexagonal cells inside the rhombic tiles are global coordinates when the
grid level is less than the threshold 𝑀, and 𝑄 = 𝑄.

• Step4: If the grid level is greater than 𝑀, based on the tile code 𝐼𝑛𝑑𝑒𝑥 = 𝑄·L·S, the
encoding range 𝑅 (𝑅, 𝑅௫) and 𝐶 (𝐶, 𝐶௫) of the hexagonal cells
inside the rhombic tile is first calculated using Equations (2) and (3). Then, the encod-
ing of the hexagonal cells with respect to the coordinate values of the rhombic tile
origin is calculated: 𝑄 = 𝑄, 𝑅 = 𝑅 − 𝑅, 𝑎𝑛𝑑 𝐶 = 𝐶 − 𝐶.

• Step5: Repeat the above steps until all the encodings of the hexagonal cells have been
converted to the encodings relative to the rhombic tile. Output the list of converted
encodings, i.e., 𝐼𝑛𝑑𝑒𝑥𝐿𝑖𝑠𝑡 =൛(𝑄భ, 𝑅భ, 𝐶భ൯, ൛(𝑄మ, 𝑅మ, 𝐶మ൯, ൛(𝑄య, 𝑅య, 𝐶య൯, … , ൛(𝑄, 𝑅, 𝐶൯ሽ, 𝑛 ∈ 𝑁ା.

Figure 6. Encoding process for hexagonal cells.

Figure 6. Encoding process for hexagonal cells.

• Step1: Determine whether the grid level L is greater than the threshold M.
• Step2: If the grid level L is greater than M, skip to step 4, and, if the grid level L is less

than or equal to M, the rhombic tiles are encoded without the space-filling curve code
S. They will simply be encoded as Indexr = Qr · L.

• Step3: The hexagonal cells inside the rhombic tiles are global coordinates when the
grid level is less than the threshold M, and Qc = Qr.

Remote Sens. 2024, 16, 2022 11 of 27

• Step4: If the grid level is greater than M, based on the tile code Indexr = Qr·L·S, the
encoding range Rrange (Rmin, Rmax) and Crange (Cmin, Cmax) of the hexagonal cells inside
the rhombic tile is first calculated using Equations (2) and (3). Then, the encoding of
the hexagonal cells with respect to the coordinate values of the rhombic tile origin is
calculated: Qc = Qr, Rc = Rc − Rmin, and Cc = Cc − Cmin.

• Step5: Repeat the above steps until all the encodings of the hexagonal cells have been con-
verted to the encodings relative to the rhombic tile. Output the list of converted encodings, i.e.,
IndexListc = {(Qc1, Rc1, Cc1),{(Qc2, Rc2, Cc2),{(Qc3, Rc3, Cc3), . . . ,{(Qcn , Rcn , Ccn)}, n ∈ N+.

4.1.3. Decoding of Hexagonal DGGS Data in the GPU

The conversion between the q2di codes and the geographic coordinates is based on
Snyder equal-area map projection [31]. When converting the codes of hexagonal cells to
geographic coordinates, the first step is to convert the codes of the hexagonal cells from
those relative to the rhombic tiles to the global q2di codes. If one were to let the encoding
of the hexagonal cells relative to the rhombic tiles be Cell(Qr, Rr, Cr), then, in the q2di
coordinate system, the basic rhombic surface of the hexagonal cell would be Qq2di = Qr, the
row number would be Rq2di = Rr + Rmin, the column number would be Cq2di = Cr + Cmin.
Rmin, and Cmin could be decoded from the rhombic tile encoding of where the hexagonal
cell is located. After that, the q2di code is decoded and converted to geographic coordinates
by Snyder equal-area map projection.

In this paper, the encodings of hexagonal cells are realized based on the encoding of
rhombic tiles, so only the encodings of rhombic tiles need to be transmitted during data
transmission, after which the encodings of all hexagonal cells can be calculated based on
the encoding of rhombic tiles and then decoded using the Snyder equal-area map projection.
Due to this feature, when the number of hexagonal cells is large, parallel computation using
the GPU can realize a great improvement in decoding efficiency.

Therefore, in this paper, the decoding operation of the hexagonal cells is designed to
be executed in the GPU, and only the encodings of rhombic tiles are passed into the GPU
without considering the decoding of specific hexagonal cells, and the vertex shader is used
in the GPU to perform parallel computation to code the hexagonal cells and convert them
to geographic coordinates. The whole operation breaks into the following four steps:

• Step1: Generate a list of encodings in the CPU for the rhombic tiles whose spatial
extent intersects the target spatial extent space, then traverse the list and pass the
encodings to the GPU.

• Step2: After the GPU receives the codes, it first decodes the rhombic tile to obtain the
number Q of the underlying rhombic surface where the rhombic tile is located and
carries out some calculations to obtain the relative coordinate ranges Rrange and Crange
of the hexagonal cells inside the tile.

• Step3: Based on the calculated basic rhombic surface numbers and the relative coordi-
nate ranges, the hexagonal cells inside the rhombic tiles are decoded to obtain the q2di
codes of the hexagonal cells.

• Step4: The q2di codes are converted to geospatial coordinates, and the next loop is
performed until all hexagonal cell codes have been converted to geospatial coordinates.
Then, the next pieces of rhombic tile data are decoded, until all tile data have been
decoded, as shown in Figure 7. A pseudo-code that describes the process of decoding
is given in Figure A2.

Remote Sens. 2024, 16, 2022 12 of 27
Remote Sens. 2024, 16, x FOR PEER REVIEW 12 of 27

Figure 7. Decoding process for hexagonal cells.

4.2. Raster Data Scheduling and Resampling in the GPU
4.2.1. The Scheduling Strategy for Raster Data in the GPU

As previously mentioned, in this paper, DGG data are organized in rhombic tiles
based on the ten basic rhombic surfaces in the positive icosahedra, and, as raster data are
regularly arranged and the range of geographic coordinates between each block of raster
data is consistent, this research adopts a rhombic tile-based approach to look up raster
data for spatial data scheduling. Specifically, it is a method of traversing rhombic tiles
based on the space-filling curve, then calculating the space range of each rhombic tile and
scheduling the raster data that partially or fully lie within the space range of rhombic tiles,
and, finally, assigning values to the hexagonal cells inside the tile data on this basis. This
method reduces the number of projection calculations and eliminates the case of crossing
tiles compared to raster-based rhombic tile data finding.

The scheduling strategy for raster data whose spatial extent intersects the spatial ex-
tent of the rhombic tile is shown in Figure 8. First, the spatial extent of the rhombic tile
and the initial rhombic surface number where it is located are calculated based on the tile
code. Afterwards, raster data with similar extents are dispatched based on the spatial ex-
tent of the rhombic tiles. When performing DGGS-based raster data integration, the reso-
lution of the DGGS is usually similar to the raster resolution, but, since the ISEA4H used
in this paper is an equal-accumulation grid and the metric unit of the rhombic tiles is in
meters while the metric units of the raster data are latitude and longitude, the spatial re-
lationship between the rhombic tiles and the raster data exists differently at different lati-
tudes. Taking global Aster 30 m digital elevation data as an example, its corresponding
DGGS level is 18. As shown in Figure 9, the relationship between rhombic tiles and raster

Figure 7. Decoding process for hexagonal cells.

4.2. Raster Data Scheduling and Resampling in the GPU
4.2.1. The Scheduling Strategy for Raster Data in the GPU

As previously mentioned, in this paper, DGG data are organized in rhombic tiles
based on the ten basic rhombic surfaces in the positive icosahedra, and, as raster data are
regularly arranged and the range of geographic coordinates between each block of raster
data is consistent, this research adopts a rhombic tile-based approach to look up raster
data for spatial data scheduling. Specifically, it is a method of traversing rhombic tiles
based on the space-filling curve, then calculating the space range of each rhombic tile and
scheduling the raster data that partially or fully lie within the space range of rhombic tiles,
and, finally, assigning values to the hexagonal cells inside the tile data on this basis. This
method reduces the number of projection calculations and eliminates the case of crossing
tiles compared to raster-based rhombic tile data finding.

The scheduling strategy for raster data whose spatial extent intersects the spatial
extent of the rhombic tile is shown in Figure 8. First, the spatial extent of the rhombic tile
and the initial rhombic surface number where it is located are calculated based on the tile
code. Afterwards, raster data with similar extents are dispatched based on the spatial extent
of the rhombic tiles. When performing DGGS-based raster data integration, the resolution
of the DGGS is usually similar to the raster resolution, but, since the ISEA4H used in this
paper is an equal-accumulation grid and the metric unit of the rhombic tiles is in meters
while the metric units of the raster data are latitude and longitude, the spatial relationship
between the rhombic tiles and the raster data exists differently at different latitudes. Taking
global Aster 30 m digital elevation data as an example, its corresponding DGGS level is 18.
As shown in Figure 9, the relationship between rhombic tiles and raster data blocks can be
categorized into the following six kinds, but the number of raster data blocks around each
rhombic tile is not more than nine. Therefore, each rhombic tile is dispatched accordingly
with a 3 × 3 raster combination block.

Remote Sens. 2024, 16, 2022 13 of 27

Remote Sens. 2024, 16, x FOR PEER REVIEW 13 of 27

data blocks can be categorized into the following six kinds, but the number of raster data
blocks around each rhombic tile is not more than nine. Therefore, each rhombic tile is
dispatched accordingly with a 3 × 3 raster combination block.

Figure 8. Raster data scheduling strategy.

Figure 9. Spatial relationship between raster data and rhombic tile data.

After completing the assignment of grid data within a rhombic tile, the next tile to be
assigned is determined based on the space-filling curve, with the current tile and the next
tile usually being adjacent to one another. Therefore, the spatial extent of the next tile can
be calculated based on the method above, after which the 3 × 3 grid combination block is
updated accordingly by comparing the spatial relationship between the next tile data and
the current tile data. The raster data that are still within the range of the grid data are kept,
and the raster data that are beyond the range of the grid data are updated, to avoid read-
ing raster data repeatedly, as shown in Figure 10.

Figure 10. Raster data scheduling strategy:(a) Schematic diagram of the first raster data schedul-
ing; (b) Update strategy for raster data.

Figure 8. Raster data scheduling strategy.

Remote Sens. 2024, 16, x FOR PEER REVIEW 13 of 27

data blocks can be categorized into the following six kinds, but the number of raster data
blocks around each rhombic tile is not more than nine. Therefore, each rhombic tile is
dispatched accordingly with a 3 × 3 raster combination block.

Figure 8. Raster data scheduling strategy.

Figure 9. Spatial relationship between raster data and rhombic tile data.

After completing the assignment of grid data within a rhombic tile, the next tile to be
assigned is determined based on the space-filling curve, with the current tile and the next
tile usually being adjacent to one another. Therefore, the spatial extent of the next tile can
be calculated based on the method above, after which the 3 × 3 grid combination block is
updated accordingly by comparing the spatial relationship between the next tile data and
the current tile data. The raster data that are still within the range of the grid data are kept,
and the raster data that are beyond the range of the grid data are updated, to avoid read-
ing raster data repeatedly, as shown in Figure 10.

Figure 10. Raster data scheduling strategy:(a) Schematic diagram of the first raster data schedul-
ing; (b) Update strategy for raster data.

Figure 9. Spatial relationship between raster data and rhombic tile data.

After completing the assignment of grid data within a rhombic tile, the next tile to be
assigned is determined based on the space-filling curve, with the current tile and the next
tile usually being adjacent to one another. Therefore, the spatial extent of the next tile can
be calculated based on the method above, after which the 3 × 3 grid combination block is
updated accordingly by comparing the spatial relationship between the next tile data and
the current tile data. The raster data that are still within the range of the grid data are kept,
and the raster data that are beyond the range of the grid data are updated, to avoid reading
raster data repeatedly, as shown in Figure 10.

Remote Sens. 2024, 16, x FOR PEER REVIEW 13 of 27

data blocks can be categorized into the following six kinds, but the number of raster data
blocks around each rhombic tile is not more than nine. Therefore, each rhombic tile is
dispatched accordingly with a 3 × 3 raster combination block.

Figure 8. Raster data scheduling strategy.

Figure 9. Spatial relationship between raster data and rhombic tile data.

After completing the assignment of grid data within a rhombic tile, the next tile to be
assigned is determined based on the space-filling curve, with the current tile and the next
tile usually being adjacent to one another. Therefore, the spatial extent of the next tile can
be calculated based on the method above, after which the 3 × 3 grid combination block is
updated accordingly by comparing the spatial relationship between the next tile data and
the current tile data. The raster data that are still within the range of the grid data are kept,
and the raster data that are beyond the range of the grid data are updated, to avoid read-
ing raster data repeatedly, as shown in Figure 10.

Figure 10. Raster data scheduling strategy:(a) Schematic diagram of the first raster data schedul-
ing; (b) Update strategy for raster data.

Figure 10. Raster data scheduling strategy: (a) Schematic diagram of the first raster data scheduling;
(b) Update strategy for raster data.

After completing a grid data assignment, the read raster data are cleared from the video
memory, and the subsequent tile data are added to the video memory. The relationships
between the subsequent tile data and the completed tile data can be divided into nine
types, as shown in Figure 10a. For example, if the geographic coordinate range of the
subsequent tile data is equal to that of the completed tile data, this corresponds to case 4 in

Remote Sens. 2024, 16, 2022 14 of 27

Figure 10a, where no raster combination block update is required. If the subsequent tile
data are increased by 1◦ in longitude compared to the completed tile data and the latitude
remains unchanged, it corresponds to case 5 in Figure 10a. At this time, the data of blocks
0, 3, and 6 of the raster combination blocks are rejected, and blocks 1, 4, 7, 2, 5, and 8 are
shifted left by one position to blocks 0′, 3′, 6′, 1′, 4′, and 7′, and the data of blocks 2′, 5′, and
8′ will be reread, as shown in Figure 10b. A similar strategy can be used for the remaining
cases. If the geographic coordinate range relationship between the subsequent tile data
and the completed tile data is not among the nine cases in Figure 10a, the 3 × 3 raster
combination blocks will be searched again based on the geographic coordinate range of the
subsequent tile data.

4.2.2. Raster Data Resampling Based on the Hexagonal Grid

Considering the fact that raster data are mostly organized in the form of a positive
quadrilateral, while hexagonal grid data are organized in the form of a positive hexagon,
resampling will be required if integration between the two types of data is to be achieved
after completing raster data scheduling. For raster data, currently, the common resampling
methods include neighborhood interpolation, bilinear interpolation, and bicubic interpo-
lation. Among them, the bilinear interpolation method is a resampling method in which
four coordinate points in the data are known and linearly interpolated in two directions,
respectively, horizontal and vertical, which maintains a higher accuracy than the neighbor-
hood interpolation method and enjoys a higher computational efficiency than higher-order
interpolation algorithms such as bicubic interpolation, with insignificant differences in
accuracy [32]. For the above reason, this paper attempts to realize the integration from
raster data to hexagonal grid data based on the bilinear interpolation method.

The principle of bilinear interpolation is shown in Figure 11. The red point in
Figure 11b is the center point of the hexagonal cell inside the tile data, and the black
point is the center point of the raster data cell. The specific steps are as follows: first, the
geospatial extent of the rhombic tile is calculated based on the encoding of the rhombic
tile, and raster data that are partially or fully located within the geospatial extent of the
rhombic tile are scheduled. After the scheduling is completed, the bilinear interpolation
value of the positive hexagonal grid is calculated based on the obtained raster data blocks.
If one were to let the coordinates of the center point of the hexagonal grid be (x, y), the
horizontal partition ratio be µ and 1 − µ, and the vertical partition ratio be λ and 1 − λ,
F(x, y) would denote the original value at the center (x, y) of the positive quadrilateral grid,
and I(x, y) would denote the interpolated value at the point (x, y). Then, the following
could be obtained from the formula of linear interpolation.

I(x1, y) = λF(x1, y2) + (1 − λ)F(x1, y1)
I(x2, y) = λF(x2, y2) + (1 − λ)F(x2, y1)
I(x, y) = µI(x2, y) + (1 − µ)I(x1, y)

(4)Remote Sens. 2024, 16, x FOR PEER REVIEW 15 of 27

Figure 11. Principle of bilinear interpolation of raster data: (a) Principle of bilinear interpolation;
(b) Finding the nearest raster point from the center of a hexagonal cell;(c) Interpolate the center of
the hexagonal cell based on the coordinates of the four nearest raster center points.

In this research, the raster data resampling algorithm is applied in the GPU in order
to avoid the performance problem caused by transferring arrays larger than the maximum
number of threads to the GPU in high-resolution raster integration. To be exact, this re-
search adopts the method of mesh grid–stride loops (GSLs) to execute the resampling of
raster data in the CUDA. During the data solving process, the grid–stride loop is imple-
mented in the entire threaded grid by means of the jump traversal of the one-dimensional
data array by one grid width at a time, that is, by creating a loop which takes the thread
grid through the entire array, in which case, each thread must move to the next unpro-
cessed location after one loop iteration. If one were to suppose that there were two grids
in a thread, with four blocks in each grid, the grid–stride loops would be executed as
shown in Figure 12.

Figure 12. Grid–stride loops. (Dark blue rectangles represent Grids in threads. light blue and
white rectangles represent Blocks in a Grid. orange rectangles represent data blocks.)

4.3. Asynchronous Collaboration Method of the CPU and the GPU
For the research goal of this paper, efficient CPU and GPU asynchronous collabora-

tion is essential to further realize GPU-based algorithm acceleration. After the resampling
scheme is completed, threads can be allocated according to the thread block into four
steps: the decoding of tiles, the scheduling of raster data, the resampling of raster data,
and the output of tiles. Threads are allocated in accordance with the tile data structure
designed in this study, and each rhombic tile serves as the basis of one thread, which is
executed in a concurrent manner. By analyzing the above process, it can be found that the
four steps in the process have different time complexities, as shown in Table 2.

Figure 11. Principle of bilinear interpolation of raster data: (a) Principle of bilinear interpolation;
(b) Finding the nearest raster point from the center of a hexagonal cell; (c) Interpolate the center of
the hexagonal cell based on the coordinates of the four nearest raster center points.

Remote Sens. 2024, 16, 2022 15 of 27

From this, the bilinear interpolation formula for the center of the hexagonal grid can
be derived, as in Equation (5).

I(x, y) = µλF(x2, y2) + µ(1 − λ)F(x2, y1) + (1 − µ)λF(x1, y2) + (1 − µ)(1 − λ)F(x1, y1) (5)

In this research, the raster data resampling algorithm is applied in the GPU in order to
avoid the performance problem caused by transferring arrays larger than the maximum
number of threads to the GPU in high-resolution raster integration. To be exact, this research
adopts the method of mesh grid–stride loops (GSLs) to execute the resampling of raster
data in the CUDA. During the data solving process, the grid–stride loop is implemented in
the entire threaded grid by means of the jump traversal of the one-dimensional data array
by one grid width at a time, that is, by creating a loop which takes the thread grid through
the entire array, in which case, each thread must move to the next unprocessed location
after one loop iteration. If one were to suppose that there were two grids in a thread, with
four blocks in each grid, the grid–stride loops would be executed as shown in Figure 12.

Remote Sens. 2024, 16, x FOR PEER REVIEW 15 of 27

Figure 11. Principle of bilinear interpolation of raster data: (a) Principle of bilinear interpolation;
(b) Finding the nearest raster point from the center of a hexagonal cell;(c) Interpolate the center of
the hexagonal cell based on the coordinates of the four nearest raster center points.

In this research, the raster data resampling algorithm is applied in the GPU in order
to avoid the performance problem caused by transferring arrays larger than the maximum
number of threads to the GPU in high-resolution raster integration. To be exact, this re-
search adopts the method of mesh grid–stride loops (GSLs) to execute the resampling of
raster data in the CUDA. During the data solving process, the grid–stride loop is imple-
mented in the entire threaded grid by means of the jump traversal of the one-dimensional
data array by one grid width at a time, that is, by creating a loop which takes the thread
grid through the entire array, in which case, each thread must move to the next unpro-
cessed location after one loop iteration. If one were to suppose that there were two grids
in a thread, with four blocks in each grid, the grid–stride loops would be executed as
shown in Figure 12.

Figure 12. Grid–stride loops. (Dark blue rectangles represent Grids in threads. light blue and
white rectangles represent Blocks in a Grid. orange rectangles represent data blocks.)

4.3. Asynchronous Collaboration Method of the CPU and the GPU
For the research goal of this paper, efficient CPU and GPU asynchronous collabora-

tion is essential to further realize GPU-based algorithm acceleration. After the resampling
scheme is completed, threads can be allocated according to the thread block into four
steps: the decoding of tiles, the scheduling of raster data, the resampling of raster data,
and the output of tiles. Threads are allocated in accordance with the tile data structure
designed in this study, and each rhombic tile serves as the basis of one thread, which is
executed in a concurrent manner. By analyzing the above process, it can be found that the
four steps in the process have different time complexities, as shown in Table 2.

Figure 12. Grid–stride loops. (Dark blue rectangles represent Grids in threads. light blue and white
rectangles represent Blocks in a Grid. orange rectangles represent data blocks).

4.3. Asynchronous Collaboration Method of the CPU and the GPU

For the research goal of this paper, efficient CPU and GPU asynchronous collaboration
is essential to further realize GPU-based algorithm acceleration. After the resampling
scheme is completed, threads can be allocated according to the thread block into four steps:
the decoding of tiles, the scheduling of raster data, the resampling of raster data, and the
output of tiles. Threads are allocated in accordance with the tile data structure designed in
this study, and each rhombic tile serves as the basis of one thread, which is executed in a
concurrent manner. By analyzing the above process, it can be found that the four steps in
the process have different time complexities, as shown in Table 2.

Table 2. Time complexity of different steps.

The Output of Tiles The Scheduling of
Raster Data The Decoding of Tiles The Resampling of

Raster Data

O(n) O(n log n) O(n) O
(
n2)

Different time complexities will lead to conflicts between threads, resulting in serious
problems such as data loss and duplicate writes, so inter-thread synchronization is needed.
However, if the traditional thread lock mechanism is used in this process, it will lead to
a long waiting time for unlocked threads, which will cause performance degradation of

Remote Sens. 2024, 16, 2022 16 of 27

the GPU. For example, while the resampling thread for the raster data is resampling raster
data into a rhombic tile, if the scheduling thread for the raster data wants to transmit the
next rhombic tile and the raster data which correspond to the spatial extent of the rhombic
tile, the scheduling thread has to wait for the resampling thread to complete the operation,
which causes unnecessary delays. Therefore, in this paper, based on the thread lock, we
set up a buffer between threads and send signals to synchronize four threads by means of
thread communication. The steps are shown in Figure 13.

Remote Sens. 2024, 16, x FOR PEER REVIEW 16 of 27

Table 2. Time complexity of different steps.

The Output of Tiles The Scheduling of Raster Data The Decoding of Tiles The Resampling of Raster Data O(n) O(n log n) O(n) O(nଶ)

Different time complexities will lead to conflicts between threads, resulting in serious
problems such as data loss and duplicate writes, so inter-thread synchronization is
needed. However, if the traditional thread lock mechanism is used in this process, it will
lead to a long waiting time for unlocked threads, which will cause performance degrada-
tion of the GPU. For example, while the resampling thread for the raster data is
resampling raster data into a rhombic tile, if the scheduling thread for the raster data
wants to transmit the next rhombic tile and the raster data which correspond to the spatial
extent of the rhombic tile, the scheduling thread has to wait for the resampling thread to
complete the operation, which causes unnecessary delays. Therefore, in this paper, based
on the thread lock, we set up a buffer between threads and send signals to synchronize
four threads by means of thread communication. The steps are shown in Figure 13.

Figure 13. Thread buffer design.

• Step1: After hexagonal DGGS data are transferred from the CPU to the GPU in the
form of a texture, they are first decoded to obtain their spatial extent as well as the
geographic coordinates of the hexagonal cells. Whenever the decoding of tile data is
completed, it is saved in the tile data-decoding buffer, and a signal is sent to activate
the thread used for raster scheduling.

• Step2: The raster-scheduling thread first traverses the tile data-decoding buffer, and,
whenever it obtains tile data, it schedules the raster data in the corresponding spatial
range, saves the completed raster data and tile data in the raster-resampling buffer,
and sends a signal to activate the raster-resampling thread at the beginning of the
thread.

• Step3: The raster-resampling thread continuously checks the raster data buffer for
unfinished raster data and tile data and then resamples the raster data and assigns
values to the tile data after obtaining the data. After the assignment is completed, the
raster-resampling thread saves the tile data to the data output buffer and sends a
signal to activate the data output thread at the beginning of the thread.

• Step4: The data output thread continuously checks the raster-resampling buffer and
sets the threshold. When the amount of data in the buffer reaches the threshold, all
the tiles in the buffer will be output from the GPU to the disk to avoid the perfor-
mance loss caused by multiple transfers.

Figure 13. Thread buffer design.

• Step1: After hexagonal DGGS data are transferred from the CPU to the GPU in the
form of a texture, they are first decoded to obtain their spatial extent as well as the
geographic coordinates of the hexagonal cells. Whenever the decoding of tile data is
completed, it is saved in the tile data-decoding buffer, and a signal is sent to activate
the thread used for raster scheduling.

• Step2: The raster-scheduling thread first traverses the tile data-decoding buffer, and,
whenever it obtains tile data, it schedules the raster data in the corresponding spatial
range, saves the completed raster data and tile data in the raster-resampling buffer, and
sends a signal to activate the raster-resampling thread at the beginning of the thread.

• Step3: The raster-resampling thread continuously checks the raster data buffer for
unfinished raster data and tile data and then resamples the raster data and assigns
values to the tile data after obtaining the data. After the assignment is completed,
the raster-resampling thread saves the tile data to the data output buffer and sends a
signal to activate the data output thread at the beginning of the thread.

• Step4: The data output thread continuously checks the raster-resampling buffer and
sets the threshold. When the amount of data in the buffer reaches the threshold, all the
tiles in the buffer will be output from the GPU to the disk to avoid the performance
loss caused by multiple transfers.

When the tile data-decoding thread completes the decoding of all the tile data, it will
automatically stop and send a signal to the grid-scheduling thread. The grid-scheduling
thread that receives the signal will stop when the tile data-decoding buffer is empty and
send a signal to the grid-resampling thread, which, upon receipt of the signal, will stop
after completing the resampling of all the data in the buffer, and it will send a signal to the
data output thread. When the raster-resampling buffer is empty, it means that the raster
integration algorithm has been fully executed, and all the data have been transferred from
the GPU to the disk.

As it can be seen from the above, this operation no longer passes tile data and raster
data as parameters between threads but saves them in the thread buffer to achieve syn-

Remote Sens. 2024, 16, 2022 17 of 27

chronization between the threads in the way of thread communication. Each thread in
this process is activated by the previous one, and it only needs to check whether there
are any unprocessed data in the buffer after activation, without directly exchanging in-
formation between threads, thus avoiding the performance impact caused by using the
traditional thread-locking method, and, eventually, an efficient buffer-based inter-thread
synchronization strategy is successfully implemented.

5. Results

In order to verify the accuracy and efficiency of the proposed algorithm, raster data
integration experiments based on an 18-level global hexagonal discrete grid were designed
and conducted in this research, using Aster 30 m digital elevation data on a global scale.
The area of each hexagonal cell was 742.25 m2, and the distance between the centroids of
the hexagonal cells was 33.8 m under the 18-level grid. The experimental environment was
a desktop computer with Microsoft Windows 10 Professional installed, equipped with the
Intel(R) Core (TM) i7-10875H CPU at 2.30 GHz, NVIDIA GeForce RTX 2060 graphics card,
32 GB of RAM, and 1 tb hard drive at 7200 rpm. The program was compiled using Visual
c++ 2019.

The experimental results were evaluated in terms of both integration accuracy and
integration efficiency, in comparison with the hexagonal connectivity map [20], i.e., a CPU-
based raster data integration algorithm. In order to determine the integration accuracy,
we selected several regions with fragmented terrain and traversed each data cell in the
raster data in the region to search for the DGG cells in the corresponding position according
to their latitude and longitude, then compared their attribute values, and, if the values
were the same, they were considered to meet the accuracy criteria. This process continued
until all traversals had been completed. Since the integration efficiency of raster data is
influenced by several factors, such as the threshold for tile splitting, the combination of
threads in the CUDA, the decoding method of tile encodings, etc., we planned to conduct
the experiments starting from the influencing factors of raster data integration efficiency
and, after obtaining the most efficient solution, compare the efficiency with that of the
CPU-based raster data integration algorithm.

5.1. Integration Accuracy of the Algorithm

To prove the accuracy of raster data integration, three areas with a relatively complex
topography, namely, the Yarlung Tsangpo Grand Canyon, the Dead Sea, and Mount Everest,
were selected in this paper to validate the resampled gridded raster data within the area.
As stated in Section 4.2.2 of this paper, the interpolation method used in the resampling
of raster data is bilinear interpolation. Therefore, in order to ensure the rationality of the
verification results, bilinear interpolation was also used to resample the DGGS data to the
same resolution as the raster data, and then the elevation value of each of the same raster
points in the DGGS data and the raster data was compared, and the average error was
calculated as well. Table 3 lists the calculation results.

From the results of the integration accuracy verification experiments, it can be seen that
the proposed algorithm in this paper can effectively guarantee the accuracy of data integra-
tion when raster data integration is performed. Taking the Yarlung Tsangpo Grand Canyon
region as an example, the resampled Aster 30 m raster data had a total of 104,857,600 hexag-
onal cells, and the average error between the DGGS data integrated with the raster data
and the original raster data in terms of the elevation value was 1.068 m. The different
integration accuracies between the raster data in the three different regions were due to
the bilinear interpolation method, which is essentially a low-pass filter. The Dead Sea
has little topographic relief, so the raster was dominated by low-frequency signals and,
therefore, had a higher integration accuracy. The Great Canyon of Yarlung Tsangpo and
Mount Everest have more topographic relief and more high-frequency signals in the rasters,
so the integration accuracy in their case was lower compared to the Dead Sea.

Remote Sens. 2024, 16, 2022 18 of 27

Table 3. Integration accuracy verification results.

Location Space Range Number of
Hexagonal Cells

Average Error of
Grid Integration (m)

Max Error of Grid
Integration (m)

Min Error of Grid
Integration (m)

Great Canyon of
Yarlung Tsangpo

30–35◦N,
90–95◦E 104,857,600 1.068 120.530 0.412

Dead Sea 30–32◦N,
36–36◦E 8,388,608 0.859 0.747 0.316

Mount Everest 27–28◦N,
86–87◦E 4,194,304 1.481 209.548 0.383

Whole Earth 0◦N–90◦S,
0◦E–180◦W 687,194,767,362 0.257 209.548 0.001

5.2. Integration Efficiency of the Algorithm
5.2.1. Scheduling Schemes for the Raster Data and the Tile Data

In our experiment, firstly, the threshold of rhombic tiles’ segmentation was tested. The
threshold represents the maximum number of hexagonal cells that can be stored inside a
tile. By testing the indexing speed of tile encoding and the IO speed of the raster data, the
threshold of tile segmentation that was most conducive to efficient data transmission was
calculated. Since rhombic tiles store hexagonal cells internally, the amount of data must
follow the distribution law of hexagonal cells, which means that the amount of data must
be 2level × 2level . The data-scheduling steps in the experiment are specified in parahraph 4,
Section 1, of this paper, and the experimental results are shown in Figure 14.

Remote Sens. 2024, 16, x FOR PEER REVIEW 18 of 27

Table 3. Integration accuracy verification results.

Location Space Range Number of Hexagonal
Cells

Average Error of Grid
Integration (m)

Max Error of Grid
Integration (m)

Min Error of Grid
Integration (m)

Great Canyon of
Yarlung Tsangpo

30°–35°N,
90–95°E

104,857,600 1.068 120.530 0.412

Dead Sea
30–32°N,
36–36°E

8,388,608 0.859 0.747 0.316

Mount Everest
27–28°N,
86–87°E

4,194,304 1.481 209.548 0.383

Whole Earth
0°N–90°S,

0°E–180°W
687,194,767,362 0.257 209.548 0.001

From the results of the integration accuracy verification experiments, it can be seen
that the proposed algorithm in this paper can effectively guarantee the accuracy of data
integration when raster data integration is performed. Taking the Yarlung Tsangpo Grand
Canyon region as an example, the resampled Aster 30 m raster data had a total of
104,857,600 hexagonal cells, and the average error between the DGGS data integrated with
the raster data and the original raster data in terms of the elevation value was 1.068 m.
The different integration accuracies between the raster data in the three different regions
were due to the bilinear interpolation method, which is essentially a low-pass filter. The
Dead Sea has little topographic relief, so the raster was dominated by low-frequency sig-
nals and, therefore, had a higher integration accuracy. The Great Canyon of Yarlung
Tsangpo and Mount Everest have more topographic relief and more high-frequency sig-
nals in the rasters, so the integration accuracy in their case was lower compared to the
Dead Sea.

5.2. Integration Efficiency of the Algorithm
5.2.1. Scheduling Schemes for the Raster Data and the Tile Data

In our experiment, firstly, the threshold of rhombic tiles’ segmentation was tested.
The threshold represents the maximum number of hexagonal cells that can be stored in-
side a tile. By testing the indexing speed of tile encoding and the IO speed of the raster
data, the threshold of tile segmentation that was most conducive to efficient data trans-
mission was calculated. Since rhombic tiles store hexagonal cells internally, the amount of
data must follow the distribution law of hexagonal cells, which means that the amount of
data must be 2௩ × 2௩. The data-scheduling steps in the experiment are specified in
Chapter 4, Section 1, of this paper, and the experimental results are shown in Figure 14.

Figure 14. Experiment to determine the threshold of tile splitting. Figure 14. Experiment to determine the threshold of tile splitting.

It can be seen from the experimental results that the segmentation threshold of tile data
is closely related to the search and scheduling efficiency of the raster data. If the threshold
is too small, it will greatly increase the number of operations for retrieval and scheduling,
which will affect the efficiency of data indexing. On the other hand, if the threshold is too
large, it will increase the amount of transmission per raster data block, causing an increase
in the time for raster data to be read. The experiments show that the IO efficiency of the
raster data reaches the highest value when 2048 × 2048 hexagonal cells are decoded in each
rhombic tile, at which time the grid level is 11. Therefore, the threshold M in Section 4.1 of
this paper is 11.

Though the scheduling strategy between individual tile data and raster data has
been determined in Section 4.2.1 of this paper, but, for the full tile data, traversal through
space-filling curves is still required. Therefore, the impact of different common space-filling
curves on the efficiency of the algorithm has to be evaluated. The raster data used for
the evaluation are the global Aster 30 m digital elevation data, which correspond to tiles
with a level of 18. The evaluation method is to traverse the same tile data point based on

Remote Sens. 2024, 16, 2022 19 of 27

different space-filling curves and record the raster data that are scheduled in each tile data.
After completing the traversal, the average number of times that each raster data point
is scheduled in the traversal process is counted. The experimental results are shown in
Figure 15.

Remote Sens. 2024, 16, x FOR PEER REVIEW 19 of 27

It can be seen from the experimental results that the segmentation threshold of tile
data is closely related to the search and scheduling efficiency of the raster data. If the
threshold is too small, it will greatly increase the number of operations for retrieval and
scheduling, which will affect the efficiency of data indexing. On the other hand, if the
threshold is too large, it will increase the amount of transmission per raster data block,
causing an increase in the time for raster data to be read. The experiments show that the
IO efficiency of the raster data reaches the highest value when 2048 × 2048 hexagonal cells
are decoded in each rhombic tile, at which time the grid level is 11. Therefore, the thresh-
old M in Section 4.1 of this paper is 11.

Though the scheduling strategy between individual tile data and raster data has been
determined in Section 4.2.1 of this paper, but, for the full tile data, traversal through space-
filling curves is still required. Therefore, the impact of different common space-filling
curves on the efficiency of the algorithm has to be evaluated. The raster data used for the
evaluation are the global Aster 30 m digital elevation data, which correspond to tiles with
a level of 18. The evaluation method is to traverse the same tile data point based on differ-
ent space-filling curves and record the raster data that are scheduled in each tile data.
After completing the traversal, the average number of times that each raster data point is
scheduled in the traversal process is counted. The experimental results are shown in Fig-
ure 15.

Figure 15. Comparison of efficiency of space-filling curves (times).

From the experimental results, it can be seen that the S-shaped space-filling curve has
a higher searching efficiency with fewer reads per raster data on average compared to
other curves when traversing tiles; therefore, the S-shaped space-filling curve is chosen as
the basis for tile traversal, which improves the efficiency of raster data scheduling.

5.2.2. Thread Combination in the GPU
When CUDA is executed, the Kernel function in the Host program is executed on the

GPU according to the concept of grid (thread grid). A Kernel function corresponds to a
grid. When a task is to be executed, the grid assigns the task to part of a block (thread
block), which contains multiple threads, and the block assigns the task to different threads
in it and performs concurrent computations. In order to achieve the highest degree of con-
currency, it is necessary to conduct experiments to find out the best sizes of block and grid
that are conducive to the highest efficiency. Therefore, in this paper, “gridsize” denotes
the size of the grid, and “blocksize” denotes the size of the block in CUDA. We conducted
a comparison experiment on the computation efficiency for different combinations of
gridsize×blocksize, and the experimental results are shown in Figure 16.

Figure 15. Comparison of efficiency of space-filling curves (times).

From the experimental results, it can be seen that the S-shaped space-filling curve has
a higher searching efficiency with fewer reads per raster data on average compared to other
curves when traversing tiles; therefore, the S-shaped space-filling curve is chosen as the
basis for tile traversal, which improves the efficiency of raster data scheduling.

5.2.2. Thread Combination in the GPU

When CUDA is executed, the Kernel function in the Host program is executed on the
GPU according to the concept of grid (thread grid). A Kernel function corresponds to a
grid. When a task is to be executed, the grid assigns the task to part of a block (thread
block), which contains multiple threads, and the block assigns the task to different threads
in it and performs concurrent computations. In order to achieve the highest degree of
concurrency, it is necessary to conduct experiments to find out the best sizes of block and
grid that are conducive to the highest efficiency. Therefore, in this paper, “gridsize” denotes
the size of the grid, and “blocksize” denotes the size of the block in CUDA. We conducted a
comparison experiment on the computation efficiency for different combinations of gridsize
× blocksize, and the experimental results are shown in Figure 16.

Remote Sens. 2024, 16, x FOR PEER REVIEW 20 of 27

Figure 16. Efficiency comparison for each thread combination block.

From the experimental results, it can be seen that, when the thread combination
reaches 256 × 256, the solution speedup ratio reaches the highest peak, and the subsequent
increase in threads can no longer improve the solution efficiency, so a gridsize×blocksize
of 256 × 256 is chosen as the thread combination scheme in this paper.

5.2.3. Decoding Efficiency Comparison between the CPU and the GPU
As described in Section 4.1.3 of this paper, theoretically performing the decoding of

the hexagonal DGGS data in the GPU has a higher efficiency compared to performing it
in the CPU, but the actual results still need to be verified by experiments. The comparison
of decoding efficiency consists of two parts: the first part is the efficiency of the conversion
from encoding to geographic coordinates, and the second part is the efficiency of the data
transfer from the CPU to the GPU. As the transmission efficiency of the hexagonal DGGS
data has already been verified in Section 5.2.1 of this paper, an experiment is conducted
for validating the decoding efficiency only.

The raster data used for the experiment are the global Aster 30 m digital elevation
data, and the experimental method is to first encode the hexagonal DGGS data based on
rhombic tile organization on the 15–18 level, respectively, and then decode and record the
time of operation in the CPU and the GPU, respectively, where the CPU-based algorithm
uses the hexagonal connectivity map [20], and the GPU-based algorithm uses the algo-
rithm proposed in this paper. The experimental results are shown in Figure 17.

Figure 17. CPU decoding efficiency vs. GPU decoding efficiency.

Figure 16. Efficiency comparison for each thread combination block.

From the experimental results, it can be seen that, when the thread combination
reaches 256 × 256, the solution speedup ratio reaches the highest peak, and the subsequent
increase in threads can no longer improve the solution efficiency, so a gridsize × blocksize
of 256 × 256 is chosen as the thread combination scheme in this paper.

Remote Sens. 2024, 16, 2022 20 of 27

5.2.3. Decoding Efficiency Comparison between the CPU and the GPU

As described in Section 4.1.3 of this paper, theoretically performing the decoding of
the hexagonal DGGS data in the GPU has a higher efficiency compared to performing it in
the CPU, but the actual results still need to be verified by experiments. The comparison of
decoding efficiency consists of two parts: the first part is the efficiency of the conversion
from encoding to geographic coordinates, and the second part is the efficiency of the data
transfer from the CPU to the GPU. As the transmission efficiency of the hexagonal DGGS
data has already been verified in Section 5.2.1 of this paper, an experiment is conducted for
validating the decoding efficiency only.

The raster data used for the experiment are the global Aster 30 m digital elevation
data, and the experimental method is to first encode the hexagonal DGGS data based on
rhombic tile organization on the 15–18 level, respectively, and then decode and record the
time of operation in the CPU and the GPU, respectively, where the CPU-based algorithm
uses the hexagonal connectivity map [20], and the GPU-based algorithm uses the algorithm
proposed in this paper. The experimental results are shown in Figure 17.

Remote Sens. 2024, 16, x FOR PEER REVIEW 20 of 27

Figure 16. Efficiency comparison for each thread combination block.

From the experimental results, it can be seen that, when the thread combination
reaches 256 × 256, the solution speedup ratio reaches the highest peak, and the subsequent
increase in threads can no longer improve the solution efficiency, so a gridsize×blocksize
of 256 × 256 is chosen as the thread combination scheme in this paper.

5.2.3. Decoding Efficiency Comparison between the CPU and the GPU
As described in Section 4.1.3 of this paper, theoretically performing the decoding of

the hexagonal DGGS data in the GPU has a higher efficiency compared to performing it
in the CPU, but the actual results still need to be verified by experiments. The comparison
of decoding efficiency consists of two parts: the first part is the efficiency of the conversion
from encoding to geographic coordinates, and the second part is the efficiency of the data
transfer from the CPU to the GPU. As the transmission efficiency of the hexagonal DGGS
data has already been verified in Section 5.2.1 of this paper, an experiment is conducted
for validating the decoding efficiency only.

The raster data used for the experiment are the global Aster 30 m digital elevation
data, and the experimental method is to first encode the hexagonal DGGS data based on
rhombic tile organization on the 15–18 level, respectively, and then decode and record the
time of operation in the CPU and the GPU, respectively, where the CPU-based algorithm
uses the hexagonal connectivity map [20], and the GPU-based algorithm uses the algo-
rithm proposed in this paper. The experimental results are shown in Figure 17.

Figure 17. CPU decoding efficiency vs. GPU decoding efficiency. Figure 17. CPU decoding efficiency vs. GPU decoding efficiency.

The experimental results show that the efficiency of decoding hexagonal DGGS data in
the GPU is much higher than that in the CPU. The fundamental reason is that the decoding
of hexagonal DGGS data is a computation-intensive application, and GPUs, with more
processing units and a higher memory bandwidth than traditional central processing units
(CPUs), are able to increase the efficiency of computationally intensive applications through
multi-threaded parallel computing.

5.2.4. The Overall Efficiency

Based on the above experiments, the optimal combination scheme of the algorithm
in an NVIDIA GeForce RTX 2060 graphics card can be derived: that is, each rhombic tile
can be decoded in the GPU to obtain 2048 × 2048 hexagonal cells, on the basis of which
the scheduling of grid data is achieved using the S-shaped space-filling curve, and the
combination of the grid and the block is defined as 256 × 256 in CUDA. The time consumed
by each part of the process of GPU-based transmission from raster data to the hexagonal
DGGS using the above parameters is shown in Figure 18, and the x-axis is the level of tiles.

Remote Sens. 2024, 16, 2022 21 of 27

Remote Sens. 2024, 16, x FOR PEER REVIEW 21 of 27

The experimental results show that the efficiency of decoding hexagonal DGGS data
in the GPU is much higher than that in the CPU. The fundamental reason is that the de-
coding of hexagonal DGGS data is a computation-intensive application, and GPUs, with
more processing units and a higher memory bandwidth than traditional central pro-
cessing units (CPUs), are able to increase the efficiency of computationally intensive ap-
plications through multi-threaded parallel computing.

5.2.4. The Overall Efficiency
Based on the above experiments, the optimal combination scheme of the algorithm

in an NVIDIA GeForce RTX 2060 graphics card can be derived: that is, each rhombic tile
can be decoded in the GPU to obtain 2048 × 2048 hexagonal cells, on the basis of which the
scheduling of grid data is achieved using the S-shaped space-filling curve, and the com-
bination of the grid and the block is defined as 256 × 256 in CUDA. The time consumed
by each part of the process of GPU-based transmission from raster data to the hexagonal
DGGS using the above parameters is shown in Figure 18, and the x-axis is the level of tiles.

Figure 18. Time consumed by each part of the algorithmic flow.

Based on this scheme, a comparison of the overall efficiency between the proposed
algorithm and the traditional CPU-based raster data integration algorithm is conducted.
The CPU-based integration algorithm uses hexagonal connectivity maps [20], and the
comparison results are shown in Figure 19.

Figure 19. Overall efficiency comparison.

Figure 18. Time consumed by each part of the algorithmic flow.

Based on this scheme, a comparison of the overall efficiency between the proposed
algorithm and the traditional CPU-based raster data integration algorithm is conducted.
The CPU-based integration algorithm uses hexagonal connectivity maps [20], and the
comparison results are shown in Figure 19.

Remote Sens. 2024, 16, x FOR PEER REVIEW 21 of 27

The experimental results show that the efficiency of decoding hexagonal DGGS data
in the GPU is much higher than that in the CPU. The fundamental reason is that the de-
coding of hexagonal DGGS data is a computation-intensive application, and GPUs, with
more processing units and a higher memory bandwidth than traditional central pro-
cessing units (CPUs), are able to increase the efficiency of computationally intensive ap-
plications through multi-threaded parallel computing.

5.2.4. The Overall Efficiency
Based on the above experiments, the optimal combination scheme of the algorithm

in an NVIDIA GeForce RTX 2060 graphics card can be derived: that is, each rhombic tile
can be decoded in the GPU to obtain 2048 × 2048 hexagonal cells, on the basis of which the
scheduling of grid data is achieved using the S-shaped space-filling curve, and the com-
bination of the grid and the block is defined as 256 × 256 in CUDA. The time consumed
by each part of the process of GPU-based transmission from raster data to the hexagonal
DGGS using the above parameters is shown in Figure 18, and the x-axis is the level of tiles.

Figure 18. Time consumed by each part of the algorithmic flow.

Based on this scheme, a comparison of the overall efficiency between the proposed
algorithm and the traditional CPU-based raster data integration algorithm is conducted.
The CPU-based integration algorithm uses hexagonal connectivity maps [20], and the
comparison results are shown in Figure 19.

Figure 19. Overall efficiency comparison. Figure 19. Overall efficiency comparison.

According to the overall experimental results, the proposed algorithm achieved signifi-
cant efficiency improvements while ensuring the accuracy of data integration, as compared
with the traditional CPU-based raster data integration algorithm. Take the 18th-level grid
as an example, the complete integration of the global raster data using the CPU takes ap-
proximately 23.53 h, while the complete integration of the global raster data using the GPU
takes approximately 143.0624 s, which is about 600 times more efficient in computation.

6. Discussion

The discussion section of this paper is divided into three parts: first, the comparison
of the encoding and decoding methods proposed in this paper with the existing hexagonal
DGGS encoding methods; second, the comparison between the algorithm proposed in this
paper and the existing methods in terms of GPU application; and third, the scalability of
the method proposed in this paper in the field of DGGSs.

6.1. Encoding and Decoding Methods

DGGS is an encoding-centered digital Earth framework, and the efficiency of en-
coding and decoding have a great impact on all DGGS-based operations. The encoding

Remote Sens. 2024, 16, 2022 22 of 27

and decoding mechanisms are also part of the main difference between the integration
algorithm proposed in this paper and other existing algorithms. Three commonly used
hexagonal DGGS coding and decoding methods are selected here for comparison, which
are PYXIS [13], HQBS [12], and hierarchical grid conversion [18].

PYXIS is a coding method designed for A3H DGGS, and it does not generalize to other
types of DGGS. It divides the sphere into 32 regions, each modeled by a multi-resolution
sequence of finite planar hexagonal grids. Operations based on PYXIS encoding need to be
performed through pre-computed addition tables, and, due to the inconsistency between dif-
ferent levels, PYXIS needs to make a lot of logical judgments when performing neighborhood
query, hierarchical query, parent–child relationship query, and other operations on cells.

HQBS is a method of encoding hexagonal cells using consecutive quadratic numbers,
each bit of which is encoded in the range {0, 1, 2, 3}, and it sets an origin for the hexagonal
cells, which is noted as 0. The rest of the encoding for each cell records the direction and
distance between it and the origin. When performing operations based on HQBS encoding,
it is necessary to set up the addition and multiplication tables in a pre-computed form and
perform the encoded calculations by looking up the tables to obtain the desired results.

The core idea of hierarchical grid conversion is to insert new vertices or edges or
removing the existing ones to realize the conversion between different graphics. Therefore,
the coding method in this paper serves this purpose, which means that additional vertex
information must be recorded in the encoding in order to ensure that the converted graph
can be converted back to the original graph. Furthermore, if this coding method is applied
to the digital Earth, for instance, to construct a mapping from hexagonal DGGS to rhombic
DGGS, the encodings of rhombic DGGS must first be decoded into the encodings of
hexagonal DGGS, which are, in turn, decoded into spatial coordinates.

From the above analysis, a comparison between the coding method proposed in this
paper and the three commonly used coding methods can be drawn, as shown in Table 4.
The HQBS coding method and the PYXIS coding method have good performance when
performing operations such as topology query, neighborhood query, and spatial coordinate
conversion based on DGGS coding in the CPU. However, both PYXIS and HQBS are
encoded based on hierarchical and neighborhood relationships between hexagons, which
are still irregular data for the GPU. In addition, for a highly parallelized GPU, constant table
lookups and logical judgments inevitably affect the computational efficiency. Although
the encoding method proposed in hierarchical grid conversion can convert hexagonal
DGGS data into regular rhombic textures, it needs to record additional vertex information,
which increases the amount of data when passing the DGGS data into the GPU, and
it needs to be decoded twice in the GPU and will inevitably affect the efficiency of the
conversion from raster data to the DGGS. Compared with these encoding methods, the
DGGS encoding method in this paper is simpler. Although, to a certain extent, it reduces
the efficiency of encoding conversion and indexing in the CPU, this encoding method
essentially involves no logical judgment, no additional encoding calculation tables, and
no additional conversions. Operations such as indexing, topological querying, and the
hierarchical querying of hexagonal cells can be performed directly by coding calculations.
Therefore, this method enjoys higher decoding and topology query efficiencies in the GPU,
which make the method proposed in this paper for converting raster data to the hexagonal
DGGS more efficient compared to other methods.

Table 4. Comparison of coding and decoding methods.

Coding Method A Large Number of
Logical Judgments Requires Calculation Table Requires Multiple Decodes

PYXIS
√ √

×
HQBS ×

√
×

Hierarchical grid conversion × ×
√

Proposed in this paper × × ×

Remote Sens. 2024, 16, 2022 23 of 27

6.2. Impact of the Coding Method Proposed in this Paper on Bandwidth and Raster
Integration Efficiency

In this paper, the rhombic tile structure is used as a texture to realize the transmission
of DGGS data from the CPU to the GPU, and the coding and decoding mechanisms are
specially designed for this structure. Specifically, the hexagonal cells and the rhombic tiles
are encoded in the CPU, and then only the encoding is transferred to the GPU, where the
data are decoded, thus reducing the PCI-e bandwidth consumption during data transfer.
Assume that the concurrency of data transmission is 200 requests per second and that the
data volume includes all the rhombic tiles. Figure 20 illustrates the comparison of data
transmission bandwidth requirements with and without the rhombic tile structure in the
data organization phase of the hexagonal DGGS. Figure 21 illustrates the overall efficiency
comparison with and without the proposed encoding and decoding methods.

Remote Sens. 2024, 16, x FOR PEER REVIEW 23 of 27

hexagonal DGGS data into regular rhombic textures, it needs to record additional vertex
information, which increases the amount of data when passing the DGGS data into the
GPU, and it needs to be decoded twice in the GPU and will inevitably affect the efficiency
of the conversion from raster data to the DGGS. Compared with these encoding methods,
the DGGS encoding method in this paper is simpler. Although, to a certain extent, it re-
duces the efficiency of encoding conversion and indexing in the CPU, this encoding
method essentially involves no logical judgment, no additional encoding calculation ta-
bles, and no additional conversions. Operations such as indexing, topological querying,
and the hierarchical querying of hexagonal cells can be performed directly by coding cal-
culations. Therefore, this method enjoys higher decoding and topology query efficiencies
in the GPU, which make the method proposed in this paper for converting raster data to
the hexagonal DGGS more efficient compared to other methods.

Table 4. Comparison of coding and decoding methods.

Coding Method
A Large Number of Logical

Judgments Requires Calculation Table Requires Multiple Decodes

PYXIS √ √ ×
HQBS × √ ×

Hierarchical grid conversion × × √
Proposed in this paper × × ×

6.2. Impact of the Coding Method Proposed in this Paper on Bandwidth and Raster
Integration Efficiency

In this paper, the rhombic tile structure is used as a texture to realize the transmission
of DGGS data from the CPU to the GPU, and the coding and decoding mechanisms are
specially designed for this structure. Specifically, the hexagonal cells and the rhombic tiles
are encoded in the CPU, and then only the encoding is transferred to the GPU, where the
data are decoded, thus reducing the PCI-e bandwidth consumption during data transfer.
Assume that the concurrency of data transmission is 200 requests per second and that the
data volume includes all the rhombic tiles. Figure 20 illustrates the comparison of data
transmission bandwidth requirements with and without the rhombic tile structure in the
data organization phase of the hexagonal DGGS. Figure 21 illustrates the overall efficiency
comparison with and without the proposed encoding and decoding methods.

Figure 20. Comparison of bandwidth consumption. Figure 20. Comparison of bandwidth consumption.

Remote Sens. 2024, 16, x FOR PEER REVIEW 24 of 27

Figure 21. Comparison of efficiency with and without the use of encoding and decoding mecha-
nisms.

6.3. Scalability of the Proposed Method
Although the method proposed in this paper is only used in the discussion and vali-

dation of the hexagonal grid with the ideal topological properties, the scheme is also ap-
plicable to grids of other topological types, based on the generation of polyhedra com-
posed of rhombic surfaces, such as triangles, rhombuses, etc. Take the icosahedron DGGS
at level 2 as an example: the cells of different topological types on a basic rhombic surface
are arranged as shown in Figure 22. From the figure, it can be seen that both triangles,
rhombuses, and hexagons are uniformly distributed on the polyhedron composed of
rhombic faces, so all of them can be 𝑞2𝑑𝑖 coded based on the rhombic faces, and based on
this, 𝑞2𝑑𝑖 coding can be converted into the coding method proposed in this paper. The
cells of the DGGS are expressed based on the coding in this paper, so, when the encoding
system is consistent, it is only necessary to adjust the query method of adjacency accord-
ing to the topological type of the cells. Raster data integration based on DGGSs can be
achieved using the method outlined in this paper.

Figure 22. Various types of hexagonal cells on the surface of an icosahedron. (The black line repre-
sents the 𝑞2𝑑𝑖 coordinate system, the gray line represents rhombic cells, the green line represents
triangular cells, the blue line represents hexagonal cells, and the red dashed line represents the
projection of the center point of the cell into the 𝑞2𝑑𝑖 coordinate system.)

Figure 21. Comparison of efficiency with and without the use of encoding and decoding mechanisms.

6.3. Scalability of the Proposed Method

Although the method proposed in this paper is only used in the discussion and val-
idation of the hexagonal grid with the ideal topological properties, the scheme is also
applicable to grids of other topological types, based on the generation of polyhedra com-
posed of rhombic surfaces, such as triangles, rhombuses, etc. Take the icosahedron DGGS
at level 2 as an example: the cells of different topological types on a basic rhombic surface
are arranged as shown in Figure 22. From the figure, it can be seen that both triangles,
rhombuses, and hexagons are uniformly distributed on the polyhedron composed of rhom-
bic faces, so all of them can be q2di coded based on the rhombic faces, and based on this,
q2di coding can be converted into the coding method proposed in this paper. The cells of

Remote Sens. 2024, 16, 2022 24 of 27

the DGGS are expressed based on the coding in this paper, so, when the encoding system is
consistent, it is only necessary to adjust the query method of adjacency according to the
topological type of the cells. Raster data integration based on DGGSs can be achieved using
the method outlined in this paper.

Remote Sens. 2024, 16, x FOR PEER REVIEW 24 of 27

Figure 21. Comparison of efficiency with and without the use of encoding and decoding mecha-
nisms.

6.3. Scalability of the Proposed Method
Although the method proposed in this paper is only used in the discussion and vali-

dation of the hexagonal grid with the ideal topological properties, the scheme is also ap-
plicable to grids of other topological types, based on the generation of polyhedra com-
posed of rhombic surfaces, such as triangles, rhombuses, etc. Take the icosahedron DGGS
at level 2 as an example: the cells of different topological types on a basic rhombic surface
are arranged as shown in Figure 22. From the figure, it can be seen that both triangles,
rhombuses, and hexagons are uniformly distributed on the polyhedron composed of
rhombic faces, so all of them can be 𝑞2𝑑𝑖 coded based on the rhombic faces, and based on
this, 𝑞2𝑑𝑖 coding can be converted into the coding method proposed in this paper. The
cells of the DGGS are expressed based on the coding in this paper, so, when the encoding
system is consistent, it is only necessary to adjust the query method of adjacency accord-
ing to the topological type of the cells. Raster data integration based on DGGSs can be
achieved using the method outlined in this paper.

Figure 22. Various types of hexagonal cells on the surface of an icosahedron. (The black line repre-
sents the 𝑞2𝑑𝑖 coordinate system, the gray line represents rhombic cells, the green line represents
triangular cells, the blue line represents hexagonal cells, and the red dashed line represents the
projection of the center point of the cell into the 𝑞2𝑑𝑖 coordinate system.)

Figure 22. Various types of hexagonal cells on the surface of an icosahedron. (The black line represents
the q2di coordinate system, the gray line represents rhombic cells, the green line represents triangular
cells, the blue line represents hexagonal cells, and the red dashed line represents the projection of the
center point of the cell into the q2di coordinate system).

To prove this conclusion, we conducted experiments with global Aster 30 m digital
elevation data, and the experimental method consisted of applying the raster data inte-
gration method proposed in this paper to an icosahedron-based triangle DGGS and an
icosahedron-based rhombus DGGS. The level of the triangle DGGS and the rhombus DGGS
was 18. Since the number of cells in the triangle DGGS was twice as large as the number of
cells in the rhombus DGGS at the same level, the raster data integration experiments on
the triangle DGGS only used cells and raster data with longitudes ranging from −180◦ to
0◦. Finally, we compared the experimental results using an icosahedron-based hexagonal
DGGS, as shown in Table 5. Compared to hexagonal cells, rhombic cells have simpler
adjacency relationships and, thus, are more efficient in raster data integration. Although
the adjacency relationship of triangle cells is simpler than that of rhombus cells, there
are two topological types of upper and lower triangles in a triangle DGGS, which have
different methods of calculating the adjacency relationship. Therefore, decoding tiles with
internal triangular cells in the GPU must constantly make logical judgments, which affects
the efficiency of decoding.

Table 5. Comparison of integration efficiency between DGGSs with different topology types.

Topological Type Level Number of Cells Time Consumption
(s)

Triangle 17 687,194,767,360 158.81
Rhombus 18 687,194,767,360 134.57
Hexagon 18 687,194,767,362 143.06

7. Conclusions

In this paper, we proposed an algorithm for converting raster data to the hexagonal
DGGS in the GPU based on a specially designed encoding and decoding mechanism. We
first transformed the hexagonal DGGS problem into a kind of regular lattice by constructing
an hexagonal DGGS data structure based on rhombic tiles, on the basis of which we
designed the data organization scheme and the encoding scheme, and we managed to

Remote Sens. 2024, 16, 2022 25 of 27

reduce bandwidth occupation during data IO through the use of encoding and decoding
mechanisms. Then, an asynchronous collaborative design between the CPU and the
GPU was executed, aiming to optimize the computational performance of the GPU. The
algorithm proved to effectively improve the efficiency of the conversion from raster data to
hexagonal DGGS data.

In conclusion, the method proposed in this research has proven to be capable of imple-
menting fast and large-scale high-resolution raster integration based on a hexagonal grid
system. It has demonstrated considerable advantages in solving the problem of insufficient
computational power and low efficiency of DGGSs in processing high-resolution raster data.
The authors hope that this study may provide a solution to the problem of the real-time
integration of high-resolution raster data based on DGGSs in the field of GIS.

The limitation of these research results is that only DGGSs based on polyhedrons such
as icosahedrons and octahedrons, which are composed of diamond or triangle faces, are
supported. DGGSs based on polyhedrons such as hexahedrons and dodecahedrons, which
are composed of other geometric figures, are not supported.

Author Contributions: Conceptualization, L.Z. and G.L.; methodology, L.Z. and S.Z.; software, S.Z.;
data curation, C.L.; writing—original draft preparation, S.Z.; writing—review and editing, L.Z.;
visualization, S.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China [42076203].

Data Availability Statement: The data and codes can be explored on figshare: https://figshare.com/
s/4bf94da4eaedbdd2c014 (accessed on 3 June 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

In order to more clearly represent the logic of encoding and decoding hexagonal
cells using the encoding method proposed in this paper, a pseudo-code representation is
given here.

Remote Sens. 2024, 16, x FOR PEER REVIEW 26 of 27

Appendix A
In order to more clearly represent the logic of encoding and decoding hexagonal cells

using the encoding method proposed in this paper, a pseudo-code representation is given
here.

Figure A1. The algorithm for encoding.

Figure A2. Decoding algorithm for rhombic tile data.

References
1. Sahr, K.; White, D.; Kimerling, A.J. Geodesic Discrete Global Grid Systems. Cartogr. Geogr. Inf. Sci. 2013, 30, 121–134.
2. Goodchild, M.F. Discrete Global Grids: Retrospect and prospect. Geogr. Geo-Inf. Sci. 2012, 28, 1–6.
3. Zhou, C.; Ou, Y.; Ma, T. Progresses of geographical grid systems researches. Prog. Geogr. 2009, 28, 657–662. (In Chinese)
4. Wang, L.; Ai, T.; Burghardt, D.; Shen, Y.; Yang, M. A hexagon-based method for polygon generalization using morphological

operators. Int. J. Geogr. Inf. Sci. 2023, 37, 88–117.
5. Wang, R.; Ben, J.; Zhou, J.; Zheng, M. Indexing Mixed Aperture Icosahedral Hexagonal Discrete Global Grid Systems. Int. J. Geo-

Inf. 2020, 9, 171–191.
6. Li, M.; McGrath, H.; Stefanakis, E. Multi-resolution topographic analysis in hexagonal Discrete Global Grid Systems. Int. J. Appl.

Earth Obs. Geoinf. 2022, 113, 102985. https://doi.org/10.1016/j.jag.2022.102985.
7. Rawson, A.; Sabeur, Z.; Brito, M. Intelligent geospatial maritime risk analytics using the Discrete Global Grid System. Big Earth

Data 2021, 6, 295–322.
8. Ji, C.; Li, Y.; Qiu, W.; Awada, U.; Li, K. Big Data Processing in Cloud Computing Environments. In Proceedings of the 2012

International Symposium on Pervasive Systems. Algorithms, and Networks, I-SPAN 2012, San Marcos, TA, USA, 13–15 Decem-
ber 2012; pp. 17–23.

9. Keckler, S.W.; Dally, W.J.; Khailany, B.; Garland, M.; Glasco, D. GPUs and the future of parallel computing. IEEE Micro 2011,
31, 7–17.

Figure A1. The algorithm for encoding.

https://figshare.com/s/4bf94da4eaedbdd2c014
https://figshare.com/s/4bf94da4eaedbdd2c014

Remote Sens. 2024, 16, 2022 26 of 27

Remote Sens. 2024, 16, x FOR PEER REVIEW 26 of 27

Appendix A
In order to more clearly represent the logic of encoding and decoding hexagonal cells

using the encoding method proposed in this paper, a pseudo-code representation is given
here.

Figure A1. The algorithm for encoding.

Figure A2. Decoding algorithm for rhombic tile data.

References
1. Sahr, K.; White, D.; Kimerling, A.J. Geodesic Discrete Global Grid Systems. Cartogr. Geogr. Inf. Sci. 2013, 30, 121–134.
2. Goodchild, M.F. Discrete Global Grids: Retrospect and prospect. Geogr. Geo-Inf. Sci. 2012, 28, 1–6.
3. Zhou, C.; Ou, Y.; Ma, T. Progresses of geographical grid systems researches. Prog. Geogr. 2009, 28, 657–662. (In Chinese)
4. Wang, L.; Ai, T.; Burghardt, D.; Shen, Y.; Yang, M. A hexagon-based method for polygon generalization using morphological

operators. Int. J. Geogr. Inf. Sci. 2023, 37, 88–117.
5. Wang, R.; Ben, J.; Zhou, J.; Zheng, M. Indexing Mixed Aperture Icosahedral Hexagonal Discrete Global Grid Systems. Int. J. Geo-

Inf. 2020, 9, 171–191.
6. Li, M.; McGrath, H.; Stefanakis, E. Multi-resolution topographic analysis in hexagonal Discrete Global Grid Systems. Int. J. Appl.

Earth Obs. Geoinf. 2022, 113, 102985. https://doi.org/10.1016/j.jag.2022.102985.
7. Rawson, A.; Sabeur, Z.; Brito, M. Intelligent geospatial maritime risk analytics using the Discrete Global Grid System. Big Earth

Data 2021, 6, 295–322.
8. Ji, C.; Li, Y.; Qiu, W.; Awada, U.; Li, K. Big Data Processing in Cloud Computing Environments. In Proceedings of the 2012

International Symposium on Pervasive Systems. Algorithms, and Networks, I-SPAN 2012, San Marcos, TA, USA, 13–15 Decem-
ber 2012; pp. 17–23.

9. Keckler, S.W.; Dally, W.J.; Khailany, B.; Garland, M.; Glasco, D. GPUs and the future of parallel computing. IEEE Micro 2011,
31, 7–17.

Figure A2. Decoding algorithm for rhombic tile data.

References
1. Sahr, K.; White, D.; Kimerling, A.J. Geodesic Discrete Global Grid Systems. Cartogr. Geogr. Inf. Sci. 2013, 30, 121–134. [CrossRef]
2. Goodchild, M.F. Discrete Global Grids: Retrospect and prospect. Geogr. Geo-Inf. Sci. 2012, 28, 1–6.
3. Zhou, C.; Ou, Y.; Ma, T. Progresses of geographical grid systems researches. Prog. Geogr. 2009, 28, 657–662. (In Chinese)
4. Wang, L.; Ai, T.; Burghardt, D.; Shen, Y.; Yang, M. A hexagon-based method for polygon generalization using morphological

operators. Int. J. Geogr. Inf. Sci. 2023, 37, 88–117. [CrossRef]
5. Wang, R.; Ben, J.; Zhou, J.; Zheng, M. Indexing Mixed Aperture Icosahedral Hexagonal Discrete Global Grid Systems. Int. J.

Geo-Inf. 2020, 9, 171. [CrossRef]
6. Li, M.; McGrath, H.; Stefanakis, E. Multi-resolution topographic analysis in hexagonal Discrete Global Grid Systems. Int. J. Appl.

Earth Obs. Geoinf. 2022, 113, 102985. [CrossRef]
7. Rawson, A.; Sabeur, Z.; Brito, M. Intelligent geospatial maritime risk analytics using the Discrete Global Grid System. Big Earth

Data 2021, 6, 295–322. [CrossRef]
8. Ji, C.; Li, Y.; Qiu, W.; Awada, U.; Li, K. Big Data Processing in Cloud Computing Environments. In Proceedings of the 2012

International Symposium on Pervasive Systems. Algorithms, and Networks, I-SPAN 2012, San Marcos, TA, USA, 13–15 December
2012; pp. 17–23.

9. Keckler, S.W.; Dally, W.J.; Khailany, B.; Garland, M.; Glasco, D. GPUs and the future of parallel computing. IEEE Micro 2011, 31,
7–17. [CrossRef]

10. Stojanovic, N.; Stojanovic, D. High performance processing and analysis of geospatial data using CUDA on GPU. Adv. Electr.
Comput. Eng. 2014, 14, 109–114. [CrossRef]

11. Mahdavi-Amiri, A.; Alderson, T.; Samavati, F. A Survey of Digital Earth. Comput. Graph. 2015, 53, 96–117. [CrossRef]
12. Tong, X.; Ben, J.; Qing, Z.; Zhang, Y. The hexagonal discrete global grid system appropriate for remote sensing spatial data. In

Proceedings of the Geoinformatics 2008 and Joint Conference on GIS and Built Environment: Advanced Spatial Data Models and
Analyses, Guangzhou, China, 10 November 2008.

13. Vince, A.; Zheng, X. Arithmetic and Fourier transform for the PYXIS multi-resolution digital Earth model. Int. J. Digit. Earth 2009,
2, 59–79. [CrossRef]

14. White, D. Global grids from recursive diamond subdivisions of the surface of an octahedron or icosahedrons. Environ. Monit.
Assess. 2000, 64, 93–103. [CrossRef]

15. Tong, X.; Ben, J.; Wang, Y.; Zhang, Y.; Pei, T. Efficient encoding and spatial operation scheme for aperture 4 hexagonal discrete
global grid system. Int. J. Geogr. Inf. Sci. 2013, 27, 898–921. [CrossRef]

16. Ben, J.; Li, Y.; Zhou, C.; Wang, R.; Du, L. Algebraic encoding scheme for aperture 3 hexagonal discrete global grid system. Sci.
China Earth Sci. 2018, 61, 215–227. [CrossRef]

17. Mahdavi-Amiri, A.; Alderson, Y.; Samavati, F. Geospatial Data Organization Methods with Emphasis on Aperture-3 Hexagonal
Discrete Global Grid Systems. Cartographica 2019, 54, 30–50. [CrossRef]

18. Mahdavi-Amiri, A.; Harrison, E.; Samavati, F. Hierarchical grid conversion. Comput.-Aided Des. 2016, 79, 12–26. [CrossRef]
19. Wang, J.; Shi, Y.; Qin, Z.; Chen, Y.; Cao, Z. A three-dimensional buffer analysis method based on the 3D Discrete Global Grid

System. Int. J. Geo-Inf. 2021, 10, 520. [CrossRef]

https://doi.org/10.1559/152304003100011090
https://doi.org/10.1080/13658816.2022.2108036
https://doi.org/10.3390/ijgi9030171
https://doi.org/10.1016/j.jag.2022.102985
https://doi.org/10.1080/20964471.2021.1965370
https://doi.org/10.1109/MM.2011.89
https://doi.org/10.4316/AECE.2014.04017
https://doi.org/10.1016/j.cag.2015.08.005
https://doi.org/10.1080/17538940802657694
https://doi.org/10.1023/A:1006407023786
https://doi.org/10.1080/13658816.2012.725474
https://doi.org/10.1007/s11430-017-9111-y
https://doi.org/10.3138/cart.54.1.2018-0010
https://doi.org/10.1016/j.cad.2016.04.005
https://doi.org/10.3390/ijgi10080520

Remote Sens. 2024, 16, 2022 27 of 27

20. Mahdavi-Amiri, A.; Harrison, E.; Samavati, F. Hexagonal Connectivity Maps for Digital Earth. Int. J. Digit. Earth 2014, 8, 750–769.
[CrossRef]

21. Tan, L.; Wan, G.; Li, F.; Chen, X.; Du, W. GPU based contouring method on grid DEM data. Comput. Geosci. 2017, 105, 129–138.
[CrossRef]

22. Lubbe, R.; Xu, W.J.; Wilke, D.N.; Pizette, P.; Govender, N. Analysis of parallel spatial partitioning algorithms for GPU based DEM.
Comput. Geotech. 2020, 125, 103708. [CrossRef]

23. Kamewar, A.S. Processing geospatial images using GPU. In Proceedings of the 2017 International Conference on Emerging Trends
& Innovation in ICT (ICEI), Pune, India, 3–5 February 2017; pp. 27–32.

24. Lu, M.; Wang, J.Y.; Lu, G.; Tao, W.D.; Wang, J.C. Research of raster data spatial analysis under CPU/GPU heterogeneous hybrid
parallel environment-take terrain factors analysis as an example. Comput. Eng. Appl. 2017, 53, 172–177.

25. Lin, B. Research on the parallel computing and novel methodology of marine data visualization linear integral convolution
algorithm based on GPU. In Proceedings of the 2015 Conference on Informatization in Education, Management and Business
(IEMB-15), Guangzhou, China, 12–13 September 2015; Volume 20, pp. 96–101.

26. Stojanović, N.; Stojanović, D. Performance Improvement of viewshed analysis using GPU. In Proceedings of the International
Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services, Nis, Serbia, 16–19 October 2013;
Volume 1, pp. 397–400.

27. Sherlock, M.J.; Hasan, F.; Samavati, F. Interactive data styling and multifocal visualization for a multigrid web-based Digital
Earth. Int. J. Digit. Earth 2020, 14, 288–310. [CrossRef]

28. Yao, X.; Mokbel, M.F.; Ye, S.; Li, G.; Alarabi, L.; Eldawy, A.; Zhao, Z.; Zhao, L.; Zhu, D. LandQv2: A MapReduce-Based System for
Processing Arable Land Quality Big Data. ISPRS Int. J. Geo-Inf. 2018, 7, 271. [CrossRef]

29. STCL (discreteglobalgrids.org). Available online: https://www.discreteglobalgrids.org/software/ (accessed on 3 June 2024).
30. Stough, T.; Cressie, N.; Kang, E.L.; Michalak, A.M.; Sahr, K. Spatial analysis and visualization of global data on multi resolution

hexagonal grids. Jpn. J. Stat. Data Sci. 2020, 3, 107–128. [CrossRef]
31. Snyder, J.P. An Equal-area Map Projection for Polyhedral Globes. Cartographica 1992, 29, 10–21. [CrossRef]
32. Middleton, L.; Sivaswamy, J. Hexagonal Image Processing: A Practical Approach; Springer Science & Business Media:

Berlin/Heidelberg, Germany, 2006.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/17538947.2014.927597
https://doi.org/10.1016/j.cageo.2017.05.007
https://doi.org/10.1016/j.compgeo.2020.103708
https://doi.org/10.1080/17538947.2020.1822452
https://doi.org/10.3390/ijgi7070271
https://www.discreteglobalgrids.org/software/
https://doi.org/10.1007/s42081-020-00077-w
https://doi.org/10.3138/27H7-8K88-4882-1752

	Introduction
	Related Work
	Encoding Methods of DGGSs
	Integration Methods from Raster Data to DGGSs
	GPU-Based Raster Data Integration and Organization
	Summary of the Current Status of the Research

	Basic Idea and Overall Design
	Methodology
	Representation of a Hexagonal DGGS in the GPU
	The Hexagonal Organization Method Based on Rhombic Tiles
	Encoding of Hexagonal Cells and Rhombic Tiles
	Decoding of Hexagonal DGGS Data in the GPU

	Raster Data Scheduling and Resampling in the GPU
	The Scheduling Strategy for Raster Data in the GPU
	Raster Data Resampling Based on the Hexagonal Grid

	Asynchronous Collaboration Method of the CPU and the GPU

	Results
	Integration Accuracy of the Algorithm
	Integration Efficiency of the Algorithm
	Scheduling Schemes for the Raster Data and the Tile Data
	Thread Combination in the GPU
	Decoding Efficiency Comparison between the CPU and the GPU
	The Overall Efficiency

	Discussion
	Encoding and Decoding Methods
	Impact of the Coding Method Proposed in this Paper on Bandwidth and Raster Integration Efficiency
	Scalability of the Proposed Method

	Conclusions
	Appendix A
	References

