A New Grid Zenith Tropospheric Delay Model Considering Time-Varying Vertical Adjustment and Diurnal Variation over China
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. The Method of Calculating ZTD
2.3. Analysis of the Gaussian Coefficient
2.4. Analysis of the Surface ZTD
3. Results
3.1. Development of the NGZTD-H Model
3.1.1. Accuracy Validation in ZTD Vertical Interpolation Using ERA5 Data
3.1.2. Accuracy Validation in ZTD Vertical Interpolation Using Radiosonde Data
3.2. Development of the NGZTD Model
3.2.1. Accuracy Validation Using GNSS Data
3.2.2. Accuracy Validation Using Radiosonde Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, Y.B.; He, C.Y.; Zhang, B.; Xu, C.Q. A New Global Zenith Tropospheric Delay Model GZTD. Chin. J. Geophys. 2013, 56, 2218–2227. [Google Scholar]
- Shi, C.; Wang, H.S.; Cao, Y.C.; Zhang, E.H.; Liang, H.; Fu, Z.K. Analysis on Performance of Water Vapor Detection Based on BeiDou Satellite. Geomat. Inf. Sci. Wuhan Univ. 2016, 41, 285–289. [Google Scholar]
- Vedel, H.; Mogensen, K.; Huang, X. Calculation of Zenith Delays from Meteorological Data Comparison of NWP Model, Radiosonde and GPS Delays. Phys. Chem. Earth 2001, 26, 497–502. [Google Scholar] [CrossRef]
- Li, H.B.; Wang, X.M.; Wu, S.Q.; Zhang, K.F.; Chen, X.L.; Zhang, J.L.; Qiu, C.; Zhang, S.T.; Li, L. An Improved Model for Detecting Heavy Precipitation Using GNSS-Derived Zenith Total Delay Measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5392–5405. [Google Scholar] [CrossRef]
- Yang, Y.F.; Chen, X.P.; Yao, M.H.; Zhou, C.L.; Liao, C.M. Research on Zenith Tropospheric Delay Modeling of Regional Cors Network. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 42, 1197–1200. [Google Scholar] [CrossRef]
- Hopfield, H. Two-quartic Tropospheric Refractivity Profile for Correcting Satellite Data. J. Geophys. Res. 1969, 74, 4487–4499. [Google Scholar] [CrossRef]
- Saastamoinen, J. Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging Satellites. Use Artif. Satell. Geod. 1972, 15, 247–251. [Google Scholar]
- Black, H.D. An Easily Implemented Algorithm for the Tropospheric Range Correction. J. Geophys. Res. Solid Earth 1978, 83, 1825–1828. [Google Scholar] [CrossRef]
- Yao, Y.B.; Hu, Y.F.; Yu, C.; Zhang, B.; Guo, J.J. An Improved Global Zenith Tropospheric Delay Model GZTD2 Considering Diurnal Variations. Nonlinear Process. Geophys. 2016, 23, 127–136. [Google Scholar] [CrossRef]
- Penna, N.; Dodson, A.; Chen, W. Assessment of EGNOS Tropospheric Correction Model. J. Navig. 2001, 54, 37–55. [Google Scholar] [CrossRef]
- Leandro, R.F.; Langley, R.B.; Santos, M.C. UNB3m_pack: A Neutral Atmosphere Delay Package for Radiometric Space Techniques. GPS Solut. 2008, 12, 65–70. [Google Scholar] [CrossRef]
- Schüler, T. The TropGrid2 Standard Tropospheric Correction Model. GPS Solut. 2014, 18, 123–131. [Google Scholar] [CrossRef]
- Böhm, J.; Heinkelmann, R.; Schuh, H. Short Note: A Global Model of Pressure and Temperature for Geodetic Applications. J. Geod. 2007, 81, 679–683. [Google Scholar] [CrossRef]
- Lagler, K.; Schindelegger, M.; Böhm, J.; Krásná, H.; Nilsson, T. GPT2: Empirical Slant Delay Model for Radio Space Geodetic Techniques. Geophys. Res. Lett. 2013, 40, 1069–1073. [Google Scholar] [CrossRef] [PubMed]
- Böhm, J.; Möller, G.; Schindelegger, M.; Pain, G.; Weber, R. Development of an Improved Empirical Model for Slant Delays in the Troposphere (GPT2w). GPS Solut. 2015, 19, 433–441. [Google Scholar] [CrossRef]
- Landskron, D.; Böhm, J. VMF3/GPT3: Refined Discrete and Empirical Troposphere Mapping Functions. J. Geod. 2018, 92, 349–360. [Google Scholar] [CrossRef]
- Sun, Z.Y.; Zhang, B.; Yao, Y.B. An ERA5-based Model for Estimating Tropospheric Delay and Weighted Mean Temperature over China with Improved Spatiotemporal Resolutions. Earth Space Sci. 2019, 6, 1926–1941. [Google Scholar] [CrossRef]
- Ding, J.S.; Chen, J.P. Assessment of Empirical Troposphere Model GPT3 Based on NGL’s Global Troposphere Products. Sensors 2020, 20, 3631. [Google Scholar] [CrossRef]
- Li, W.; Yuan, Y.B.; Ou, J.K.; Li, H.; Li, Z.S. A New Global Zenith Tropospheric Delay Model IGGtrop for GNSS Applications. Chin. Sci. Bull. 2012, 57, 2132–2139. [Google Scholar] [CrossRef]
- Huang, L.K.; Zhu, G.; Peng, H.; Liu, L.L.; Ren, C.; Jiang, W.P. An Improved Global Grid Model for Calibrating Zenith Tropospheric Delay for GNSS Applications. GPS Solut. 2023, 27, 17. [Google Scholar] [CrossRef]
- Zhou, F.; Cao, X.Y.; Ge, Y.L.; Li, W.W. Assessment of the Positioning Performance and Tropospheric Delay Retrieval with Precise Point Positioning Using Products from Different Analysis Centers. GPS Solut. 2020, 24, 12. [Google Scholar] [CrossRef]
- Xiong, C.B.; Yu, L.N.; Zhao, L.W. Analysis on the Impacts of Slant Tropospheric Delays on Precise Point Positioning. Appl. Sci. 2019, 9, 4884. [Google Scholar] [CrossRef]
- Yao, Y.B.; Xu, X.Y.; Xu, C.Q.; Peng, W.J.; Wan, Y.Y. GGOS Tropospheric Delay Forecast Product Performance Evaluation and Its Application in Real-Time PPP. J. Atmos. Sol.-Terr. Phys. 2018, 175, 1–17. [Google Scholar] [CrossRef]
- Guo, L.J.; Huang, L.K.; Li, J.Y.; Liu, L.L.; Huang, L.; Fu, B.L.; Xie, S.F.; He, H.C.; Ren, C. A Comprehensive Evaluation of Key Tropospheric Parameters from ERA5 and MERRA-2 Reanalysis Products Using Radiosonde Data and GNSS Measurements. Remote Sens. 2021, 13, 3008. [Google Scholar] [CrossRef]
- Sun, Z.Y.; Zhang, B.; Yao, Y.B. A Global Model for Estimating Tropospheric Delay and Weighted Mean Temperature Developed with Atmospheric Reanalysis Data from 1979 to 2017. Remote Sens. 2019, 11, 1893. [Google Scholar] [CrossRef]
- Song, S.L.; Zhu, W.Y.; Chen, Q.M.; Liou, Y.A. Establishment of a New Tropospheric Delay Correction Model over China Area. Sci. China Phys. Mech. Astron. 2011, 54, 2271–2283. [Google Scholar] [CrossRef]
- Li, H.J.; Zhu, G.; Kang, Q.; Huang, L.K.; Wang, H. A Global Zenith Tropospheric Delay Model with ERA5 and GNSS-Based ZTD Difference Correction. GPS Solut. 2023, 27, 154. [Google Scholar] [CrossRef]
- Huang, L.K.; Liu, L.L.; Yao, C.L. A Zenith Tropospheric Delay Correction Model Based on the Regional CORS Network. Geod. Geodyn. 2012, 3, 53–62. [Google Scholar]
- Huang, L.K.; Zhu, G.; Liu, L.L.; Chen, H.; Jiang, W.P. A Global Grid Model for the Correction of the Vertical Zenith Total Delay Based on a Sliding Window Algorithm. GPS Solut. 2021, 25, 98. [Google Scholar] [CrossRef]
- Huang, L.K.; Lan, S.W.; Zhu, G.; Chen, F.D.; Li, J.Y.; Liu, L.L. A Global Grid Model for the Estimation of Zenith Tropospheric Delay Considering the Variations at Different Altitudes. Geosci. Model Dev. 2023, 16, 7223–7235. [Google Scholar] [CrossRef]
- Zhu, G.; Huang, L.K.; Yang, Y.Z.; Li, J.Y.; Zhou, L.; Liu, L.L. Refining the ERA5-Based Global Model for Vertical Adjustment of Zenith Tropospheric Delay. Satell. Navig. 2022, 3, 27. [Google Scholar] [CrossRef]
- Sun, J.L.; Wu, Z.L.; Yin, Z.D.; Ma, B. A Simplified GNSS Tropospheric Delay Model Based on the Nonlinear Hypothesis. GPS Solut. 2017, 21, 1735–1745. [Google Scholar] [CrossRef]
- Hu, Y.F.; Yao, Y.B. A New Method for Vertical Stratification of Zenith Tropospheric Delay. Adv. Space Res. 2019, 63, 2857–2866. [Google Scholar] [CrossRef]
- Zhao, Q.Z.; Su, J.; Xu, C.Q.; Yao, Y.B.; Zhang, X.Y.; Wu, J.F. High-Precision ZTD Model of Altitude-Related Correction. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 609–621. [Google Scholar] [CrossRef]
- Dong, D.H.; Huang, G.; Qu, X.; Tao, W.C.; Fan, G.Z. Temperature Trend–Altitude Relationship in China during 1963–2012. Theor. Appl. Climatol. 2015, 122, 285–294. [Google Scholar] [CrossRef]
- Huang, L.K.; Wang, X.; Xiong, S.; Li, J.Y.; Liu, L.L.; Mo, Z.X.; Fu, B.L.; He, H.C. High-Precision GNSS PWV Retrieval Using Dense GNSS Sites and in-Situ Meteorological Observations for the Evaluation of MERRA-2 and ERA5 Reanalysis Products over China. Atmos. Res. 2022, 276, 106247. [Google Scholar] [CrossRef]
- Fang, J.Y.; Yu, G.R.; Liu, L.L.; Hu, S.J.; Chapin III, F.S. Climate Change, Human Impacts, and Carbon Sequestration in China. Proc. Nat. Acad. Sci. USA 2018, 115, 4015–4020. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Jiang, C.H.; Xu, T.H.; Wang, S.M.; Nie, W.F.; Sun, Z.Z. Evaluation of Zenith Tropospheric Delay Derived from ERA5 Data over China Using GNSS Observations. Remote Sens. 2020, 12, 663. [Google Scholar] [CrossRef]
- Chen, B.Y.; Yu, W.K.; Wang, W.; Zhang, Z.T.; Dai, W.J. A Global Assessment of Precipitable Water Vapor Derived from GNSS Zenith Tropospheric Delays with ERA5, NCEP FNL, and NCEP GFS Products. Earth Space Sci. 2021, 8, e2021EA001796. [Google Scholar] [CrossRef]
- Sun, Y.L.; Yang, F.; Liu, M.J.; Li, Z.C.; Gong, X.; Wang, Y.Y. Evaluation of the Weighted Mean Temperature over China Using Multiple Reanalysis Data and Radiosonde. Atmos. Res. 2023, 285, 106664. [Google Scholar] [CrossRef]
- Zhou, C.C.; Peng, B.B.; Li, W.; Zhong, S.M.; Ou, J.K.; Chen, R.J.; Zhao, X.L. Establishment of a Site-Specific Tropospheric Model Based on Ground Meteorological Parameters over the China Region. Sensors 2017, 17, 1722. [Google Scholar] [CrossRef] [PubMed]
- Dousa, J.; Bennitt, G.V. Estimation and Evaluation of Hourly Updated Global GPS Zenith Total Delays over Ten Months. GPS Solut. 2013, 17, 453–464. [Google Scholar] [CrossRef]
- Zhao, Q.Z.; Yang, P.F.; Yao, W.Q.; Yao, Y.B. Hourly PWV Dataset Derived from GNSS Observations in China. Sensors 2019, 20, 231. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Guo, C.X.; Chen, J.Y.; Zhang, L.; Wang, B. EGM 2008 and Its Application Analysis in Chinese Mainland. Acta Geod. Cartogr. Sin. 2009, 38, 283–289. [Google Scholar]
Grid Point | 50°N, 120°E | 35°N, 115°E | 30°N, 90°E | 25°N, 110°E |
---|---|---|---|---|
bias | −7.00 | −1.08 | −1.63 | −0.72 |
RMSE | 14.56 | 10.24 | 10.47 | 8.86 |
Model | NGZTD-H | GPT3 | ||
---|---|---|---|---|
Bias | RMSE | Bias | RMSE | |
Maximum | 1.23 | 2.55 | 1.56 | 7.54 |
Minimum | −1.89 | 0.81 | −6.24 | 1.63 |
Mean | −0.45 | 1.70 | −3.02 | 4.01 |
Model | NGZTD-H | GPT3 | ||
---|---|---|---|---|
Bias | RMSE | Bias | RMSE | |
Maximum | 5.09 | 5.31 | 2.25 | 8.68 |
Minimum | −3.29 | 1.82 | −7.68 | 1.63 |
Mean | −0.32 | 3.10 | −2.66 | 3.97 |
Model | NGZTD | GPT3 | ||
---|---|---|---|---|
Bias | RMSE | Bias | RMSE | |
Maximum | 1.06 | 7.79 | 3.96 | 7.92 |
Minimum | −3.98 | 1.15 | −2.82 | 1.38 |
Mean | −0.38 | 3.38 | 0.16 | 4.33 |
Model | NGZTD | The Model with Constant Gaussian Coefficients | GPT3 | |||
---|---|---|---|---|---|---|
Bias | RMSE | Bias | RMSE | Bias | RMSE | |
Maximum | 2.16 | 5.36 | −0.26 | 9.51 | 4.80 | 6.47 |
Minimum | −4.31 | 1.58 | −9.5 | 2.51 | −2.74 | 2.91 |
Mean | −1.53 | 3.62 | −4.63 | 5.91 | 0.32 | 5.25 |
Model | NGZTD-H | GPT3 | ||
---|---|---|---|---|
Bias | RMSE | Bias | RMSE | |
maximum | 1.36 | 8.14 | 1.23 | 8.57 |
minimum | −3.10 | 0.66 | −3.28 | 0.95 |
mean | −0.56 | 1.48 | −1.14 | 1.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zuo, X.; Guo, S.; Xie, S.; Yang, X.; Li, Y.; Yue, X. A New Grid Zenith Tropospheric Delay Model Considering Time-Varying Vertical Adjustment and Diurnal Variation over China. Remote Sens. 2024, 16, 2023. https://doi.org/10.3390/rs16112023
Zhang J, Zuo X, Guo S, Xie S, Yang X, Li Y, Yue X. A New Grid Zenith Tropospheric Delay Model Considering Time-Varying Vertical Adjustment and Diurnal Variation over China. Remote Sensing. 2024; 16(11):2023. https://doi.org/10.3390/rs16112023
Chicago/Turabian StyleZhang, Jihong, Xiaoqing Zuo, Shipeng Guo, Shaofeng Xie, Xu Yang, Yongning Li, and Xuefu Yue. 2024. "A New Grid Zenith Tropospheric Delay Model Considering Time-Varying Vertical Adjustment and Diurnal Variation over China" Remote Sensing 16, no. 11: 2023. https://doi.org/10.3390/rs16112023
APA StyleZhang, J., Zuo, X., Guo, S., Xie, S., Yang, X., Li, Y., & Yue, X. (2024). A New Grid Zenith Tropospheric Delay Model Considering Time-Varying Vertical Adjustment and Diurnal Variation over China. Remote Sensing, 16(11), 2023. https://doi.org/10.3390/rs16112023