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Abstract: In the field of remote sensing image analysis, the issue of cloud interference in high-
resolution images has always been a challenging problem, with traditional methods often facing
limitations in addressing this challenge. To this end, this study proposes an innovative solution by
integrating radiative feature analysis with cutting-edge deep learning technologies, developing a
refined cloud segmentation method. The core innovation lies in the development of FFASPPDANet
(Feature Fusion Atrous Spatial Pyramid Pooling Dual Attention Network), a feature fusion dual
attention network improved through atrous spatial convolution pooling to enhance the model’s ability
to recognize cloud features. Moreover, we introduce a probabilistic thresholding method based on
pixel radiation spectrum fusion, further improving the accuracy and reliability of cloud segmentation,
resulting in the “FFASPPDANet+” algorithm. Experimental validation shows that FFASPPDANet+
performs exceptionally well in various complex scenarios, achieving a 99.27% accuracy rate in water
bodies, a 96.79% accuracy rate in complex urban settings, and a 95.82% accuracy rate in a random
test set. This research not only enhances the efficiency and accuracy of cloud segmentation in high-
resolution remote sensing images but also provides a new direction and application example for the
integration of deep learning with radiative algorithms.

Keywords: high-resolution remote sensing images; cloud segmentation; fusion of radiative features
and deep learning; FFASPPDANet+; adaptability to diverse scenarios; stable performance

1. Introduction

With the rapid advancement of remote sensing technology, satellite remote sensing
images have become a crucial means of obtaining information about the Earth’s surface.
These images contain rich information about the Earth’s features, which are essential for
environmental monitoring, disaster early warning, and resource management. However,
the issue of cloud interference in high-resolution remote sensing images greatly limits
the effectiveness and application range of these data. Currently, remote sensing image
cloud segmentation methods are primarily categorized into four types [1–5]: multispectral
physical property methods, texture and spatial characteristic methods of cloud layers,
pattern recognition methods, and deep learning-based cloud segmentation.

Early methods primarily used physical approaches, analyzing the multispectral physi-
cal properties of images and applying the characteristics of visible or infrared spectra to
individual pixels for cloud identification. For instance, Liu Xinyan and colleagues used
spectral difference analysis based on cloud and surface spectral features to perform cloud
segmentation on GF-4 satellite data, achieving accuracies above 82% [6]. The challenge
of these methods lies in selecting appropriate physical property thresholds and reducing
computational loads for hardware implementation. Initially, fixed-threshold detection
methods showed good performance for specific sensors. In the U.S., the second stage of the
Earth Observing System (EOS) included the MODIS sensor with 36 spectral bands [7,8],
which enhances the range and resolution of remote sensing data, leading researchers to
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favor MODIS images. In 2018, Xiang used the K-means clustering method and Otsu method
to initially extract clouds from MODIS data, then further differentiated cloud pixels from
those that were not cloud pixels [9]. Xie et al. introduced a semi-supervised method
for cloud detection in multispectral images, utilizing spatial and spectral features [10].
It particularly focuses on reducing mis-detection in complex backgrounds and thicker
cloud layers, which aligns with the use of specific channels for robust segmentation across
various surface environments. Although simple and effective for on-orbit real-time cloud
segmentation, physical methods have limitations, particularly in threshold selection, which
requires extensive statistical analysis and iterative experiments. Additionally, in areas
covered by ice, snow, or desert, the reflectance similarity between clouds and the surface
leads to the same spectrum phenomenon, making precise differentiation challenging. Some
scholars suggest using multi-temporal methods to address this issue, which introduces the
need for cloud-free images of the scene. Moreover, physical methods depend heavily on
the number of spectral bands and are initially designed for specific sensors like MODIS,
which are not suitable for satellites with fewer spectral bands.

Cloud classification based on physical features includes texture, shape, and grayscale
color. Despite the variability of cloud texture elements with time, temperature, and wind,
they exhibit unique features compared to underlying sea surfaces, such as sharp changes
near cloud edges. To better extract these features, Hégarat-Mascle used a Markov random
framework [11], R. Rossi applied singular value decomposition [12], and SVM techniques
were used for cloud cover area determination. Li, Pengfei, and others trained an SVM
classifier using cloud brightness temperature and texture features [13]. Başeski, E., and Ç.
Cenaras determined cloud presence based on color, while parallel algorithms were pro-
posed for physical feature extraction [14]. Based on satellite data differences, multispectral
detection [15], the Bag-of-Words model [16], Bayesian spatiotemporal algorithms [17], and
progressive refinement algorithms [18] have been successfully applied to cloud segmenta-
tion. As the spatial resolution of satellite remote sensing images increases, cloud texture and
spatial characteristics become more prominent, making methods based on these features
viable for cloud segmentation. However, these methods, based on shallow features, often
miss complex clouds like thin clouds or cumulus, leading to detection inaccuracies.

To overcome the limitations of spectral methods, machine learning algorithms have
been introduced for cloud classification in remote sensing images. Li and others used SVM
to classify reflectance and co-occurrence matrix, achieving over 90% accuracy for small
datasets [13]. Pattern recognition methods—by combining deep features with clustering,
SVM, or deep learning—achieve more precise results than threshold or texture methods.
McKay extracted SIFT features from sub-images of remote sensing cloud images, combining
sparse reconstruction-based classification (SRC) and Localized Pose Management (LPM)
algorithms for precise target recognition [19]. Yu proposed a clustering-based pattern
recognition method to differentiate cloud layers and glacial snow [20]. SVM and other
algorithms enhance cloud segmentation by utilizing texture information, offering broader
applicability than spectral methods but requiring manual feature selection. Traditional
machine learning algorithms treat image segmentation as a per-pixel classification, with
training and prediction complexity dependent on image resolution. For large-scale remote
sensing satellite images, these methods often cannot meet real-time operational needs.

With the proliferation of GPUs and advancements in deep learning, techniques using
deep neural networks for image object recognition are widely applied in safety monitoring,
healthcare, transportation, and industrial production. Employing AI technologies like deep
learning to address meteorological issues has been a major research direction in recent
years. Recent advancements in deep learning have provided new solutions for cloud
segmentation in remote sensing imagery [21–24]. Deep neural networks [25] (DNNs) have
been widely applied in fields like image recognition, object detection, and segmentation.
Models such as AlexNet [26], YOLO [27], and U-Net [28] have shown effective cloud
segmentation capabilities by learning features directly from data.
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However, current cloud segmentation networks are often modified from models in
other domains, leading to limitations. For example, U-Net [29], originally designed for
medical image processing, learns overall image features well but struggles with details,
affecting segmentation accuracy. To address these issues, dedicated deep learning models
incorporating advanced techniques are needed. Dual attention networks [30] improve
sensitivity to cloud features through spatial and channel attention mechanisms. Atrous
spatial pyramid pooling convolutions [31] expand receptive fields without losing reso-
lution, enhancing detail capture. Probabilistic thresholding methods [32] further refine
segmentation by considering pixel-level features and global information.

Combining these three technologies for cloud recognition addresses different chal-
lenges in the cloud recognition process, and their comprehensive application can leverage
greater advantages. Dual attention networks improve the model’s focus and discriminative
power by focusing on key areas and feature channels; atrous spatial pyramid pooling
convolutions expand the model’s receptive field, enhancing the capture of the widespread
nature of clouds in remote sensing images; probabilistic thresholding provides the model
with prior information, further improving classification accuracy. The combination of
these three technologies aims to create a powerful cloud recognition framework capable of
effectively handling complex cloud segmentation tasks in high-resolution remote sensing
images, achieving more accurate and robust cloud recognition. This comprehensive ap-
proach not only improves recognition efficiency and accuracy but also brings new research
directions and application prospects to the field of cloud recognition in high-resolution
remote sensing images.

In light of this, this study proposes an innovative cloud segmentation framework,
FFASPPDANet+, which combines the advantages of atrous spatial pyramid pooling convo-
lutions, dual attention networks, and probabilistic thresholding. This framework aims to
address the challenges of cloud segmentation in high-resolution remote sensing images,
thus improving the effectiveness of remote sensing images in various application scenar-
ios through refined cloud recognition and segmentation. Through testing in scenarios of
different complexities, FFASPPDANet+ has demonstrated outstanding segmentation per-
formance, marking a significant step forward in the application of deep learning technology
in the field of remote sensing image processing and providing new directions and ideas for
future research.

2. Materials and Methods

This study introduces a comprehensive cloud segmentation framework, FFASPP-
DANet+, which enhances the accuracy and robustness of cloud identification using ad-
vanced neural network architectures by combining a deep learning module and a radiative
module (Figure 1).
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Figure 1. “FFASPPDANet+” Algorithm Framework.

The deep learning module is the original Feature Fusion Dual Attention Network
(FFASPPDANet), incorporating dual attention mechanisms, atrous spatial pyramid pooling
convolutions, and probabilistic thresholding to improve cloud feature recognition and
spatial distribution capture. Initially, we developed the FFASPPDANet, utilizing spatial
and channel attention mechanisms. These mechanisms enhance the model’s capability to
recognize cloud features by focusing on relevant spatial and channel information selectively.
Concurrently, atrous spatial pyramid pooling convolutions are employed to expand the
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model’s receptive field. This expansion allows the model to better capture the complex
spatial distribution characteristics of clouds, which are essential for accurate segmentation.

The radiative module calculates the probability of each pixel being part of a cloud and
sets a dynamic threshold to differentiate between cloud and non-cloud areas effectively.
Therefore, by utilizing this cloud segmentation approach that integrates radiative character-
istics with deep learning, we can achieve a binary segmentation of the surface and clouds.
The algorithm identifies all areas with clouds, with the advantage of mitigating the misiden-
tification of bright surface features by radiative algorithms while also addressing the issue
of low recognition rates for thin clouds by deep learning methods. This probability-based
approach introduces greater flexibility and precision in cloud segmentation, adapting
the threshold based on the local context of the image, which significantly improves the
model’s robustness.

The FFASPPDANet+ algorithm then combines features from radiative feature-based
and deep learning-based cloud segmentation methods. It incorporates the high-confidence
portions of the results from a fusion probability threshold method, which is based on pixel
spectral lines. The cloud segmentation confidence obtained through the radiative feature
cloud judgment algorithm is used as prior information. This prior, along with remote
sensing imagery, is input into the neural network for training, forming the comprehensive
FFASPPDANet+ cloud segmentation algorithm.

Specifically, a fusion probability threshold method based on pixel spectral lines is
used to output cloud judgment results and confidence levels for each pixel. The original
optical imagery, along with these results and confidence levels, is fed into the neural
network FFASPPDANet. The high-confidence portions of the optical image and result
map are stacked in the feature dimension. This stacked input is then fed into the neural
network for final cloud segmentation. This approach allows FFASPPDANet+ to adaptively
segment clouds from varied scenes effectively, as demonstrated in the figure below. By
combining these advanced techniques, FFASPPDANet+ achieves superior performance
in cloud segmentation tasks, adapting to a broad range of scenes with varying cloud
distributions and characteristics.

The FFASPPDANet+ framework introduces several key innovations to cloud seg-
mentation in satellite imagery, significantly enhancing the performance and applicability
of this process in meteorological and climate studies. Firstly, the integration of spatial
and channel attention mechanisms within the Feature Fusion Dual Attention Network
(FFASPPDANet) allows for selective emphasis on the most relevant features, improving the
network’s ability to discern intricate cloud patterns against varied backgrounds. Secondly,
the use of atrous spatial pyramid pooling expands the model’s receptive field, enabling
it to capture broader spatial distributions and finer details of cloud formations. Thirdly,
the incorporation of a probabilistic thresholding method allows for dynamic adjustment of
segmentation thresholds based on the local pixel-wise probability of clouds, thus increasing
the robustness and flexibility of the segmentation process. Lastly, by fusing high-confidence
segmentation results with prior information derived from radiative feature-based cloud
judgment, FFASPPDANet+ achieves superior accuracy and scene adaptability, marking a
significant advancement in the field of remote sensing and cloud analysis.

2.1. Basic Principles of the Radiative Module

To further optimize the accuracy of the thresholding method, a targeted utilization of
the spectral lines of pixels across six channels is employed. As illustrated in the schematic
diagram of cloud segmentation technology based on visible light images below, a thresh-
olding method based on pixel spectral lines is designed. This method takes into account
the different sensitivity levels of each channel’s pixel spectral lines to various types of
clouds within different grayscale intervals, thereby enhancing the precision of the thresh-
olding method. The radiation module can be divided into the following steps: First, the
six-channel features to be tested for impact are extracted. Based on the channel probability
judgment criteria, the probability of each pixel being a cloud in each channel is calculated.
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Then, using the channel fusion equation, the cloud probability maps of these six channels
are fused to obtain the total score of cloud possibility for each pixel. In accordance with the
channel fusion equation probability judgment criteria, the final cloud segmentation result
is obtained.

Initially, experiments are conducted on the spectral lines of pixels in the prediction
results of various channels. The spectral differences across the channels are too significant,
rendering a uniform threshold inadequate for detection requirements. Consequently, it
becomes necessary to establish a threshold correction method based on pixel spectral lines,
thereby further enhancing the accuracy of the threshold method. Through extensive experi-
mental statistics, the accuracy criteria for the threshold method have been established. The
threshold distributions and judgment criteria used in Equations (1) and (3) are presented in
Tables 1–3.

Table 1. Grayscale characteristics of six channels, comprising the visible RGB channels and the
mutual grayscale difference channels B-R, R-G, and B-G, in the threshold correction method based on
pixel spectral lines.

Channel White
(High Probability)

Red (Medium–High
Probability)

Green
(Medium Probability)

Blue (Medium–Low
Probability)

Black
(Low Probability)

R [32, 255] [30, 32] [27, 30] [24, 27] [0, 24]
G [60, 255] [50, 60] [40, 50] [25, 40] [0, 25]
B [42, 255] [39, 42] [37, 39] [34.5, 37] [0, 34.5]

B-G [0, 5] [5, 5.8] [5.8, 7.2] [7.2, 10],
[253, 255] [10, 253]

B-R [0, 23] [23, 23.5] [23.5, 24] [24, 24.5] [24.5, 255]
R-G [245, 255] [244.4, 245] [244.3, 244.4] [244.2, 244.3] [0, 244.2]

Table 2. Confidence table for pixels being clouds.

Confidence of Pixel Being a Cloud High Medium–High Medium Medium–Low Low

Pixel Color White Red Green Blue Black
Pi 1 0.8 0.6 0.4 0.2

Table 3. Thresholds of the channel fusion equation across various probability intervals.

Probability High Medium–High Medium Medium–Low Low

Fu 1.2 0.8 0.7 0.6 0

The example results of cloud segmentation based on the threshold method using pixel
spectral lines are shown in Figure 2. It is evident that the prediction results for the same
image differ significantly across channels, a discrepancy attributed to the differences in
pixel spectra among the prediction results. Similarly, the sensitivity of different channels to
various types of clouds also varies. Some channels are sensitive to convective clouds, while
others are sensitive to thin clouds, resulting in varied cloud segmentation performance. For
instance, if only the high-confidence parts (white) are selected as the cloud segmentation
result, the B channel exhibits a low precision but a high recall, the G, R, and B-R channels
show relatively balanced performance in terms of precision and recall, while the R-G
channel has high precision but low recall, and the B-G channel’s cloud segmentation
results are opposite to those of the other channels. The primary principle of the cloud
segmentation radiative module in this study is to integrate the advantageous capabilities of
these channels for cloud segmentation. The process of cloud segmentation using radiative
feature algorithms is illustrated in Figure 3.



Remote Sens. 2024, 16, 2025 6 of 24

Remote Sens. 2024, 16, x FOR PEER REVIEW 6 of 25 
 

 

capabilities of these channels for cloud segmentation. The process of cloud segmentation 
using radiative feature algorithms is illustrated in Figure 3. 

 
Figure 2. Cloud probability maps for six channels, comprising the visible RGB channels and the 
mutual grayscale difference channels B-R, R-G, and B-G. The correspondence between probability 
and color is shown in Table 2, while the original image is placed at the bottom and the original 
image. 

 
Figure 3. Schematic diagram of the visible light image cloud segmentation technology approach. 

To maximize the cloud segmentation capabilities of all channels, a channel fusion 
equation based on weighted optimization is established here. By weighting and fusing the 
probabilities identified by each channel of pixels being clouds, a channel fusion equation 
that integrates the cloud segmentation capabilities of all channels is obtained: 

Figure 2. Cloud probability maps for six channels, comprising the visible RGB channels and the
mutual grayscale difference channels B-R, R-G, and B-G. The correspondence between probability
and color is shown in Table 2, while the original image is placed at the bottom and the original image.

Remote Sens. 2024, 16, x FOR PEER REVIEW 6 of 25 
 

 

capabilities of these channels for cloud segmentation. The process of cloud segmentation 
using radiative feature algorithms is illustrated in Figure 3. 

 
Figure 2. Cloud probability maps for six channels, comprising the visible RGB channels and the 
mutual grayscale difference channels B-R, R-G, and B-G. The correspondence between probability 
and color is shown in Table 2, while the original image is placed at the bottom and the original 
image. 

 
Figure 3. Schematic diagram of the visible light image cloud segmentation technology approach. 

To maximize the cloud segmentation capabilities of all channels, a channel fusion 
equation based on weighted optimization is established here. By weighting and fusing the 
probabilities identified by each channel of pixels being clouds, a channel fusion equation 
that integrates the cloud segmentation capabilities of all channels is obtained: 

Figure 3. Schematic diagram of the visible light image cloud segmentation technology approach.

To maximize the cloud segmentation capabilities of all channels, a channel fusion
equation based on weighted optimization is established here. By weighting and fusing the
probabilities identified by each channel of pixels being clouds, a channel fusion equation
that integrates the cloud segmentation capabilities of all channels is obtained:

Fu = Chweight ∗ Chscore (1)
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where Fu represents the result of the channel fusion equation, i.e., the total score of a pixel
across six channels, which is used as the basis for cloud determination. Chweight and Chscore
represent the weights and scores of each channel (CH: R, G, B, BG, BR, RG) respectively.
The scores for each channel are derived from the grayscale intervals of each channel as
determined by the threshold correction method based on pixel spectral lines (Table 1).
Through the analysis of channel characteristics, the probability distribution standards for
pixel points in different grayscale intervals are established (Table 2). For a single pixel, its
score Pixelscore is calculated based on its grayscale in accordance with Tables 1 and 2, while
the score Chscore of a pixel in a specific channel Pixelscore is the pixel score of that channel.

Based on the final results of the channel fusion equation at each pixel point Fu, each
pixel is assigned a final probability of being identified as a cloud Pi, with the specific
calculation method as follows:

Pi =



Pi high possibility , Fu > Fuhigh possibility

Pi mid-high possibility , Fuhigh possibility > Fu > Fumid-high possibility

Pi mid possibility , Fumid-high possibility > Fu > Fumid possibility

Pi mid-low possibility , Fumid possibility > Fu > Fumid-low possibility

Pi low possibility , Fumid-low possibility > Fu > Fulow possibility

(2)

The optimal weights for each channel in the channel fusion equation are as follows.

Rweight = 0.15
Gweight = 0.25
Bweight = 0.4
BGweight = 0.075
BRweight = 0.05
RGweight = 0.075

(3)

To further optimize the accuracy of the threshold method, the six-channel pixel spectra
were utilized in a targeted manner. As shown in Figure 3, different grayscale ranges of the
pixel spectra in each channel have different sensitivities to different cloud types. Based on
this feature, a threshold method using the pixel spectra was designed to further improve
the accuracy.

The cloud segmentation process begins by inputting the satellite imagery to be an-
alyzed. Feature value extraction is performed to obtain the values for the six channels.
These channel values are then compared against the channel probability determination
criteria (Table 2) to derive the probability values for each of the six channels. The obtained
six-channel probability values are subsequently input into the channel fusion equation
(Equation (1)) to calculate the total score. Finally, this total score is assessed against the
probability determination criteria for the channel fusion equation (Table 3) to determine
the cloud segmentation probability result.

We first conducted experiments on the pixel spectra of the predicted results from each
channel (Figure 4) and found that the pixel spectral differences between channels were too
large; thus, a uniform threshold could no longer meet the detection requirements. Therefore,
it was necessary to establish a threshold correction method based on the pixel spectra to
further enhance the accuracy of the threshold method. After multiple experimental statistics,
the accuracy determination criteria for the threshold method in Tables 1–3 were derived.
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2.2. Basic Principles of the Deep Learning Module

Experimental results for current mainstream neural networks indicate that the stability
of cloud segmentation results across different underlying surface environments is poor,
necessitating optimization for the multi-scenario characteristics of cloud segmentation
tasks to improve adaptability. The main reason for the excessive influence of scene types on
cloud segmentation results is that neural networks fail to extract sufficiently key features.
Therefore, this paper constructs the Feature Fusion Atrous Spatial Pyramid Pooling Dual
Attention Network (FFASPPDANet), which builds on the existing Dual Attention Network
(DANet). In this network, a U-shaped feature fusion module (FF) designed in-house is
introduced, and the atrous spatial pyramid pooling module (ASPP) proposed in DeepLabv3
replaces the convolution kernel, enhancing the multi-scale information interaction capabil-
ity of the U-shaped feature fusion module to obtain critical high-discrimination features,
solving the problem of poor scene stability in cloud segmentation results.

To fully utilize the semantic information extracted by the backbone network and the
adaptive capacity of the attention mechanism, we propose the Feature Fusion Dual Atten-
tion Network (FFDANet). The network, when using resnet50 as the feature fusion network,
is referred to as FFDANet0, and when using resnet101, it is referred to as FFDANet. Its archi-
tecture is shown in the following Figure 5. FFDANet comprises two primary components:
(1) The U-shaped feature fusion module; (2) The dual attention mechanism module [30].
The semantic features extracted by (1) are fed into (2), which utilizes attention mechanisms
to achieve cloud target segmentation. The proposed U-shaped feature fusion module
extracts both deep and shallow semantic features of images and can be implemented based
on various feature extraction networks. In this study, the ResNet network was employed as
the feature extraction network (see Figure 6) due to its deep architecture, effective residual
learning, and ability to capture and reuse hierarchical features efficiently. Although the
U-shaped feature fusion module can effectively extract and fuse semantic information from
different levels, it still contains some redundant information, resulting in unclear cloud
segmentation boundaries. Therefore, we further employed a dual attention network to
extract key spatial and channel information.

Building upon FFDANet, we further developed FFASPPDANet (Figure 7). In cloud
segmentation, neural networks require not only excellent encoding modules and effective
attention mechanisms but also multi-scale information interaction. The U-shaped feature
fusion module of FFDANet, in the process of information extraction and fusion, uses only
simple residual structures and convolutions to continuously extract the original information
from remote sensing images. This structure limits the receptive field, failing to perceive
more cloud-related information, leading to the omission of critical information (such as thin
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clouds and fragmented clouds). Therefore, we introduced the ASPP module [31] to replace
the original 1 × 1 convolution kernel, enhancing the multi-scale information interaction
capability of the U-shaped feature fusion module.
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In the method illustrated, we use ResNet101 as the backbone network to extract the
main features. Then, we process the previously extracted feature maps using a parallel
atrous spatial pyramid pooling structure. In the high-resolution feature processing at the
top, we use atrous convolution kernels with dilation rates of (1, 6, 12, 18); in the low-
resolution feature processing at the bottom, we use atrous convolution kernels with dilation
rates of (1, 2, 3, 4). The parallel learning of atrous convolutions with different dilation
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rates can further enhance multi-scale features and expand the receptive field during the
information extraction process. Through the global average pooling layer, we can capture
contextual information. Finally, we use reassembled sampling to fuse the features processed
by the atrous spatial pyramid pooling structure.

Specifically, the detailed structure in ResNet-101 was shown in Figure 8. C1 to C5 are
the convolutions from the first to fifth layers of ResNet-101. Considering the overly coarse
semantic information of C1 and the insufficient semantic information dimensions of C3
and C4, FFDANet only fuses C5 with C2. C2 and C5 are the outputs of the second and
fifth layers of ResNet-101, respectively, with output sizes of 1/4 and 1/32 of the original
image, respectively. FFDANet uses a feature stacking method for feature fusion: C2 is first
upsampled to 512 dimensions through a 1 × 1 convolution, and C5 is downsampled to form
F5. F5, after upsampling to double its spatial dimensions, is stacked with the upsampled C2
in the feature dimension, and finally, a 3 × 3 convolution is used to fuse the stacked features.
By ensuring the feature dimensions of C2 and F5 are consistent, semantic and spatial
detail information imbalance is prevented. In the upsampling process, FFDANet employs
sub-pixel convolution [33], allowing the network to learn the appropriate upsampling
information during training.
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2.3. Model Parameter Settings

This experiment was conducted using the PyTorch2.2.0+cu121 (Python 3.10.14) deep
learning framework [34] on an NVIDIA RTX A5000 GPU equipped with 24GB of memory.
The adaptive moment estimation (Adam) optimizer [35] was employed, configured with
the exponential decay rate for the first moment estimates β1 = 0.9, the exponential decay
rate for the second-moment estimates β2 = 0.999, and a very small constant ϵ = 10−8 to
prevent any division by zero in the implementation.

To verify the effectiveness of each module within the neural network, we conducted
ablation experiments. All network models employed the same training strategy, under-
going a total of 31 training rounds. The training details are shown in Table 4. Here, we
leveraged the Microsoft Neural Network Intelligence (NNI) toolkit [36] for hyperparameter
optimization. NNI is a robust open-source toolkit that facilitates automatic feature engi-
neering, hyperparameter tuning, neural architecture search, and model compression. Our
hyperparameter tuning process employed several well-established algorithms available
within NNI. Specifically, we mainly used the techniques in parentheses to determine the
optimal values of the following parameters: the learning rate (grid search) and batch size
(random search). This systematic approach to hyperparameter tuning, which was meticu-
lously adapted to the unique characteristics of each algorithm, enabled us to identify the
optimal hyperparameters, thereby enhancing the overall performance of our models.

The model training process is illustrated in the following Figure 9. During train-
ing, the training and validation set loss functions of all models generally stabilized after
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20 rounds of training, dropping below 0.1. Some neural networks (such as FFDANet+)
experienced significant fluctuations in the validation set loss function in the early stages
but stabilized quickly. Experimentally, the models trained for 31 rounds exhibited the best
cloud segmentation performance.

Table 4. Training details.

Model Train Time
(s/epoch)

Val Time
(s/epoch) Batch Size Initial Learning Rate

UNet [37] 62.21 17.36 8 5 × 10−6

CDNet [38] 126.85 35.17 16 1 × 10−6

DANet [30] 108.32 29.79 4 1 × 10−5

ResNet [39] 102.38 28.31 16 5 × 10−6

FFDANet0+ 112.95 31.88 16 1 × 10−6

FFDANet+ 118.33 32.73 16 1 × 10−6

FFASPPDANet0+ 115.54 32.25 16 1 × 10−6

FFASPPDANet+ 120.23 33.43 16 1 × 10−6
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Model performance was evaluated using accuracy, precision, recall, and the F1 score
as the primary indicators. Accuracy measures the overall correctness of the model in
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classifying cloud and non-cloud areas. Precision and recall evaluate the model’s accuracy
and completeness in identifying cloud areas, respectively, while the F1 score provides
a balanced measure of precision and recall, serving as a key indicator of the model’s
comprehensive performance.

2.4. Dataset

The remote sensing image data used in this study are sourced from the SPOT6 and
SPOT7 satellites, covering a variety of land surface types, including but not limited to urban
areas, farmland, forests, and bodies of water. These high-resolution images provide a rich
source of land surface and atmospheric cloud features, forming an important foundation
for the construction and validation of the cloud segmentation model. SPOT6 and SPOT7
are part of the French SPOT (Satellite Pour l’Observation de la Terre, or Earth Observation
Satellite) series, which are two civilian Earth observation satellites. These satellites continue
the mission of the SPOT series, providing high-resolution optical remote sensing data to
support various applications such as map making, urban planning, agricultural monitoring,
environmental protection, disaster management, and military uses. SPOT6 and SPOT7 are
designed as a pair to offer higher revisit frequency and more flexible data acquisition capa-
bilities. They provide a 1.5-m panchromatic resolution and a 6-m multispectral resolution.
The panchromatic images capture very detailed ground features, while the multispectral
images capture the characteristics of different materials on the Earth’s surface reflecting
and absorbing light, which helps in analyzing different types of land surfaces such as
vegetation, water bodies, and urban areas. Both satellites are in sun-synchronous orbits at
an altitude of approximately 830 km, ensuring they pass over at the same time to acquire
imagery under comparable lighting conditions.

In this study, the annotated dataset was created, consisting of 32,065 satellite cloud
images sized 512 × 512, randomly derived from SPOT-6 and SPOT-7 satellite images [36].
The dataset was generated using an expert-supervised semi-automatic CloudLabel annota-
tion method, incorporating region growing, flood fill, connected components, and guided
filter algorithms to optimize cloud segmentation.

Firstly, segmented images are inputted into the CloudLabel UI (Figure 10) for expert
assessment. Experts select seed points for region growing and set thresholds based on cloud
region characteristics. Typically, for bright, thick clouds, moderately bright pixels are chosen
as seed points with a threshold of T = 0.4; for darker, thinner clouds, the threshold is T = 0.2.
Annotation details can be refined using tools like erasers and magnifiers, ensuring reliability
by comparing the masked image with the original. CloudLabel software v1.0 integrates
techniques including region growing, flood fill, connected components, and guided filtering.
Users open the cloud image, set an appropriate growth rate, and click within the cloud
area to annotate. After basic annotation, the “Enhance” button applies morphological
processing to optimize results. Thus, experts only need to select the starting point and set
the growth rate to semi-automatically annotate high-resolution satellite images.

Secondly, CloudLabel employs region growing [40,41], enhanced with morphological
processing, to semi-automatically annotate cloud regions in high-resolution remote sensing
images through human-computer interaction. Region-growing segments are images based
on pixel similarity, starting from an initial seed point and iteratively adding neighboring
pixels that meet intensity or color criteria. Key components include seed point selection,
growth criteria definition, and threshold setting. The process continues until the region
ceases to expand, as determined by a gray-level threshold supervised by experts. Proper
parameter selection allows the effective partitioning of an image into coherent regions with
similar properties.

Then, the flood fill algorithm was employed. High spatial resolution remote sensing
images reveal detailed terrain features with significant grayscale variations within cloud
regions. Some pixels may have much higher or lower values than their surroundings,
leading to improper identification and the formation of holes when using region growing
alone. To address this, we employ the flood fill algorithm from morphological image
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processing to refine the coarse results from region growing. Although coarse annotations
provide rough outlines, some pixels remain unrecognized. The flood-fill operation fills
these holes, ensuring a more accurate and complete cloud annotation.
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After filling the holes, the region growing method relies on grayscale values of pixels,
which can misclassify man-made objects (e.g., buildings, roads) with high reflectance
similar to clouds. However, in high-resolution remote sensing images, clouds typically
have natural, random shapes with roundedness and smooth edges, while man-made
structures have regular shapes (linear, rectangular, or circular). These can be removed
based on their regular shapes using the connected-component method. The annotation
results from region growth are partitioned into distinct connected regions. For each region,
the number of pixels N0 and the minimum bounding rectangle containing N pixels are
calculated. The ratio between N0 and N is computed as R = N0/N. By analyzing R,
man-made objects can be distinguished and removed. If R → 1 , the region is rectangular;
if R → π/4, the region is circular; if R → 0 , the region is linear. By selecting appropriate
ranges and conditions, we could effectively remove man-made objects with high reflectance.

Finally, the images were processed by a guided filter. In high-resolution remote
sensing images, cloud region boundaries often appear as blurry, semi-transparent pixels
with reflectance similar to the terrain, unlike the high-reflectance pixels at the cloud center.
This leads to misclassification. To address this, guided filtering is used for fine segmentation
of the coarse annotation results, enhancing cloud region boundary characteristics. The
formula is Cguided = Fguided

(
Crough, C, r, ε

)
, where Fguided is the guided filter, Crough is the

coarse annotation result, C is the guidance satellite image, r is the window radius, and ε is
the regularization parameter.

After data augmentation, the dataset was expanded to include the final set of 160,000 an-
notated images. The dataset was divided by 10:3:3 for training, validation, and testing.
Specifically, the training set was expanded to 100,000 images, with the validation and test
sets expanded to 30,000 images each. Such data preprocessing not only increased the diver-
sity of the data but also simulated a variety of scene changes that might be encountered
in practical applications, providing sufficient training and testing conditions for the deep
learning model.
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3. Results
3.1. “FFASPPDANet+” Algorithm Experiment in Simple Scenarios (Underlying Surfaces of
Water Bodies)

The below Figures 11 and 12 show that in remote sensing satellite images with wa-
ter bodies as the underlying surface, the underlying conditions are relatively simple and
filled with dark ocean geographical information. In water body scenarios, FFDANet0+,
FFDANet+, FFASPPDANet0+, and FFASPPDANet+ overall perform well, effectively seg-
menting the main body of thick clouds.
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In water body scenarios, as shown in Table 5, FFDANet0+, FFDANet+, FFASPP-
DANet0+, and FFASPPDANet+ demonstrate good performance. The missed detection of
thin cloud parts affects the overall metrics, with the IoU around 76%, OA around 83%, and
precision exceeding 98%.

It is evident that the metrics for UNet, CDNet, DANet, and ResNet are close to those of
the method proposed in this paper, indicating that the room for accuracy improvement in
simple scenes is not significant. This contrasts with the substantial accuracy enhancement
observed in complex scenes, as discussed in the following subsection.
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Table 5. Cloud Segmentation Results of Different Models in Water Body Scenarios.

Model IoU OA Precision F1 Recall

FFDANet0+ 0.7890 0.8460 0.9837 0.8821 0.7994
FFDANet+ 0.7563 0.8228 0.9879 0.8612 0.7634

FFASPPDANet0+ 0.7438 0.8114 0.9865 0.8531 0.7478
FFASPPDANet+ 0.7235 0.7998 0.9927 0.8396 0.7274

UNet 0.7455 0.8149 0.9872 0.8542 0.7528
CDNet 0.7474 0.8165 0.9890 0.8554 0.7536
DANet 0.7975 0.8519 0.9813 0.8873 0.8097
ResNet 0.8012 0.8530 0.9683 0.8896 0.8228

3.2. “FFASPPDANet+” Algorithm Experiment in Complex Scenarios (Underlying Surfaces of
Urban Areas)

The results below in Figures 13 and 14 show that FFDANet+ and FFASPPDANet+
effectively utilize the fusion process of shallow and deep features, making good use of both
shallow and deep semantic information. Under the influence of the attention mechanism,
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which fully considers the comprehensive relationship between pixels, the process can better
distinguish between surface highlights and clouds during cloud segmentation. This results
in improved segmentation outcomes, with cloud edges having more detailed textures and
more accurate identification of fragmented and thin clouds.
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The results indicate that in urban scenarios, FFASPPDANet0+ performs generally well,
being able to identify the main body of clouds but with some instances of misidentification.
FFDANet+ and FFASPPDANet+ exhibit the best performance, with an IoU of around 74%,
OA of around 89%, and F1 scores of around 85% (Table 6). With precision exceeding 96%,
they are able to segment clouds effectively, producing clear boundary textures.

Table 6. Cloud Segmentation Results of Different Models in Urban Scenarios.

Model IoU OA Precision F1 Recall

FFDANet0+ 0.7184 0.8752 0.8924 0.8361 0.7866
FFDANet+ 0.7383 0.8917 0.9723 0.8494 0.7541

FFASPPDANet0+ 0.7254 0.8855 0.9623 0.8408 0.7466
FFASPPDANet+ 0.7304 0.8881 0.9679 0.8442 0.7485

UNet 0.6665 0.8423 0.8226 0.7999 0.7784
CDNet 0.6901 0.8574 0.8518 0.8166 0.7842
DANet 0.7124 0.8673 0.8534 0.8320 0.8117
ResNet 0.7026 0.8615 0.8436 0.8253 0.8078

In comparison, the UNet network performs the worst, with all evaluation metrics
showing deficiencies. The Intersection over Union (IoU) is only 66.65%, the Overall Accu-
racy (OA) is 84.23%, and the F1 score is 79.99%, with significant missed and false detections.
CDNet, DANet, and ResNet exhibit moderate performance in urban scenes, with IoU
around 71% and OA around 85%. These networks generally identify the main parts of the
clouds but are prone to false detections.

3.3. “FFASPPDANet+” Algorithm Experiment on a Random Test Set

To explore the cloud segmentation capabilities of each algorithm on real remote sensing
images, during the final five epochs of the training process, the algorithm was used to
segment clouds in remote sensing satellite images from the test set. The performance
metrics of each algorithm were calculated, and the best-performing algorithm model was
retained as the final training outcome. The cloud segmentation capabilities on the test set
are shown in the Table 7 below:
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Table 7. Cloud Segmentation Results of Different Models in Random Test Set.

Model IoU OA Precision F1 Recall

FFDANet0+ 0.9280 0.9732 0.9569 0.9627 0.9686
FFDANet+ 0.9291 0.9733 0.9483 0.9633 0.9787

FFASPPDANet0+ 0.9278 0.9733 0.9629 0.9626 0.9622
FFASPPDANet+ 0.9308 0.9742 0.9582 0.9642 0.9702

UNet 0.9061 0.9325 0.9386 0.9316 0.9346
CDNet 0.9084 0.9437 0.9300 0.9228 0.9258
DANet 0.9156 0.9682 0.9448 0.9359 0.9173
ResNet 0.9060 0.9421 0.9469 0.9216 0.9467

It can be observed that FFASPPDANet0+ and FFASPPDANet+ overall perform well,
with an IoU of around 80%, an OA of around 95%, and a precision of around 96%. They are
capable of effectively segmenting clouds with richer boundary texture information, and
their comprehensive performance is significantly superior to other cloud segmentation
methods. Although FFASPPDANet0+ has a slightly higher precision than FFASPPDANet+,
its other evaluation metrics are not as good as those of FFASPPDANet+. FFDANet0+ and
FFDANet+ are the next best, with a precision of around 95%, able to effectively segment
thick and thin clouds, rich in boundary texture information, and also capable of segmenting
small fragmented clouds well. It can be observed from the results in the test set that the
method proposed in this paper shows improvement across all metrics compared to the four
methods mentioned.

3.4. Performance in State-of-the-Art Datasets

Table 8 and Figure 15 present the performance of our model compared to other meth-
ods over the 38-Cloud dataset [42,43]. A comprehensive analysis of the cloud segmentation
results of different models on the 38-Cloud dataset reveals that FFASPPDANet+ excels in
several key metrics in the cloud segmentation task. According to the average parameter
results of 20 test images of the 38-Cloud dataset (Table 8), FFASPPDANet+ achieves an IoU
of 0.9109, an OA of 0.9651, a precision of 0.9540, and an F1 score of 0.8946. These metrics
are the highest among all models, indicating the model’s relatively superior capability in
accurately identifying and detecting cloud regions. Although FFASPPDANet+ was not
optimal in the results of the random test set (Table 7), its performance in 38-Cloud (Table 8)
indicates the great generalization ability of the model. FFDANet+ and FFASPPDANet0+
also perform robustly, particularly in recall and OA, demonstrating high accuracy and
reliability, though they slightly underperform in other metrics. Although ResNet, a widely
used segmentation model, shows competitive results in IoU, recall, and precision, its per-
formance in terms of F1 score is relatively lower, suggesting that our proposed models
incorporating radiometric feature fusion modules hold an overall performance advantage.

Table 8. Cloud Segmentation Results of Different Models in 38-Cloud dataset.

Model IoU OA Precision F1 Recall

FFDANet0+ 0.8431 0.9112 0.9065 0.8708 0.9558
FFDANet+ 0.8554 0.9224 0.8920 0.8501 0.9791

FFASPPDANet0+ 0.8912 0.9441 0.9336 0.8829 0.9735
FFASPPDANet+ 0.9109 0.9651 0.9540 0.8946 0.9763

UNet 0.8455 0.8554 0.8208 0.7274 0.8867
CDNet 0.7739 0.8759 0.8428 0.8658 0.9721
DANet 0.7855 0.8927 0.8662 0.8472 0.9315
ResNet 0.8485 0.9009 0.9212 0.8372 0.9744
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It can be observed in Figure 15 that the outcomes of FFASPPDANet0+ and FFASP-
PDANet+ with the addition of the ASPP mechanism better capture the morphological
characteristics of clouds compared to FFDANet0+ and FFDANet+. The boundaries be-
tween cloud and non-cloud regions are further clarified, and misclassification is reduced,
corresponding to the increases in OA, precision, and F1 score (Table 8). These results indi-
cate that our segmentation model, improved through the use of ASPP and dual attention
mechanisms, has made progress in the cloud segmentation task, and this advancement is
also evident on the 38-Cloud dataset outside the training set.

4. Discussion

In this study, we propose an innovative remote sensing satellite image cloud seg-
mentation algorithm, FFASPPDANet+, which extensively tests various scenes of different
complexities (such as water bodies and urban areas) as well as random test sets through
the fusion of dual attention networks, atrous spatial pyramid pooling convolutions, and a
probabilistic threshold method.

The integration of the dual attention network with atrous spatial pyramid pooling
convolutions and the application of the probabilistic threshold method are the main innova-
tions. FFASPPDANet+ is the first to combine the dual attention network with atrous spatial
pyramid pooling technology, effectively enhancing the accuracy and efficiency of cloud
segmentation in remote sensing images. This innovative combination not only improves
the model’s sensitivity and differentiation capability toward cloud features but also ex-
pands the model’s receptive field, enhancing the model’s ability to capture the widespread
distribution characteristics of clouds. Moreover, by introducing the probabilistic threshold
method, the algorithm further enhances the accuracy and robustness of cloud segmentation
based on precise identification of cloud and non-cloud areas. This approach introduces
greater flexibility to the cloud segmentation task, allowing the algorithm to better adapt to
different remote sensing image conditions.

5. Conclusions

The breakthrough progress of this paper is demonstrated by its efficient handling
of different scenes, as evidenced by its outstanding performance on a random test set.
In tests of scenes with varying complexities, FFASPPDANet+ showcased its superior
performance. Particularly in water body scenes, the algorithm achieved high precision in
cloud segmentation, with a precision rate exceeding 98%. In the complex urban scenes, the
algorithm also demonstrated excellent cloud segmentation capability, accurately identifying
cloud edges and small fragmented clouds, thus showing the algorithm’s wide applicability
and efficiency.
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The experimental results on the random test set further validate the superiority of the
FFASPPDANet+ algorithm. The IoU of the algorithm on the random test set is around 93%,
with an overall accuracy (OA) of about 97% and a precision of about 96%; these results
fully demonstrate the powerful capability and efficiency of FFASPPDANet+ in the task of
cloud segmentation in real remote sensing images.

In summary, the innovation and breakthrough of the FFASPPDANet+ algorithm
are manifested in its combination of advanced deep learning techniques and the proba-
bilistic threshold method, thus not only improving the accuracy and efficiency of cloud
segmentation but also demonstrating strong adaptability and robustness in handling differ-
ent complex scenes and real-world conditions. These achievements provide an effective
new method for cloud segmentation in remote sensing images, as well as new ideas and
directions for future research in related fields.
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