
Citation: Zhu, X.; Kong, Z.; Cao, J.;

Gao, R.; Gao, N. Attributing the

Decline of Evapotranspiration over

the Asian Monsoon Region during the

Period 1950–2014 in CMIP6 Models.

Remote Sens. 2024, 16, 2027. https://

doi.org/10.3390/rs16112027

Academic Editor: Nicola Montaldo

Received: 16 May 2024

Revised: 31 May 2024

Accepted: 1 June 2024

Published: 5 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Attributing the Decline of Evapotranspiration over the Asian
Monsoon Region during the Period 1950–2014 in CMIP6 Models
Xiaowei Zhu 1, Zhiyong Kong 2 , Jian Cao 2,3,*, Ruina Gao 1 and Na Gao 1

1 Key Laboratory for Meteorological Disaster Monitoring and Early Warning and Risk Management of
Characteristic Agriculture in Arid Regions, Yinchuan 750002, China; nxzxw@zju.edu.cn (X.Z.);
4210107061@stu.cuit.edu.cn (R.G.); gaona@zju.edu.cn (N.G.)

2 School of Atmospheric Sciences, Nanjing University of Information Science and Technology,
Nanjing 210044, China; 202212010027@nuist.edu.cn

3 Earth System Modeling Center, Nanjing University of Information Science and Technology,
Nanjing 210044, China

* Correspondence: jianc@nuist.edu.cn

Abstract: Evapotranspiration (ET) accounts for over half of the moisture source of Asian monsoon
rainfall, which has been significantly altered by anthropogenic forcings. However, how individual
anthropogenic forcing affects the ET over monsoonal Asia is still elusive. In this study, we found a
significant decline in ET over the Asian monsoon region during the period of 1950–2014 in Coupled
Model Intercomparison Project Phase 6 (CMIP6) models. The attribution analysis suggests that
anthropogenic aerosol forcing is the primary cause of the weakening in ET in the historical simulation,
while it is only partially compensated by the strengthening effect from GHGs, although GHGs are
the dominant forcings for surface temperature increase. The physical mechanisms responsible for
ET changes are different between aerosol and GHG forcings. The increase in aerosol emissions
enhances the reflection and scattering of the downward solar radiation, which decreases the net
surface irradiance for ET. GHGs, on the one hand, increase the moisture capability of the atmosphere
and, thus, the ensuing rainfall; on the other hand, they increase the ascending motion over the Indian
subcontinent, leading to an increase in rainfall. Both processes are beneficial for an ET increase. The
results from this study suggest that future changes in the land–water cycle may mainly rely on the
aerosol emission policy rather than the carbon reduction policy.

Keywords: Asian monsoon; evapotranspiration; aerosols; radiation

1. Introduction

Evapotranspiration (ET) is an essential component of the local hydrological cycle over
monsoonal Asia. About 50% of the atmospheric moisture source is provided by ET in the
summer season (Figure 1), and it bridges the surface energy, water cycle, and carbon cycle
over the highly vegetated, densely populated Asian monsoon region, which has intense
human activity [1–4]. Significant anthropogenic forcings have originated from the Asian
region, particularly since the 1950s [5]. Anthropogenic aerosols and greenhouse gases
(GHGs) have significantly altered the hydrological cycle over monsoonal Asia [6–8]. Thus,
understanding how different anthropogenic emissions influence ET is important for the
availability and usage of freshwater resources by humans and terrestrial ecosystems [9,10].

Prior studies revealed that GHGs and aerosols can influence ET through their climate ef-
fect and complex physiological, biophysical, and biogeochemical vegetation processes [11–13].
The increase in GHGs warms the Earth, enhancing local ET by increasing the vapor pressure
difference between the land and the atmosphere [1,14,15]. CO2, as a major component of
GHGs, promotes plant growth through enhanced photosynthesis [16,17], leading to an
increase in ET [18]. The increase in CO2 concentration could reduce the stomatal conduc-
tance, resulting in a decrease in water loss from plants [19–21]. Aerosols can scatter and
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absorb solar radiation [22], changing the surface energy source for ET [8]. The deposi-
tion of aerosols onto vegetation surfaces would affect plant physiology and transpiration
rates [23,24]. Meanwhile, aerosols benefit the photosynthesis and transpiration of the
plant-shaded leaves through the diffusion-radiation fertilization effect [25].
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model, Mao et al. showed the relative importance of the climate variables, atmospheric 
composition, and land use change to the observed increasing global ET during the 1982–
2010 period [33]. The result suggests that the increase in precipitation positively contrib-
utes to the ET change, while the physiological and structural effect of CO2 reduces ET over 
the vegetation-dense regions. Using the simulations from CMIP6, Liu et al. attributed the 
increase in ET in the period 1980–2020 mainly to anthropogenic forcings [34]. he GHGs 
dominate the increase in global and continental-scale ET, while the impact of aerosols has 
apparent regional features, significantly influencing the ET over Europe and Asia over the 
last 30 years [34]. In humid regions, like monsoon regions, the changes in ET are mainly 
constrained by the evaporative demand rather than the moisture supply [35]. Cao et al. 
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Figure 1. Climatological ET (mm d−1) from (a) observational data and (c) five CMIP6 model means.
And the ratio of ET to precipitation (%) from (b) observation and (d) CMIP6 models. The observed
precipitation is from the CRU dataset. The climatological ET and precipitation is defined as the mean
of the JJA period of 1985–2014. The red dashed lines present the Asian monsoon region.

Detection and attribution studies have investigated the role of different aspects of
human activity on ET changes [26–30]. Changes in land use/land cover, irrigation, and
groundwater withdrawals directly influence the surface water availability and, thus, the
ET [31,32]. Douville et al. demonstrated that anthropogenic radiative forcings have already
impacted the decadal changes in ET [9]. Using datasets from the offline land surface model,
Mao et al. showed the relative importance of the climate variables, atmospheric compo-
sition, and land use change to the observed increasing global ET during the 1982–2010
period [33]. The result suggests that the increase in precipitation positively contributes
to the ET change, while the physiological and structural effect of CO2 reduces ET over
the vegetation-dense regions. Using the simulations from CMIP6, Liu et al. attributed the
increase in ET in the period 1980–2020 mainly to anthropogenic forcings [34]. he GHGs
dominate the increase in global and continental-scale ET, while the impact of aerosols has
apparent regional features, significantly influencing the ET over Europe and Asia over the
last 30 years [34]. In humid regions, like monsoon regions, the changes in ET are mainly
constrained by the evaporative demand rather than the moisture supply [35]. Cao et al.
found that anthropogenic aerosol forcing is more effective in altering net surface radiation
than GHG forcing [8], which is consistent with the dominant impact of aerosols on ET
across Asia.

It is essential to understand the response of ET to climate variables, such as precip-
itation, radiation, and vapor pressure deficits. On a regional scale, Zeng and Cai [26]
investigated the impacts of different factors on the ET over large river basins and found
that precipitation is the dominant contributor and that it is dampened/enhanced by terres-
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trial storage changes on the inter-annual time scale. The estimation of daily ET change at
236 stations across the US shows a significant declining trend, which is mainly attributed to
the decrease in surface conductance and partially offset by shortwave radiation, longwave
radiation, and wind speed [27]. On the sub-continental scale, the heterogeneity features
of the observed global ET trends in 1980–2011 may be caused by the terrestrial moisture
supply, which was largely affected by the atmospheric circulation change due to the “La
niña”-like sea surface temperature trend over the tropical Pacific after the 1970s [36,37].
Martens et al. [28] found that the earth system’s internal modes effectively affect the ET over
wet regions, such as the monsoon region, by altering the atmospheric demand for water.
Consistently, the attribution study over monsoonal East Asia also indicates the importance
of vapor pressure deficit for ET change [38]. A global-scale survey of the ET trend shows
that it went upwards in 1982–1997 and then downward in 1998–2008. The decline in the
latter period is driven primarily by moisture limitations in the Southern Hemisphere [35].
The overall upward trend during the period 1982–2013 is mainly driven by vegetation
greening, while increased precipitation and enhanced atmospheric evaporative demand
have secondary roles [4,29].

A gap in knowledge still exists in the prior attribution studies. First, the reliable
ET observation is for a relative short time span, mostly starting from the 1980s [39–42].
Fully attributing the observed ET to anthropogenic forcing may not be appropriate since
significant decadal/multidecadal variations exist in the climate drivers over the Asian
monsoon region [28,29,36,43]. The trend in ET during the 1980s–2020s may partially
originate from the decadal modes, like the inter-decadal Pacific oscillation and Atlantic
multidecadal oscillation [28,36]. Second, a process level of understanding why aerosols are
uniquely important for ET in the Asian monsoon region is not well established yet [37].
In this study, we used the single forcing experiments from the Detection and Attribution
Intercomparison Project (DAMIP) and historical simulations in the CMIP6 to investigate
the relative importance of GHGs and aerosols on the ET trend over monsoonal Asia since
the 1950s, when significant GHG and aerosol emissions were observed. The contribution of
each climate factor to the ET changes under GHG forcing and aerosol forcing is explicitly
examined. In addition, how individual anthropogenic forcing affects the key climate factors
are explored. The rest of the paper is organized as follows: Section 2 introduces the data
and methods. The declining trend in the ET over Asia in the historical experiment of the
CMIP6 model is analyzed in Section 3. Section 4 demonstrates the contributions and factors
in GHG forcing and aerosol forcing to ET changes. Section 5 summarizes the main findings.

2. Materials and Methods
2.1. Datasets

Three widely used ET datasets are employed in this study, including the Global Land
Evaporation Amsterdam Model dataset (GLEAM v3.0a), the Global Land Data Assimilation
System version 2.0 with Noah model (GLDAS-Noah), and the highly generalized land
ET (HG-Land ET). The three datasets are all based on the remote sensing-based actual ET
products. The GLEAM v3.0a dataset is from state-of-the-art diagnostic actual ET products
that are based on remote sensing [43]. The GLDAS-Noah ET dataset has produced fields
of land surface states and fluxes (e.g., soil moisture, latent and sensible heat flux) by
running an offline land surface model together with data assimilation techniques [44].
The HG-Land ET dataset integrates the satellite-observed vegetation information, in situ
ET observations, precipitation observations, and reanalysis datasets by machine-learning
algorithms [45]. The averages of the three datasets are regarded as the ET observation. The
observed precipitation data are from Version 4.04 of the Climate Research Unit (CRU), with
a resolution of 0.5◦ × 0.5◦ spanning from 1901 to 2020 [44]. In this study, we only focus on
the summer season (June-August) when both the ET and precipitation reach their peaks.

The historical simulations from 32 CMIP6 models are used to assess the ET change
under anthropogenic forcing (Table 1). The historical simulation is forced by the observed
temporally evolving external forcings, such as GHGs, anthropogenic aerosols, volcanic
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eruptions, the earth’s orbit parameters, and land use/land cover, with the simulation
period being 1850–2014 [45,46]. The roles of individual external forcings on ET change
are identified from the single forcing simulations in the DAMIP. The impacts from two
types of forcings are mainly focused, namely the impacts of anthropogenic aerosol from the
historical anthropogenic aerosol-only (hist-aer) experiment and the impact of GHGs from
the historical GHG-only (hist-GHG) experiment. The hist-aer and hist-GHG experiments
are designed as historical experiments but are forced by the well-mixed greenhouse gas-
only and anthropogenic aerosol-only during the period 1850–2014, respectively [47]. In the
15 DAMIP models, 5 models (Table 1) provided the variables of precipitation, downward
and upward solar radiation, downward and upward longwave radiation, surface temper-
ature, 2 m wind speed, and humidity. Those variables are used to identify the detailed
processes responsible for the ET change under individual forcings. Thus, the results from
the five models are used to identify the relative importance of the individual factors. The
five models are ACCESS-CM2, ACCESS-ESM1-5, CanESM5, IPSL-CM6A-LR, and MRI-
ESM2-0. For easy comparison, all model data are regridded to a common resolution of
2◦ × 2◦ with bilinear interpolation. In this study, we focus on the period of 1950–2014,
when GHG and aerosol emissions are more significant than in the previous decades.

Table 1. CMIP6 models used in this study and the trends (mm d−1 cent−1) in ET from individ-
ual models. The first five models are used to quantify the relative importance of the individual
climate factors.

Models Hist./15 hist. Models hist-aer hist-GHG

ACCESS-CM2 0.025 −0.32 0.20
ACCESS-ESM1-5 −0.40 −0.44 0.14

CanESM5 −0.29 −0.46 0.33
IPSL-CM6A-LR −0.19 −0.28 0.10

MRI-ESM2-0 −0.56 −0.44 0.22
BCC-CSM2-MR −0.060 −0.30 0.18

CESM2 −0.065 −0.28 0.11
CNRM-CM6-1 −0.15 −0.23 0.05

E3SM-2-0 −0.25 −0.44 0.21
FGOALS-g3 0.010 −0.047 0.26
GFDL-ESM4 −0.57 −0.60 0.17
GISS-E2-1-G 0.023 −0.34 0.18

HadGEM3-GC31-LL −0.11 −0.51 0.17
MIROC6 −0.16 −0.33 0.10

NorESM2-LM 0.047 −0.34 0.14
AWI-CM-1-1-MR −0.30
CAMS-CSM1-0 −0.060

CAS-ESM2-0 −0.20
CESM2-WACCM −0.17

CMCC-ESM2 0.038
EC-Earth3 −0.003

EC-Earth3-Veg −0.014
EC-Earth3-Veg-LR −0.045

FGOALS-f3-L −0.016
FIO-ESM-2-0 −0.13
INM-CM4-8 −0.087
INM-CM5-0 −0.027

MPI-ESM1-2-HR −0.28
MPI-ESM1-2-LR −0.29

NESM3 −0.42
NorESM2-MM −0.057

TaiESM1 −0.32
MME −0.17/−0.16 −0.36 0.17



Remote Sens. 2024, 16, 2027 5 of 15

2.2. Methods

Following previous studies [37,48], the ET can be predicted from the climatic vari-
ables, including precipitation, net surface radiation, surface temperature, vapor pressure
deficiency, and 2 m wind speed. The equation is as follows:

ET = P +
0.408∆(Rn − G) + γ 900

T+273 uVPD
∆+ γ(1 + 0.34u)

− P

[
1 +

(
0.408∆(Rn − G) + γ 900

T+273 uVPD
P(∆+ γ(1 + 0.34u))

)ϖ ]1/ϖ (1)

where P is the precipitation, Rn is the net surface radiation, G is the soil heat-flux density, γ
and ∆ are the psychometric constant and slope of the vapor pressure curve, respectively, T
is the 2 m air temperature, and u is the 2 m wind speed. VPD means the vapor pressure
deficit. According to Allen et al. [48], G is set to 0.

To isolate the contribution of an individual factor to the ET change, a group of sensitiv-
ity calculations is conducted. For example, the contribution of precipitation change to the
total ET change is calculated by setting the other four variables to their climatological mean
values but using the temporally evolving values for precipitation. A similar calculation is
conducted for each variable [37,49].

The 30-year (1985–2014) climatology precipitation data of the Global Precipitation Cli-
matology Project [50] are used to define the Asian monsoon domain. It is the region where
the precipitation difference between summer (May–September) and winter (November–
March) exceeds 2.5 mm d−1, and summer precipitation accounts for at least 55% of the
annual total [8].

3. Decline in the ET over the Asian Monsoon Region in CMIP6 Models

Figure 1 shows the pattern of ET over Asian land and its ratio to precipitation during
the summer season (June-July-August) of 1985–2014 from observations and the ensemble
mean of the five DAMIP models (Table 1). In the observed data, high ET is located over the
southeast of the Asian continent, with the maximum centers located over South China and
the Indochina Peninsula. The ensemble mean of historical simulation from the five DAMIP
models reproduced the pattern and magnitude of ET well. Relatively lower ET over central
Asia and a relatively high southwest–northeast elongated ET band extends from the Indian
subcontinent to northeastern China. In the Asian monsoon region, a large proportion
of precipitation comes from ET, suggesting the vital role of local hydrological recycling,
although the monsoon rainfall is dominated by remote moisture transport in a traditional
view. The contribution of local hydrological recycling exceeds 50% over North China in
observation and CMIP6 models. The areal-averaged contribution of local hydrological
recycling is 53% and 63% in observation and CMIP6 models, respectively. Therefore, it is
essential to understand the detailed physical processes responsible for the change in ET
during the recent decades.

We focus on the past seven decades (1950–2014), in which significant anthropogenic
emissions have occurred [5]. As shown in Table 1, twenty-seven of the thirty-two models
show negative trends for the ET over the Asian monsoonal region. The multi-model
ensemble mean suggests a linear trend of −0.17 mm d−1 cent−1 in 1950–2014, which
was significant at a 95% confidence level. The decline in ET was also apparent between
1980 and 2014. It is opposite to the increased trends in the observed data over the same
period (Figure 2) [1,22,51]. This indicates that the observed increase in ET over the Asia
monsoon region may be dominated by the internal variability [28,29,37]. The DAMIP
experiment demonstrates the impacts of GHGs and anthropogenic aerosols on ET changes.
In the 15 DAMIP models, the ensemble mean of historical simulation has a linear trend
of −0.16 mm d−1 cent−1, which is significant at a 95% confidence level. This decreasing
magnitude is close to the ensemble mean of the 32 models. In the hist-aer experiment,
anthropogenic aerosols would decrease the ET with a trend of −0.36 mm d−1 cent−1, while
it is partially compensated by the influence of greenhouse gases (+0.17 mm d−1 cent−1).
The sum of the impacts from individual forcing is −0.19 mm d−1 cent−1, close to the results
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from the historical simulation of the 15 DAMIP models. It suggests that the long-term
change in ET during 1950–2014 could mainly attribute to anthropogenic aerosol and GHG
forcings. In the next sections, we will focus on how aerosols and GHGs affect ET through
different physical processes.
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trends, which are significant at a 95% confidence level.The red dashed lines present the Asian
monsoon region.

Figure 2 shows the spatial patterns of the ET trends from the ensemble mean of histor-
ical, hist-aer, and hist-GHG experiments of the five DAMIP models. The corresponding
trend patterns from the ensemble mean of all 15 DAMIP models are similar to the 5 models.
The historical experiment shows a decrease in ET over the majority of the Asian monsoon
region, with a weaker increase over the northwestern boundary of the monsoon region.
This decrease is dominated by the contribution from anthropogenic aerosols (Figure 2b). In
particular, a large negative ET trend covers the Indochina Peninsula and the majority of East
Asia. In contrast, GHGs could increase the ET over the entire Asian continent, leading to a
weaker increase in ET over the northwest boundary monsoon region (Figure 2c). According
to Equation (1), the trend in the ET is attributable to the changes in precipitation, net surface
irradiance, surface temperature, vapor pressure deficit, and 2 m wind speed. Thus, we can
understand the trends in ET from changes in those climate factors.

Figure 3 compares the changes in ET and its component variables from the historical
simulation. From 1950 to 2014, the decrease in ET over the majority of the Asian mon-
soon region is consistent with the reduction in precipitation and net surface irradiance
(Figure 3a–c). There is a notable decrease in precipitation over the Indochina Peninsula and
southeast China (Figure 3b). The net surface irradiance is apparently decreased over the
entire monsoon region, indicating less surface energy for ET (Figure 3c). On the other hand,
the surface temperature increased during the period 1950–2014, when there was positive
radiative forcing from GHGs (Figure 3d). The increases in the surface temperature poten-
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tially increase the ET, thus competing with the impacts from precipitation and radiation.
The changes in the vapor pressure deficit and the 2 m wind speed are relatively weak, with
some regional features (Figure 3e,f).
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To understand the primary processes responsible for the decrease in ET during the
1950–2014 period under full anthropogenic forcing, Figure 4 illustrates the contribution
of each factor to the ET trend. The decrease in net surface irradiance reduces the ET
over the entire Asian monsoon region, especially over the Indochina Peninsula and South
China (Figure 4c). Thus, the dry surface over the Indochina Peninsula and South China
is mainly attributable to the lack of net surface irradiance (Figure 4a,c). The contribution
of precipitation shows increases in the ET over the Indian subcontinent, but it decreases
over the majority of East Asia (Figure 4b). It suggests that the pattern of the ET change may
be partially affected by precipitation. The increase in the vapor pressure deficit causes an
increase in the ET over the Indochina Peninsula, which partially mitigates the impact of net
surface irradiance. The changes in wind speed and surface temperature would increase
the ET over the northern boundary of the monsoon region, while their contributions are
relatively weaker compared with that from radiation and precipitation. Figure 5 quantified
the contribution of individual factors. Among the five factors, the net surface irradiance is
the dominant source of ET in terms of magnitude in the historical experiment (red bars in
Figure 5). The vapor pressure deficit has a minor role. The contributions from precipitation,
wind speed, and surface temperature have limited contributions to the areal-averaged ET,
but precipitation plays some role in the ET pattern change. The above analysis suggests that
the decrease in ET may mainly be attributable to the reduction in net surface irradiance and
the change in precipitation. The changes in net surface irradiance and precipitation can be
understood from the impacts of anthropogenic aerosols and GHGs, respectively (Figure 5).
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4. The Roles of Anthropocentric Aerosols and GHGs

We further demonstrate how individual anthropogenic forcings, namely aerosol and
GHG forcings, would change the ET and its components, especially the net surface radiation
and precipitation. The impacts from aerosols are illustrated in Figure 6 with the data from
the hist-aer experiment. An apparent decrease in ET is seen over the entire Asian monsoon
region, especially over South China and the Indochina Peninsula. In 1950–2014, the changes
in the net surface radiation, precipitation, surface temperature, vapor pressure deficit,
and surface wind speed all consistently show negative trends, resulting in a reduction in
ET (Figure 6). It is of interest to note that the reduction in net surface radiation due to
aerosols largely explains the corresponding change in the historical experiment in terms of
magnitude and spatial pattern (Figure 3c). The reduction in precipitation due to aerosols
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dominates the changes over the Indochina Peninsula and southeast China in the historical
experiment (Figures 6b and 3b).
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In terms of the relative contribution of individual factors, the two factors dominate the
reduction in ET under aerosol forcing (Figures 5 and 7). Weakening of the net surface irra-
diance reduces the ET over South China and Indochina Peninsula (Figure 7c). The decrease
in precipitation reduces the ET all over the Asian monsoon region, although this is smaller
than the radiation in magnitude (Figure 7b). The areal-averaged contributions from pre-
cipitation and net surface irradiance are −0.084 mm d−1 cent−1 and −0.21 mm d−1 cent−1,
accounting for about 25% and 62%, respectively, of the total trend (−0.34 mm d−1 cent−1)
(Figure 5). Furthermore, the contributions from the surface temperature, vapor pressure
deficiency, and surface wind speed are only about 2%, 10%, and 2%, respectively (Figure 5).

The analysis in the previous section shows that the reduction in ET in the historical sim-
ulation is largely attributable to the reduction in net surface irradiance (Figure 4). Both the
changes in the ET and the net surface irradiance are dominated by anthropogenic aerosols.
It is natural to ask why and how the aerosols could reduce the net surface irradiance and
the ensuing ET. We diagnosed the changes in net surface irradiance as being attributable
to the longwave and shortwave radiation components. Figure 8 shows the changes in the
net longwave radiation, net shortwave radiation, downward shortwave radiation, and the
pattern of aerosol optical depth at 550 nm. The decomposition shows that the reduction in
downward shortwave radiation could significantly weaken the net shortwave radiation
and the ensuing net surface energy for ET (Figure 8a–c). The downward shortwave radi-
ation is decreased by 25.2 W m−2 cent−1 over the Asian monsoon region, which largely
contributes to the reduction in the net shortwave radiation change (−21.9 W m−2 cent−1)
and, thus, the net surface irradiance (−18.5 W m−2 cent−1). As revealed by prior studies,
the aerosol–radiation interaction could influence the surface irradiance. During the period
1950–2014, the increase in aerosol emissions, represented by the AOD increase of 550 nm
(Figure 8d), could scatter and reflect incoming solar radiation, leading to a reduction in the
amount of shortwave radiation reaching the Earth’s surface. As shown in Figure 8d, the
changes in the pattern of AOD resemble the reduction in downward shortwave radiation,
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indicating that the aerosol–radiation interaction plays an important role in the reduction in
surface energy for ET.
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Contrary to the impact of aerosols, GHGs increase the ET. Figure 9 shows that GHGs
increase the precipitation, net surface radiation, surface temperature, vapor pressure deficit,
and surface wind speed over the Asian monsoon region. Given the positive relationship
between the ET and each factor over the high-humidity monsoon region, the increases in
all the factors positively contribute to the enhancement of ET, albeit at different magnitudes.
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As shown in Figure 10, the increase in ET due to GHGs is mainly attributable to the increase
in precipitation over the Indian subcontinent and to the increase in net surface radiation
over East Asia. A minor increase comes from the contribution of the vapor pressure
deficit over the Indochina Peninsula. Quantitatively, the precipitation, radiation, and vapor
pressure deficit account for 44%, 28%, and 22% of the increases in the total ET (Figure 6).
The contributions from the rest of the two factors are negligible.
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The increase in precipitation is attributable to atmospheric moistening due to the
warming of air temperature and the ascending motion of the mid-troposphere. Figure 11
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shows the trends of the vertically integrated atmospheric moisture and vertical pressure
velocity at 500 hPa in the hist-GHG experiment. The positive radiative forcing from GHGs
warms the surface and the atmospheric temperature (Figure 9d), leading to the higher
moisture capability of the atmosphere. Thus, the moisture content is increased in the entire
atmospheric column (Figure 11a), which could enhance precipitation without a change in
monsoon circulation. Additionally, the increase in GHGs warms the land surface more
than the adjacent ocean. It strengthens the land–sea thermal contrast during the summer
season, leading to the enhancement of the ascending motion over the Indian subcontinent
(Figure 11b). It enhances convection and precipitation. Therefore, both thermodynamic
and dynamic processes could increase the precipitation, contributing to the increase in ET
under GHG forcing.
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5. Conclusions

During the 1950–2014 period, significant increases in anthropogenic aerosols and GHG
emissions were observed over the densely populated Asian monsoon region. In this study,
we explored the impacts of the two major anthropogenic forcings, namely aerosol and GHG
forcings, on changes in the ET over monsoonal Asia. Although prior studies emphasized
the importance of remote moisture transport on monsoon precipitation, local hydrological
recycling contributes about half of the precipitation. ET also plays an essential role in
the availability of groundwater for human activity and agricultural productivity. During
the period 1950–2014, 27 out of 32 of the CMIP6 models simulated a decline in ET over
the Asian monsoon region, demonstrating the important role of anthropogenic forcing. It
indicates that the observed increase in ET since the 1980s may mainly originate from the
earth system’s internal modes.

A detailed analysis of the ET reduction in the historical simulation shows that the
reduction in net surface irradiance dominates the negative trend of ET, and a precipitation
change would decrease the ET over the Indochina Peninsula and southeast China while
increasing ET over North India. These two factors dominate the magnitude and pattern of
ET change in the historical simulation. The attribution analysis suggests that anthropogenic
aerosol forcing is the major cause of the weakening in ET in the historical simulation, while
it is only partially compensated by the GHG forcing. The linear addition of the two forcings
explains about 90% of the changes in ET in the historical simulation during the period
1950–2014. It is important to note that the aerosols and GHGs affect ET through different
physical mechanisms; for instance, aerosols dominate surface energy processes, while
GHGs mainly affect the atmospheric moisture for precipitation.

Anthropogenic aerosols influence the ET by modulating the shortwave radiation
reaching the Earth’s surface. The increases in aerosol emissions during 1950–2014 enhance
the reflection and scattering of the downward solar radiation, leading to less solar radiation
reaching the surface. It decreases the net surface irradiance, resulting in a decline in ET
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in 1950–2014. The contribution from precipitation is relatively weaker and only effective
over northwest India and part of North China. In terms of the increase in GHGs, this can
warm the surface and atmosphere column, leading to an increase in the moisture capability
of the atmosphere and contributing to the increase in rainfall over the Asian monsoon
region. GHGs can also enhance the ascending motion over the Indian subcontinent. The
thermodynamic and dynamic effects of GHGs both primarily increase the precipitation
and positively contribute to the ET change. The significant compensation effect of the two
forcings yields the pattern of ET trend in the historical experiment of 1950–2014. The results
from this study suggest that future changes in the land–water cycle may mainly rely on the
aerosol emission policy, rather than the carbon reduction policy.
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