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Abstract: The IMERG data product is an optimal combination of precipitation estimates from the
Global Precipitation Mission (GPM), making use of a variety of data types, primarily data from various
spaceborne passive instruments. Previous versions of the IMERG product have been extensively
validated by comparisons with gauge data and ground-based radars over land. However, IMERG
rain rates, especially sub-daily, over open ocean are less validated due to the scarcity of comparison
data, particularly with the relatively new Version 07. To address this issue, we consider IMERG V07
30-min data acquired in tropical cyclones over open ocean. We perform two tasks. The first is a
straightforward comparison between IMERG precipitation rates and those retrieved from the GPM
Dual-frequency Precipitation Radar (DPR). From this, we find that IMERG and DPR are close at
low rain rates, while, at high rain rates, IMERG tends to be lower than DPR. The second task is the
assessment of IMERG’s ability to represent or detect structures commonly seen in tropical cyclones,
including the annular structure and concentric eyewalls. For this, we operate on IMERG data with
many machine learning algorithms and are able to achieve a 96% classification accuracy, indicating
that IMERG does indeed contain TC structural information.
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1. Introduction

The Integrated Multi-satellite Retrievals for the Global Precipitation Measurement
(GPM) Mission (IMERG) is a global precipitation dataset with products covering various
time scales (30 min, daily, and monthly) [1]. It is an integrated, or merged, product in
that it uses a variety of sources based on the GPM mission [2], as will be described in
more detail in Section 2. IMERG’s spatial and temporal coverage and sampling make
it useful for many types of studies, from local weather events to climate. Because of its
utility, it is important to thoroughly evaluate its accuracy. The review article by Pradhan
et al. [3], which surveyed many articles that evaluate IMERG Versions 03–06, noted that
studies of IMERG data quality over the ocean are much less common than over land.
Our references [4,5] for ocean measurements are included in [3]. Besides these studies,
we have identified a number of other studies that compare IMERG data over the ocean
with other data sources [6–10]. These references describe comparisons with various in
situ measurements, including shipborne gauges, gauges on islands, and measurements by
buoys. Also reported are comparisons with various remotely sensed data. These include
data from shipborne radars and similar rainfall products from spaceborne passive sensors.
The comparison of IMERG with a reanalysis precipitation product is reported in [10].

A brief summary of [3–10] is that IMERG data can qualitatively represent the structure
of rainfall systems, and rain rates can be either over- or underestimated, depending on
the conditions (season, rain type and intensity, and product type and version). Also, the
behavior of IMERG is less understood over open ocean [3] and especially at sub-daily
timescales. To address these knowledge gaps, this study uses observations of rainfall in
tropical cyclones over open ocean to evaluate the half-hourly IMERG V07 product. The
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choice of TCs for IMERG validation is made here due to their being long-lived, having a rel-
atively large size, with heavy rainfall, and often possessing well-defined structures [11–13].
Such structures include concentric eyewalls, initially found in aircraft observations [14] and
now routinely seen using satellite passive microwave data near a 90 GHz frequency [15,16].
This structure occurs during an eyewall replacement cycle (ERC), in which an outer eyewall
forms around the existing eyewall. The old, inner eyewall decays as the new, outer eyewall
strengthens and contracts, resulting in the eventual replacement of the old eyewall [13,14].
As such, they are transient, with both eyewalls visible for as little as a few hours. Likewise,
annular TCs have relatively large eyes with essentially no spiral bands [17–19], showing a
donut-like structure in satellite imagery. This structure seems to be stable, allowing annular
TCs to remain annular, often with a moderate-to-high intensity, for several days. Beyond
the annular structure and concentric eyewalls, more general TC structural characteristics
(e.g., compact structure of intensifying TCs) have been known for years, as evidenced
by work on the use of satellite data for TC intensity characterization, dating back to the
pioneering work of Dvorak [20], and more recent work with both visible/IR and passive
microwave data [21].

Because of the aforementioned characteristics, there are a number of IMERG-related
publications dealing with the precipitation in TC. These typically focus on TCs nearing
or making landfall, where surface radar and rain gauges are often readily available for
comparison with IMERG, e.g., [22–25]. As with the studies mentioned above, these TC-
based studies note both overestimation [22] and underestimation [24] at very high rain
rates. Reference [26] evaluates IMERG for characterizing TCs and [27] compares the IMERG
v06 TC rain rate measurements with those obtained from other satellite products, finding a
significant overestimation of TC rain rate by IMERG.

To use TC data to address the gaps in the knowledge noted above, this study has two
parts, using two distinct types of data. The first part considers a quantitative comparison of
IMERG rain rates with those obtained from the Dual-frequency Precipitation Radar (DPR)
onboard GPM [2]. Although IMERG makes some use of DPR measurements, it is domi-
nated by passive microwave measurements. Persuasive arguments for the “approximate
independence” of IMERG and DPR have been made in the literature and are thoroughly
discussed in [28] and the references therein. The quantitative comparison in the first portion
of the paper uses approximately co-incident and co-located IMERG and DPR TC measure-
ments to evaluate the difference between these two sources. The second portion of the
paper considers the ability of IMERG to distinguish between annular, concentric eyewall,
and intensity/intensification features. The strategy for this task uses machine learning
(ML); the goal is not to develop a practical machine learning algorithm but, rather, to use
existing algorithms to test IMERG’s ability to distinguish the aforementioned structures
in TCs. The next section describes the IMERG and DPR data used for the quantitative
comparisons and the IMERG and ancillary data used for the classification study. The
methods for both parts of the work are also described. Section 3 presents the results for the
cases and for the full datasets for both parts of the work. The last two sections provide the
discussion and conclusions.

2. Data and Methods
2.1. Description of the Data Used

The IMERG data are described in [1]. The main precipitation-related input to IMERG
is the brightness temperature measurements from multiple passive microwave instruments
on various satellites, including the Global Precipitation Measurement (GPM) mission [2].
Additional inputs include passive infrared (IR) from various geostationary satellites, rain
gauge data, and auxiliary information on the surface type, including snow coverage
maps. The passive microwave brightness temperatures are intercalibrated and converted
to surface rain rates. The resulting rain rates are gridded and adjusted via comparison with
the Ku-band swath Combined Radar-Radiometer (CORRA) product from GPM, followed
by adjustments for the known issues with CORRA [29]. This process ties the global passive
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microwave measurements with the GPM active/passive precipitation retrieval, while
another step ties the precipitation estimates to satellite and gauge estimates from the Global
Precipitation Climatology Project [30]. The adjusted, gridded rainfall estimates at half-hour
time increments are then optimally combined with the other inputs by a Kalman filtering
approach. The algorithm for the complete process is described in [31]. Reference [32]
provides additional details on possible effects from using data from multiple sensors,
specifically in relation to landfalling TC precipitation estimates. There are three IMERG
output products. The one used here is Version 07 “Final” and is research quality; the
half-hourly estimates have been further adjusted to match monthly satellite gauge data
prior to product release.

The DPR data used here are the Level 2A DPR V07. This product contains profiles
of the rain rate to the surface based on radar observations at the Ku- and Ka-bands [33].
While DPR is well calibrated and should provide accurate reflectivity measurements, there
are likely still uncertainties and biases in the radar-retrieved rain rate [28]. The Level 2
DPR rain rates are instantaneous (with each cross-track scan taking less than one second)
and are provided on the original DPR sampling grid covering a swath of about 220 km.
The DPR spatial sampling and resolution are both about 5 km. In comparison, IMERG
files provide surface rainfall in mm/h at 0.1◦ grid spacing. This corresponds to a spatial
sample spacing of about 11 km; the effective spatial resolution of IMERG over the ocean is
estimated at 10–20 km [34].

The IMERG and DPR data provide the data used in the quantitative rain rate com-
parisons. For the TC structure classification study, we use IMERG precipitation data and
ancillary information about the TC structure. For the North Atlantic and Eastern North
Pacific hurricanes, we rely on information provided in the National Hurricane Center
(NHC) Tropical Cyclone Reports. These provide track and intensity information, as well
comments on features, including concentric eyewalls and annular structure. For other
ocean basins, location and intensity are available from the Joint Typhoon Warning Center
best track data and from IBTrACS. However, these datasets do not include information on
the storm structure. For TCs in these basins, the best data source for determining what
structural features may have existed at different times within a given storm is the ARCHER
TC product [35]. Wikipedia also has descriptions of TC structures that supplement the
ARCHER results. Access to the IMERG, DPR, and all of the TC ancillary data is described
in the section “Data Availability”.

A total of 72 TCs were chosen for this study. All reached at least Category 3 on the
Saffir–Simpson scale at some point in their lifetime. However, additional criteria were
added, depending on whether the TC is used for rain rate comparison, classification, or
both. The simplest case is the quantitative comparison only. In this case, we compare a DPR
“snapshot” of the TC with the IMERG product at the time closest to the DPR overpass. The
challenge is finding cases in which the TC is covered by the rather narrow DPR swath. For
this, we use the JAXA/EORC Tropical Cyclone Database (also listed in “Data Availability”).
This site provides all GPM overpasses of global TCs and allows us to find radar overpasses
that include the TC center. To find a moderate number of cases, the TC intensity at the
time of the overpass, in some cases, is less than Category 3, although all storms were well
organized, having a distinct center with the eye visible, especially in the DPR data. For
each selected overpass, we download the DPR data product and the closest in time IMERG
product; only these two files are needed. In practice, we also download the surrounding
IMERG files, since we see moderate variability in the rain rates from one file to the next for
the same TC. This allows testing the effects of averaging of the data in time.

More time-consuming is the selection of cases for the classification study. Using the
various ancillary data mentioned above, we identify good candidates for various structures.
TCs displaying various structures over their lifetimes are especially good candidates,
since a single such TC generates training data for multiple classes. Such features are
often correlated with the TC having at least Category 3 intensity. We then download
the corresponding IMERG images (one per file) for the times in which various features
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occurred; for each selected TC, this is typically 100–200 IMERG files. Appendix A lists all
the TCs used in this study, noting which are used for the DPR comparison, which are used
for the classification study, and which are used for both. These are, respectively, labeled
“D”, “C”, or “B” in the “Analysis” column in the TC table in Appendix A. This table also
lists the start time for classification and the observation hours, which is one-half the number
of 30-min files used for each TC.

2.2. Methods for Quantitative Comparison of the Rain Rates

This subsection describes how we compare DPR and IMERG data. Since the DPR
sampling is irregular, roughly spaced at 0.05◦, we create a grid with finer (0.01◦) spacing.
We then interpolate both the DPR data and the IMERG data to this same grid. In the process,
we also convolve the DPR data with a smoothing function to degrade its resolution to
approximately match IMERG. Based on [34], a resolution of 20 km is chosen for DPR. This
is done to avoid artificially higher rates for DPR due to a better resolution, which would
be an unfair comparison. Given the strong horizontal motion in TCs, even a few minutes
of difference between the IMERG and DPR observations could cause a mismatch. Hence,
additional alignment of the two datasets is performed by shifting and rotating the DPR
data so as to minimize the root mean square difference in the rain rates. Once the IMERG
and DPR data are aligned, we perform multiple surface rain rate comparisons.

First, we directly difference the two datasets over the 0.01◦ two-dimensional grid.
From this, we compute the maximum, mean, standard deviation, and percentiles of the
differences. Second, we compute the azimuth-averaged rain rate (AARR) as a function
of the radius for each dataset by using concentric rings (annuli). The AARR is defined as
the average DPR or IMERG rain rate in each ring out to a radius of about 180 km from
the center. There are 80 radii sampled, with a spacing of 0.02◦ (2.2 km). The width of each
ring is 0.035◦ or about 4 km. Hence, our sample interval in the radius is smaller than the
radial resolution, implying that our rings overlap. Such is always desired for any type of
sampling. The AARR is used in, for example, refs. [36,37]; the peak AARR, in most cases, is
located near the TC center and is probably indicative of the average rain rate in the eyewall,
since this is usually the location of the heaviest rain. Where the peak rain rate in the TC
could be 100 mm/h in a very small area, azimuth averaging gives much lower maximum
rain rates, e.g., 20 mm/h. Prior to computing the AARR, we manually inspect each dataset
to find the best center relative to any azimuthally symmetric rain structures. This minimizes
the variation within the rings used for the AARR. Once the AARR is calculated, we find
the difference of the AARR at each radius. From this, we again compute the maximum,
mean, standard deviation, and percentiles of the differences. In Section 3, Results, we
illustrate these calculations on a single case and then provide statistics over all 50 TCs with
simultaneous IMERG and DPR coverage. The methodology just described is summarized
as the upper workflow in Figure 1.

2.3. Methods for Evaluation of IMERG Feature Classification Ability

This subsection describes the methodology for assessing IMERG’s ability to detect
various TC structures. We begin by describing the structures that we attempt to detect
in IMERG data. These classes, or structures, are “nominal” (0), “concentric eyewalls” (1),
“annular” (2), and “intensifying” (3). Class 0, or nominal, is essentially a null class in which
none of the features characteristic of classes 1–3 are present. These would include TCs
that have reached peak intensity or are weakening but still major TCs. Class 1, concentric
eyewalls, is a transient feature but relatively common in higher-category TCs. Class 2,
annular, is a much rarer occurrence, with only a small number occurring globally over a
few years. The intensifying classification (3) is for TCs intensifying based on best track
data. While TCs undergoing rapid intensification are of particular interest, we use the term
“intensifying” to denote storms with rapid or moderate intensification, typically having
a compact structure, with the most intense convection very close to the center [20]. Most
cases for Class 3 are TCs intensifying to Category 4 or 5 on the Saffir–Simpson scale.
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Figure 1. Flow chart of both analysis tasks completed in this paper. The DPR comparison is the upper
part of the chart, while the process of doing the ML classification of IMERG only is illustrated in the
lower part.

Figure 1, lower workflow, shows the steps in performing the assessment of the TC
structural information available within the IMERG surface rain rate data. The first step in
processing a particular TC, after downloading all the IMERG files, is to enter the best track
6-h locations in a database. The processing code uses these positions to find the center of
the TC at each time over the period to be examined (typically, 1–4 days). These locations
are then manually modified by stepping through the data for each storm and checking the
reported position versus that visible in the corresponding IMERG images. Adjustments
are performed to center any azimuthally symmetric rain structure. The 6-h positions are
interpolated to obtain the estimate of the center at the time of the file being processed.
The IMERG rain rates are interpolated to an 0.01◦ grid. The statistics of the rain rate are
calculated within concentric annuli, or rings, around the TC center in the same manner and
with the same parameters as for the DPR comparison. Using the ancillary data, we assign a
classification of 0–3 at each 6-h TC position. For times between these 6-h values, we used
the classification of the nearest neighbor in time. Optionally, averaging of radials over time
can be performed. These steps for processing each TC require several hours, which is why
only 35 TCs are chosen for the classification task. For this task, the more important number
is the total number of TC observations—in this case, more than 3500.

The output of the preceding steps is a file for each TC containing the radial profiles of
the rain rate for each IMERG file. With a radial resolution of 2 km, there are rain rates at
each of 80 radii out to 180 km. The number of radial profiles for a given TC is the number of
half-hourly IMERG files analyzed for that TC (chosen based on the duration of interesting
features). Once the files for all TCs are generated, the analysis proceeds by merging them
into a single array, which has 80 radii times the total number of IMERG files used for all
TCs. This is because each radial profile corresponds to one 30-min IMERG file. The merged
radials array also contains the class (0–3) for each radial profile. At this point, the time
correlation between observations within the same storm is ignored. Each 80-element radial
vector, with its class, becomes a training vector for a ML algorithm. To test IMERG’s ability
to properly represent the aforementioned structures in TCs, we apply various statistical
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and ML-based supervised classification algorithms, seeing how well they can learn the TC
structures (class) from the IMERG data.

The software used for exploring the relationships between the radial profiles and
classification [38,39] has numerous ML classification methods, including K-nearest neighbor
(KNN), linear discriminant analysis (LDA), support vector machine (SVM), and neural
networks (NN). These methods are summarized in [38,39] and are further described in,
e.g., [40,41]. The KNN classifier has a long history of use for these types of problems.
Briefly, for a given input vector, KNN computes the distance from the input to each training
vector. It then looks at the classes of the K neighbors with the smallest distances and assigns
the class most represented in these neighbors. In the case of K = 1, it simply classifies the
input as that of the closest neighbor. The LDA also has a long history; it is found as an
optimization problem using classical statistical detection theory. Specifically, it finds the
best linear filter that separates the class boundaries. The SVM is a kernel-based method;
as such, it tries to map the LDA problem into a higher-dimensional space, where better
class boundaries can be found. Neural networks are also nonlinear structures with many
parameters. Since the goal here is to assess IMERG for use in sensing the TC structure,
we are much more interested in the accuracy of the best technique; more details on the
workings of the methods can be found in the references. Regarding training of the machine
learning algorithm, there are various approaches. The main approach used here is a five-
fold cross-validation. This is recommended for smaller datasets, since it makes use of all
the data by partitioning it into five disjoint sets (folds) and training using four of the five
folds, with the fifth fold being used for validation. This is repeated using each fold for
validation, with the remaining four for training. The reason for such an approach is to
prevent overfitting of the data (fitting to signal and noise). We also use a simpler method,
called holdout validation, which trains with two-thirds of the supplied data and then tests
on the remaining one-third.

3. Results

This section follows the order of Section 2, first describing the results from the DPR
and IMERG comparison, then moving to the ML-based assessment of IMERG’s ability
to capture TC structures. The results for each task are broken into two subsections, first
showing examples or case studies, then describing results for the full sets of data for each
task. Hence, we have the IMERG and DPR case studies in Section 3.1 and the overall
statistics in Section 3.2. For the ML-based evaluation of IMERG, Section 3.3 examines
example images and profiles, and Section 3.4 discusses the results using all TCs selected for
the ML task.

3.1. Case Comparisons of DPR and IMERG Data

The methodology for comparing DPR and IMERG data, described in Section 2, is
applied to all 50 TCs chosen for this purpose. These are identified in Appendix A by the
letter “D” or “B” in the “Analysis” column. This subsection reports comparisons for the
three TCs. These cases are chosen as representative of IMERG rain rates seen over all
of the DPR comparison TCs, namely, the severe underestimation of IMERG relative to
DPR, small underestimation, and small-to-moderate overestimation. Figure 2 shows the
first case, TC Surigae, with the IMERG and DPR surface rain rates shown in Figure 2a,b.
Various statistics of TC Surigae and the other two TCs are listed in Table 1. One can see
that the DPR data show a much higher rain rate near the TC center than IMERG at the
same location (Table 1, “Max RR IMERG” and “Max RR DPR”). The difference in the rain
rates (IMERG-DPR) is shown in Figure 2c; there are both positive and negative differences
distributed over the area, but the negative differenced are especially large in the dark ring
surrounding the center. The intense rain near the TC center is evident in the AARR plots in
Figure 2d, where IMERG is much smaller than DPR near a radial distance of 50 km. IMERG
is then larger out to about a 90 km radius, with the two being very close beyond 90 km.
When the 2D difference between IMERG and DPR is averaged over a disk with radius of
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about 180 km (1.6 degrees of latitude or longitude), the mean difference is about −4 mm/h
(the mean IMERG is smaller than the mean DPR by 4 mm/h, as shown in the second and
third columns of Table 1). It is clear that the IMERG/DPR difference does not approach a
constant bias but depends on the location within the TC and probably the rainfall intensity.
The standard deviation of the IMERG-DPR difference over the 2D domain provides an
estimate of the fluctuation of the difference. If the difference was the same in all the pixels,
the standard deviation would be zero. In the case of Surigae, it is 28 mm/h; normalized by
the mean rain rate of 34.9, we get a ratio of 0.82, larger than that for the other two cases, to
be discussed next.
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Figure 2. IMERG and DPR data for TC Surigae 2021 02W 04181507 (format mmddhhmm). (a) IMERG
surface rain rate (mm/h). (b) DPR rain rate. (c) IMERG minus the DPR rain rate. (d) Plots of AARR
using IMERG and DPR data. Time is the UTC time of the DPR overpass.

Table 1. Rainfall statistics for the three example TCs. Values are rain rates in mm/h. RR indicates
rain rate in the 2D data. AARR is the azimuthally averaged rain rate.

TC Name IMERG RR Mean DPR RR Mean Std Dev RR
Diff

IMERG RR
Maximum

DPR RR
Maximum

IMERG AARR
Maximum

DPR AARR
Maximum

Surigae 30.9 34.9 28.4 63.2 173.5 41.3 78.7

Bolaven 10.8 8.6 6.2 46.5 73.0 37.8 47.0

Dorian 10.4 7.5 3.6 29.6 30.7 19.2 15.1

Figure 3 provides the same information but for TC Bolaven. When comparing means
over the 180-km radius disk, the IMERG rain rate actually exceeds that of DPR by 2 mm/h,
as can be seen for TC Bolaven in Table 1. This is consistent with the difference image in
Figure 3c; much of the TC has a small difference. The areas in which IMERG is lower
(blue) show a somewhat axisymmetric pattern. Yellow areas, indicating IMERG is greater
than DPR, are scattered over the storm, with notable areas at the eye and in a strong rain
band to the south of the eye (between 19 and 20 latitude and near 143 longitude). That the
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differences are more uniform than Surigae is confirmed by the standard deviation; dividing
Bolaven’s standard deviation by its mean gives a ratio of 0.72. Figure 3d shows that the
AARR for both products have very similar radial patterns but with DPR higher near the
TC center and the band out at radial distance 110 km, i.e., the regions with the heaviest
precipitation. Figure 4 shows the case of TC Dorian, which represents an overestimation of
the rain rate almost everywhere, except for a small area near the TC center (Figure 4c). The
AARRs in Figure 4d show that IMERG is larger at all radii. When comparing means over
the 180-km radius disk, the IMERG rain rate exceeds that of DPR by 4 mm/h. This TC has
generally lower rain rates than either Surigae or Bolaven. Dorian has the smallest standard
deviation normalized by the mean, namely 0.48.
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Figure 3. Same as Figure 2 but for TC Bolaven 2023 15W 10112342. (a) IMERG surface rain rate
(mm/h). (b) DPR rain rate. (c) IMERG minus the DPR rain rate. (d) Plots of AARR using IMERG and
DPR data. Time is the UTC time of the DPR overpass.

3.2. Statistics of DPR and IMERG Comparison Data

Table 2 provides the results for all the TCs. The first column is the mean IMERG-DPR
difference. Both the AARR and the 2D rain rate difference (“mean”) are negative by about
0.5 mm/h, indicating a relatively small negative bias of IMERG relative to DPR over the
TC. However, both have rather large RMS differences, indicating that the difference of
IMERG-DPR can have large fluctuations. The next three columns provide the statistics of
the mean of each TC, e.g., using the first row, 10% of the TCs have mean differences less
than −4.82 mm/h and 90% have means less than 3.98 mm/h. The second row provides the
same statistics but on the AARR averaged over the radius. The last two rows show results
for AARR over the radial distance, first for all radial distances less than 70 km and then for
all radial distances greater than 70 km. These last two rows are useful in identifying where
the differences occur. The larger underestimations by IMERG are at the smaller radii. We
also checked the correlation between the DPR rain rate and measures of the IMERG-DPR
difference. For the latter, we use both the signed difference in mm/h and the percentage
difference, in which we divide the difference by the DPR rain rate and multiply by 100
to convert to percentage difference. In either case, we find that the DPR rain rate and the
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IMERG-DPR difference are negatively correlated at the p = 0.05 significance level, indicating
larger underestimation in the IMERG product at higher DPR rain rates. This is true whether
we use the 2D rain rate (RR) or the radial AARR data; the correlation coefficients are −0.7
for AARR and −0.8 for RR. While all of the above results are based on comparing the DPR
data with a single IMERG file, we also tested whether averaging three IMERG files might
improve the agreement with DPR. However, the results were essentially unchanged.
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Table 2. Comparison of the results on TC precipitation and results obtained here. AARR is the
azimuthally averaged rainfall rate.

Mean Std Dev 10th% 50th% 90th%

2D RR difference stats: −1.1 15.2 −5.5 −1.0 3.2

AARR difference stats: 0.1 6.4 −3.3 −0.1 3.5

AARR diff (r < 70 km): −1.7 9.3 −14.0 0.1 6.8

AARR diff (r > 70 km): 1.2 4.2 −3.2 1.3 5.6

3.3. Examples of IMERG Data for Different TC Classes

The results here are based on the radial observations from all TCs chosen for this part
of the study and listed in Appendix A (with “C” or “B” in the “Analysis” column). Before
using ML algorithms, we examine several examples of the different TC classes described
in Section 2 (classes 0–3). Figure 5 shows four IMERG images, corresponding to different
classes. Figure 5a is TC Olivia, which did not show any of the features associated with
classes 1–3 and so is classed as 0. Olivia had completed an eyewall replacement cycle on
the day before the observation in Figure 5 but had not yet started intensifying. A radial
plot of AARR for TC Olivia is shown in Figure 6a, along with plots for three other TCs,
also classed as 0. Figure 5b shows TC Isabel, which was captured in the middle of an
eyewall replacement. Concentric eyewalls are readily visible. The AARR for Isabel and
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three other TCs with concentric eyewalls are shown Figure 6b; the eyewalls are visible as
maxima in the plots. These are particularly distinct in the plot for TC Frances. Figure 5c
shows TC Larry, which had an annular structure (class 2) at the time of observation. As
with the observations in vis/IR satellite imagery, the storm center is a large area of light or
no rainfall. All four annular TCs in Figure 6c have similar radial profiles of AARR. Finally,
the IMERG data for intensifying TCs (class 3) are shown in Figures 5d and 6d. The image
in Figure 5d has a small eye with relatively high rain rates around it. The plots in Figure 6d
all show a steadily increasing rain rate toward the center, although the plot for TC Barbara
peaks at radius 30 km, then drops and increases again toward the center.
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3.4. IMERG Ability to Detect a TC Structure

The set of available ML-based classifiers, described in Section 2, we ran on all 3543 radial
profiles of AARR, derived from the 35 TCs listed in Appendix A. Of this total number of
profiles, the number for each class is (0) 1106, (1) 890, (2) 527, and (3) 1020. The results for
all classifiers showed that the K-nearest neighbor (KNN) classifier with only one nearest
neighbor (K = 1) has the highest classification accuracy. However, using KNN on radial
profiles with no time averaging yielded a 66% accuracy. When averaging three samples,
the accuracy jumps to 84%, and it increases to 89% with five samples. Using seven samples
(i.e., averaging the data over 3 h) further improves the accuracy to 92%. The accuracy
continues to improve with more averaging, plateauing at about 96% with 6 h averaging.
More averaging can remove features and reduce accuracy. While the KNN method shows
the best performance, the support vector machine (SVM) approach shows results with an
accuracy of only a few percent lower than KNN. Figure 7 shows the classification accuracy
matrix from the 6-h averaging run of KNN with K = 1. The left portion of the image shows
the percentage of samples in each square of the matrix, where the horizontal axis is the
predicted class of each column and the vertical axis is the true class for each row. Squares
on the diagonal have the same predicted and true class, whereas all other squares are
erroneous. The two-column matrix at the right is showing the true positive rate and false
negative rate for each class; the former is the probability of correctly classifying a given
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observation, while the latter is the probability of an error. The accuracy just discussed is
based on cross-validation, described in Section 2.3. The simpler holdout validation, using
two-thirds of the data for training and one-third for testing, gave 95% accuracy on the test
data versus the 96% found from cross-validation.
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Figure 6. Example radial plots for 4 TCs in each class. The date and time are given in mmddhhmm
format after each name and number. (a) Class 0, Olivia 2018 17E 09060600, Longwang 2005 19W
09291200, Hector 2018 10E 08070530, Champi 2018 25W 07090600. (b) Class 1, Marie 2014 13E
08251800, Isabel 2003 13L 09111800, Frances 2004 06L 09010700, Maria 10W 2018 07090600, (c) class
2, Linda 2021 12E 08150800, Larry 2021 12L 09060000, Noru 07W 2017 08021800, Surigae 2021 02W
04201800, and (d) class 3, Barbara 2019 02E 07030000, Irma 2017 11L 09050000, Goni 2020 22W
10311200, Chanthu 2021 19W 09071200.
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4. Discussion

The results in Sections 3.1 and 3.2 can be summarized by the statement that the IMERG
rain rates in TCs over the ocean can be smaller or larger than the nearly simultaneous and
co-located rain rates retrieved from the DPR radar data. However, IMERG underestimation
appears more common; furthermore, the correlation results indicate that it is more severe,
both in absolute units and in percentage, at the highest DPR rain rates. As was briefly
noted in the Introduction, both the overestimation and underestimation of very high rain
rates have been reported. However, underestimation at very high rain rates appears more
common in the literature [3] and is the finding here. We believe that the results here are the
first reported for V07. Before concluding that all of the differences reported here are due to
IMERG, we note that DPR has its own error sources, as described in [28]. We also note that
DPR has a much higher spatial resolution than IMERG. We compensated by smoothing the
DPR data to obtain a resolution that should be similar to IMERG. Nevertheless, it is possible
that some of the differences seen here could be due to resolution differences, depending on
which input data dominate the IMERG product at the time used [32].

The results in Sections 3.3 and 3.4 show that radial profiles of AARR can detect various
TC features or structures. The ML-based test results yielded a good classification accuracy
of 96% overall, while the features detected in IMERG data are often better seen in other
data, such as concentric eyewalls in 90 GHz radiometer data. However, IMERG has the
advantage of being produced every 30 min and so may be useful for some TC studies.

5. Conclusions

We used knowledge of the structure and rain rate characteristics of tropical cyclones
over open ocean to evaluate the GPM IMERG data product. To carry out this evaluation,
we did comparisons with nearly simultaneous and co-located measurements by the GPM
radar (DPR) and by applying machine learning to assess IMERG’s ability to detect known
tropical cyclone (TC) structures. Based on these comparisons, we note the following:

• Comparisons with the surface rain rates from the GPM DPR show a tendency of
IMERG to underestimate the rain rate relative to the radar. Furthermore, the tendency
increases with the increasing rain rate.

• Concentric eyewalls, annular structure, and structure associated with intensifying TCs
can be distinguished in the IMERG radial profiles of the azimuth mean rain rate but
require temporal averaging over several hours.
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Appendix A

This appendix lists the characteristics for all 72 tropical cyclones used in this study in
Table A1, ordered by year of occurrence, starting with the earliest. The ocean basin can be
determined from the tropical cyclone number (TCN), where L = North Atlantic, E = Eastern
North Pacific, W = Western North Pacific, C = Central North Pacific, P = South Pacific, and
S = South Indian Ocean. The analysis can be D = DPR comparison, C = classification, or
B = both. For analysis D or C only, there is one time, either the DPR overpass time for D or
the start time of the C analysis. For the TCs used for both D and C, there are two times, the
start time for C and the overpass for D. The “Obs” column contains the number of hours
processed for a given TC used for the C analysis. For D only, this column is blank. The
“Class” column lists the TC structure classes during the observation time; this is blank for
DPR comparison TCs (Analysis D).

Table A1. Information for all tropical cyclones used in this study.

Name TCN Year Analysis Date
(mmdd)

Time
(hhmm)

Obs
Hours

DPR Time
(mmddhhmm) Class

Isabel 13L 2003 C 0911 1200 67 3,0,1,2
Frances 06L 2004 C 0830 0000 91 1,3,1,0,1
Longwang 19W 2005 C 0928 0000 96 0,1,0,2
Sinlaku 15W 2008 C 0910 1200 67 3,0,1,0
Rammasun 09W 2014 D 07171732
Halong 11W 2014 D 08021127
Iselle 09E 2014 C 0803 1800 25 0,1,2,0
Marie 13E 2014 C 0824 1200 36 3,1
Vongfong 19W 2014 D 10071618
Gonzalo 08L 2014 B 1014 1800 55 10161342 0,1,3,1,0

Eunice 09S 2015 D 01292314
Pam 17P 2015 D 03140352
Soudelor 13W 2015 D 08051052
Jimena 13E 2015 D 09011011
Patricia 20E 2015 C 1022 1200 30 3,2
Dujuan 21W 2015 C 0926 1200 36 0,3,2,0
Champi 25W 2015 C 1018 0600 103 3,0,2
Matthew 14L 2016 C 1006 0600 36 0,1,0
Noru 07W 2017 B 0730 1800 79 07251417 3,0,2
Irma 11L 2017 B 0903 1800 55 09051651 0,1,3,0

Maria 15L 2017 C 0919 1200 18 3,0,1,0
Lan 25W 2017 B 1019 1200 57 10220356 3,2
Willa 24E 2018 C 1021 1800 24 3,0,1
Florence 06L 2018 C 0910 1200 48 3,1,3,1,0
Michael 14L 2018 C 1010 0000 19 3,0
Hector 10E 2018 C 0806 1200 67 3,0,3,0
Olivia 17E 2018 C 0905 1800 36 1,0,3,2
Maria 10W 2018 C 0705 1800 97
Walaka 01C 2018 D 10021829
Yutu 31W 2018 B 1023 1200 85 10241507 3,1,0,2

Alcide 03S 2018 D 11081559
Cilida 07S 2018 D 12231526
Funani 12S 2019 D 02061254
Wutip 02W 2019 B 0223 0000 67 02251423 3,1,0,3
Haleh 17S 2019 D 03041747
Barbara 02E 2019 C 0702 1200 18 0,3,0
Dorian 05L 2019 B 0831 0000 43 08302132
Kiko 13E 2019 D 09191954
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Table A1. Cont.

Name TCN Year Analysis Date
(mmdd)

Time
(hhmm)

Obs
Hours

DPR Time
(mmddhhmm) Class

Lorenzo 13L 2019 C 1027 1200 30 0,1,0
Damien 14S 2020 D 02062222

Douglas 08E 2020 D 07250229
Haishen 11W 2020 B 0904 1800 18 09050908 0,1
Marie 18E 2020 D 10011744
Goni 22W 2020 C 1030 1200 30 3
Faraji 19S 2021 D 02080232
Habana 24S 2021 D 03061854
Surigae 02W 2021 B 0416 1200 108 04181507 3,1,0,2
Linda 12E 2021 B 0814 0000 46 08150742 0,1,2
Larry 12L 2021 B 0903 0600 85 09041001 0,2
Chanthu 19W 2021 B 0907 0600 11 09070805 3

Mindulle 20W 2021 D 09291455
Sam 18L 2021 D 10011344
Nyatoh 27W 2021 D 12030609
Dovi 11P 2022 D 02110939
Emnati 13S 2022 D 02200054
Halima 22S 2022 D 03251404
Darby 05E 2022 D 07132041
Hinnamnor 12W 2022 C 0830 0000 14 3,1
Earl 06L 2022 D 09092318
Muifa 14W 2022 D 09112032

Nanmadol 16W 2022 D 09160800
Fiona 07L 2022 D 09230534
Darian 05S 2022 D 12231813
Freddy 11S 2023 D 02150231
Kevin 16P 2023 D 03031619
Mawar 02W 2023 B 0525 2200 13 05260549 1,0
Calvin 03E 2023 D 07150848
Doksuri 05W 2023 D 07241317
Jova 11E 2023 D 09080307
Lee 13L 2023 C 0910 1800 61 3,1,0,1,0
Bolaven 15W 2023 D 10112342
Lola 01P 2023 D 10231936
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