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Abstract: With the continuous maturity of hyperspectral remote sensing imaging technology, it has
been widely adopted by scholars to improve the performance of feature classification. However, due
to the challenges in acquiring hyperspectral images and producing training samples, the limited
training sample is a common problem that researchers often face. Furthermore, efficient algorithms
are necessary to excavate the spatial and spectral information from these images, and then, make
full use of this information with limited training samples. To solve this problem, a novel two-branch
deep learning network model is proposed for extracting hyperspectral remote sensing features in this
paper. In this model, one branch focuses on extracting spectral features using multi-scale convolution
and a normalization-based attention module, while the other branch captures spatial features through
small-scale dilation convolution and Euclidean Similarity Attention. Subsequently, pooling and
layering techniques are employed to further extract abstract features after feature fusion. In the
experiments conducted on two public datasets, namely, IP and UP, as well as our own labeled dataset,
namely, YRE, the proposed DMAN achieves the best classification results, with overall accuracies of
96.74%, 97.4%, and 98.08%, respectively. Compared to the sub-optimal state-of-the-art methods, the
overall accuracies are improved by 1.05, 0.42, and 0.51 percentage points, respectively. The advantage
of this network structure is particularly evident in unbalanced sample environments. Additionally, we
introduce a new strategy based on the RPNet, which utilizes a small number of principal components
for feature classification after dimensionality reduction. The results demonstrate its effectiveness in
uncovering compressed feature information, with an overall accuracy improvement of 0.68 percentage
points. Consequently, our model helps mitigate the impact of data scarcity on model performance,
thereby contributing positively to the advancement of hyperspectral remote sensing technology in
practical applications.

Keywords: deep learning; two-branch network; feature classification; hyperspectral remote sensing;
small-sample problem; Yellow River Estuary wetland

1. Introduction

Hyperspectral remote sensing technology records both spectral and spatial data of the
observed material in the form of hyperspectral images (HSIs), which contain rich informa-
tion in narrow spectral bands, making the study of HSIs of great interest. It has thus been
widely used in mineral surveys [1], agricultural evaluations [2], and urban and industrial
infrastructure surveys [3]. However, despite the comprehensive number of features in HSIs,
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their high dimensionality and nonlinearity are still quite challenging [4], and there is a need
to provide effective dimensionality reduction and feature extraction methods. In addition,
the problem of small sample sizes due to the difficulty of feature labeling likewise makes it
a limitation in method selection. Thus, the attack and breakthrough of the difficulties of
HSI data are of great significance to the research in the field.

Among the different aspects of HSIs, classification is one of the most researched
tasks [5]. HSI classification, as a pixel-level classification task, can be classified into dimen-
sionality reduction utilization and all-band utilization based on the amount of data utilized.
In the early stage of HSI classification research, researchers mainly utilized all spectral
feature design methods, where pixel vectors are directly classified with classifiers, such
as Support Vector Machine (SVM) [6], Random Forest (RF) [7], and Polynomial Logistic
Regression [8–10], and the features utilized are only shallow features [11,12]. However,
continuous remote sensing band imaging leads to a large amount of redundancy in the
raw spectral information, which poses a higher challenge for the classification task. There-
fore, the combination of dimensionality reduction and feature extraction has been used
to learn more discriminative features. Principal component analysis (PCA), as a typical
dimensionality reduction method, can capture independent information as the principal
components it retains exhibit orthogonal properties. In addition, it effectively reduces the
effect of noise by focusing on the components that explain significant variance in the data.
Therefore, it is widely used in HSIs. Kang et al. introduced the PCA-Based Edge-Preserving
Features (PCA-EPFs) method, which comprehensively captures spatial information and
substantially enhances SVM classification accuracy [13]. However, these machine learning
methods can easily be limited in classification effectiveness due to the lack of fitting ability,
even though they are robust to small-sample problems.

With the increasing maturity of deep learning applications in hyperspectral remote
sensing, numerous deep learning methods have been employed for HSI classification in
recent years, encompassing Deep Belief Neural Networks (DBNs) [14,15], Recurrent Neural
Networks (RNNs) [16–18], Graph Convolutional Networks (GCNs) [19,20], and Convolu-
tional Neural Networks (CNNs) [21–23], among others. Typically inspired by algorithms
and techniques developed in the fields of computer vision and natural language processing,
these methods demonstrate a wide variety of learning processes. Among them, CNNs,
with their simple structural design and high processing efficiency, can be well applied
to HSI classification tasks while achieving high accuracy, resulting in a breakthrough in
the field [24]. For example, to extract both spectral and spatial features simultaneously,
Chen et al. introduced Three-Dimensional CNN (3DCNN) into HSI classification, provid-
ing a new extraction method [25]. Subsequently, Zhong et al. also adopted this form of
convolution, except that they flexibly adjusted the direction of convolution and divided it
into spectral and spatial learning modules in cascade for feature extraction [26]. Gong et al.
proposed that multi-scale convolution enriches the features of the image and integrates
the feature information of interest in the image from a global perspective to achieve good
results [27]. Recognizing the powerful fitting ability of CNNs, researchers began to con-
sciously try to control the model complexity or use data augmentation to expand the
number of samples to change the undesirable sample environment [28–30] to accommodate
small-sample problems. Introducing the idea of separable convolutions is one of the more
notable points in improving model complexity alone [5,31,32], which can be effective in
improving the model complexity problem brought about by the increase in the number of
parameters. From the aspect of improving model complexity, the introduction of separable
convolutions as well as dilated convolutions has helped [5,31,32], while the latter reduces
the depth of the network while achieving a higher sense of the field, realizing parameter
reduction. Several excellent modules have been proposed [33–37], and the lightweight
design they imply, while often losing a bit of accuracy, is still very desirable for reducing
time loss.

In recent years, the Attention Mechanism (AM) has been introduced into the deep
learning network structure, which can help HSIs to further break through the classification
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challenge by assigning weights for the purpose of focusing on the features that affect the
accuracy of the task. Among them, spatial attention, channel attention, spatial channel at-
tention, and self-attention are currently the four most used AMs in HSI classification [38–41].
Scholars have integrated existing attention modules into the classification network of HSIs
to enhance accuracy, but this approach often lacks specificity and may overlook unique
relationships among neighborhood or global features [42,43]. To address this challenge, sev-
eral novel attention mechanisms have begun to emerge, aiming to improve the inefficient
characterization of features [44,45]. Among these, recent research has focused on the center
pixel of HSIs, based on the prevailing input pattern of patch blocks [46,47]. This trend is
driven by the presence of other classes within a block, making it challenging to effectively
utilize or suppress these pixels. In a recent study, Li et al. introduced two self-similar
modules to delve deeper into the spatial relationships guided by the center vectors inside
patches in both input and feature spaces, significantly improving the ability to leverage
information in subsequent feature extraction processes [48].

Although all these methods have obtained good results, the higher retention of the
number of features after dimensionality reduction tends to increase the unnecessary compu-
tation. Utilizing the large amount of feature information contained in the first few principal
components of the PCA dimensionality reduction for classification can theoretically achieve
good results while avoiding excessive computational complexity. The Random Patches Net-
work (RPNet) adopts random patches of the original data for feature extraction, combined
with PCA to retain fewer principal components to reduce the amount of computation [49].
It adopts deep and shallow feature stacking to give it the advantage of being multi-scale,
and it has better adaptability to the HSI classification of different objects, which often have
different scales. Ultimately, it demonstrates higher results than unsupervised dimension-
ality reduction alone, which provides new ideas [50,51]. Deep learning models usually
require many features to achieve better classification results, and the ability to directly
utilize a small number of principal components for classification is limited. Therefore, it
is natural to consider a way to explore the rich information contained in a small number
of principal components, and the RPNet’s stochastic convolution strategy can realize this
very well.

Building on prior work, we introduce a Dual-Branch Embedded Multivariate Attention
Network (DMAN) for HSI classification. This approach addresses the challenges of small
sample sizes, including susceptibility to overfitting and misclassification in unbalanced
environments. To address the issue of reduced bands after dimensionality reduction, we
incorporate a hybrid stochastic convolution module to fully leverage potential information,
enrich category features, and integrate them into the classification network. Recognizing
the significance of feature refinement in multi-classification tasks, our network separately
extracts spectral and spatial information to minimize feature interference [52–54]. Given
the inherent limitations of small-sample problems, the strategic integration of multiple
attention modules ensures a lightweight model that emphasizes critical feature information
and intrinsic pixel connections. The primary contributions of this paper are outlined below.

1. To address the co-existence of insufficient feature extraction and overfitting prob-
lems, the proposed model incorporates multiple multi-scale strategies to enhance the
information captured in each layer and furnish rich features for the fitted samples.
Additionally, attention modules with fewer or even no parameters are integrated at
appropriate locations in the model, facilitating the accurate and efficient identification
of feature types.

2. Building upon the enhancements to the random convolution module, a hybrid random
patch module (HRPM) is introduced. This module empowers the classification model
to sustain high accuracy with fewer principal components. Subsequently, a deep
learning model leveraging this module is proposed for application in classification
problems involving a reduced number of bands after dimensionality reduction.

3. Our proposed DMAN method is validated on two public datasets and our own la-
beled datasets (IN, UP, and YRE, respectively), demonstrating markedly superior
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classification results. In particular, in scenarios of sample scarcity, our method sur-
passes traditional deep learning methods in accuracy, offering robust validation of
its effectiveness.

The rest of this paper is structured as follows. Section 2 specifies the design details of
the DMAN. Section 3 describes the dataset and characteristics used and provides the neces-
sary analysis of the experimental results. Section 4 provides a comprehensive discussion of
the reasons for the advantages of the proposed method based on the experimental results,
as well as the differences and commonalities with the comparative algorithms. Section 5
summarizes the core of the full paper and provides suggestions for future research.

2. Methods

This section provides a detailed description of the structure of the two-branch network
model proposed in this paper, encompassing the hybrid random convolutional module, the
composition of the two branches—spatial and spectral—and the structure of the pyramid
pooling attention. The overall model structure is illustrated in Figure 1.
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2.1. Hybrid Random Patch Model

As mentioned earlier, the RPNet already has good feature extraction capabilities, while
this network and its current improvements are usually used to solve the problem that
neural networks need to be trained, ignoring further research on classification in small-
sample situations. In addition, the RPNet is often used for the classification process in
combination with machine learning algorithms such as SVMs and graph-based learning
methods. Deep learning methods are considered for applications less often, which may
lead to limited classification results. In addition, since it is essentially a 2D convolution
in terms of convolution, the spectral dimension information may not be well preserved.
Moreover, in the application of deep learning methods, a small number of bands after PCA
are retained for classification and are seldom considered by scholars because these bands
are often not suitable for model construction even though they already contain a large
amount of information.

To address the above problems, we designed a Hybrid Random Patch Module (HRPM)
that combines multiple features. It is aimed at improving the extraction of classification
information from fewer spectral features and replaces part of the convolutional layers to
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reduce the computation. It combines shallow and deep convolutional layers and has the
advantage of being multi-scale, which provides better adaptation to the HSI classification
of different objects, often at different scales. This strategy solves the problem of information
loss during hierarchical feature extraction and performs effective learning and inference
at different scales. It is located in the data preprocessing part of the whole classification
process, which can effectively map the original features into a contributing information
flow, fully considering the randomness of spatial and spectral dimensions. The combination
of the HPRM with the classification network can further explore the deep features in a small
number of bands, effectively retain the information that is beneficial to the classification,
and increase the inter-class separability.

As shown in Figure 2, the HRPM adopts a cascade structure containing PCA and con-
structs random patch blocks, a convolution-type selection operation module, and a Rectified
Linear Unit (ReLU), described in detail, as follows. First, PCA is used for dimensionality
reduction, the computational and information component contents are weighed, consider-
ing the depth needed for 3D convolution, and 5 principal components are retained. Then,
the convolution block of k × k × n is randomly selected in the dimensionality-reduced data
cube for convolution operation. For example, the output channel is set to o, the padding is
set to be equivalent to when the operation mode is selected as a 2D convolution, and the
output size is (w, h, and o). When it is a 3D convolution, the output size is (w, h, n, and o),
further reshaping the shape to (w, h, and n*o). Then, it is sent to the next random layer for
convolution. Finally, we stack these feature blocks in the third dimension and feed them to
the classifier for processing.
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Figure 2. The proposed HRPM structure.

2.2. Spectral Branch

The spectral branching structure is shown in Figure 3. The spectral branch convolution
method uses 3D convolution with a convolution kernel shape of 1 × 1 × k, aiming to extract
only spectral features. Specifically, a convolution kernel of size 1 × 1 × 5 with a step size
of 2 is first used to downscale the HRPM-extracted features. Immediately after that, the
data stream is split into two; one part prepares the end-of-branch jump connections to
ensure the smooth gradient conduction and acquisition of global features in the spectral
dimension, and the second part is fed into the multi-scale convolution module, i.e., features
are extracted at smaller scales of 3, 5, and 7 in the channel dimension, respectively, and
padded to ensure that the output size of the feature map remains constant. This operation
obtains rich spectral local feature information while better adapting to various details in
the data. Immediately after splicing at the channel dimension and using convolution to
migrate the feature dimensions to fit the next channel attention operation, the weights
assigned to each feature map are computed and assigned. Finally, the feature mappings
obtained from the previous branches are summed with the main channel.
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2.3. NAM

In order to ensure a lightweight model, the channel attention uses the NAM [55]. This
module does not require additional computational and parametric operations such as full
connectivity, convolution, etc., but calculates the attention weights directly with the help of
the scale factors in the batch normalization, and the whole process is shown in Figure 4
and Equation (1), where, at the beginning, the scale factor Υ is learned through the batch
normalization (BN) of the input features. Based on this, a weight factor ωi = Υi/ ∑j=0 Υj
which represents the proportion of the individual channel scale factors in all the channels, is
calculated. Then, the processed features are multiplied channel by channel with the weight
factor using Equation (1), and finally, after the activation function sigmoid is nonlinearized,
the weight of each channel attention module, Mc, can be obtained, as shown in Equation (1).

Mc = sigmoid(WΥ(BN(F1))) (1)
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The BN process is shown in Equation (2), where µB and σB denote the mean and stan-
dard deviation of each batch, respectively, and β denotes the bias term. The BN layer needs
to compute the mean and variance of all elements in a minibatch input feature, i.e., Bin,
then divide the standard deviation by the subtracted mean, and finally, perform affine
transformation using the learnable parameters γ and β to obtain the final BN output Bout.

Bout = BN(Bin ) = Υ
Bin − µB√

σ2
B + ϵ

+ β (2)

Therefore, the NAM makes clever use of the variability of the information deflation
process, i.e., how much information is embedded in the channel to grasp the corresponding
weights assigned to the channel, a process that is both lightweight and practical at the same
time. The higher the normalized value, the more information the channel has and the more
attention will be given to it for recalibrating the features of the original feature cube at a
faster rate.

2.4. Spatial Branch

Most two-branch networks usually use 3D convolution to extract spatial information
independently on spatial branch extraction, which indeed ensures feature purity in the
spatial dimension. However, often the number of channels of the two branches is artificially
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set to be equal before network fusion. In reality, the degree of contribution of the two
features is often not equal, which is due to the inherent defect of low spatial resolution of
HSIs. To bridge this gap and preserve this network design, our convolution approach uses
2D convolution, which instead aids in spatial branching to extract features because this
convolution utilizes channel feature fusion computation. In this, we take the expansion
of the convolution kernel and pooling to expand the sensory field to make the extracted
information more globally characterized. The spectral branching structure is shown in
Figure 5, and we describe the detailed operation below.
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The spatial branch first compresses the channel using 3D convolution, performs feature
migration, and reshapes it into an applicable 2D convolution shape. Then, it passes through
n consecutive null convolution modules, where the null rate is set to a consecutive natural
number to increase the sensory field while avoiding the mesh effect. Subsequently, the data
stream is divided into two to go through maximum pooling (MP) and average pooling
(AP) to obtain spatial texture information and background information, respectively. The
two pooling kernels have a size of 3, a step size of 1, and a padding of 1. This is to ensure
that the degree of information loss is reduced. Then, the merged convolution is fed to the
spatial attention module. Finally, the same jump join operation is performed to obtain the
output features.

2.5. ESA

HSI classification methods based on block-predicted center pixels are increasingly
focusing on the relationship and importance between the center vector and the rest of the
block vectors as this is often a critical factor in determining the classification results. At the
same time, the distribution of pixels in spatial locations can easily result in the classification
of categories dominated by large areas into positive categories, which often turn out to
be inaccurate. Building on the work of Li et al. [36], Euclidean Similarity Attention (ESA),
which utilizes Euclidean similarity for center pixel-related texture feature extraction, was
designed, with the architecture shown in Figure 6.
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Specifically, to make full use of the feature information of other classes in the patch to
assist classification, we calculated the Euclidean similarity of the center pixel with other
pixels; the process is shown in Equation (5). In addition, the weights of the spatial attention
of the pixel points were obtained by using Softmax to multiply them and sum them with
the original feature points.

Ei,j = EDSim(xo,o, xi,j)

= 1
1+∥xo,o−xi,j∥

(3)

where a represents the Euclidean similarity between the vectors, the block size is set to
w × w, and b represents the center vector, where o = w/2, i = 1,. . . , w and j= 1,. . . , w.

2.6. PPA

Joint spatial–spectral features have a stronger characterization ability, and the ap-
propriate extraction method can improve the robustness of the classifier. Moreover, it
is reasonable to solve the limitation of single-size feature learning in the “small-sample
problem” of HSI classification tasks to improve the classification accuracy. Therefore, we
designed the PPA module from the perspective of expanding the learning feature surface
and mitigating overfitting; the architecture is shown in Figure 7. Pooling is first learned
using three different sizes and step sizes, where bilinear interpolation (BI) is used to smooth
the feature loss. A shared convolutional layer immediately follows to resize the channels
while reducing the computational effort. These three channel descriptors are then spliced,
and a 3 × 1 convolution operation is used to fuse them. Next, the cascade features are
weighted using weight coefficients. Finally, to avoid vanishing gradients, residual joins are
introduced to sum the weighted feature maps with the original feature maps. The detailed
operation is described below.

Fn = f s×s(pn×n(Mss)) (4)

Fm = [Fn1 ; Fn2 ; Fn3 ] (5)
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In Equations (4) and (5), Mss represents the spliced input of the two types of features,
Pn×n represents the pooling of the pooling kernel of size n, where the bilinear interpolation
operation of one of the taps is omitted, and fs×s represents the shared convolutional layer,
which will reduce the size of the three feature maps to 1. The three tap feature maps are
then spliced together in the length dimension, which represents the integration of the
information learned at the different scales, i.e., Fm.

M(Fm) = σ( f 3×1(Fm)) (6)
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F = M(Fm)× Mss + Mss (7)

Next, as shown in Equation (6), these multi-scale features are effectively fused. This
fusion process aims to make the network more comprehensive in perceiving the information
at different scales, thus improving the accuracy of the importance of the assignment to
the original data. Finally, after obtaining higher-level learning weights for the multi-scale
features, the original inputs are multiplied and summed with the constructed attention
weights wave by wave and dotwise, as shown in Equation (7).

3. Results

The experimental part is organized as follows. First, the details of the three HSI
datasets are presented in detail, which include two public datasets as well as our own
labeled dataset. Second, the hyperparameter settings of the experiment are presented.
Then, we compare our model to other methods to prove the advancement of the proposed
method. The contribution of each module is explored through ablation experiments.

3.1. Datasets

In our experiments, two commonly used HSI datasets were used, namely, the Indian
Pines (IP) and University of Pavia (UP) datasets. In addition, we preprocessed and an-
notated the data from the Yellow River Estuary wetland (YRE) in Dongying, Shandong
Province, China, and we additionally performed image fusion in order to obtain pure
image elements. Each dataset has its specification, which is described as follows.

Indian Pines (IP): The IP dataset is an important hyperspectral remote sensing image
resource that was acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
in June 1992 at the Indian Pines Agricultural Experimental Range in northwestern Indiana.
The dataset contains 145 × 145 pixels and has a spatial resolution of 20 m. During data
preprocessing, 200 bands were screened from the raw data in the 400–2500 nm wavelength
range by removing 20 absorbing and low signal-to-noise bands. In effect, 16 feature classes
covering 10,249 labeled pixels were analyzed in detail, with a significant imbalance in the
number of samples in some of these classes.

University of Pavia: The UP dataset was collected using the Reflectance Optical System
Imaging Spectrometer (ROSIS) in the urban area surrounding the University of Pavia in
northern Italy. The dataset has a pixel size of 610 × 340, covers a wavelength range of
0.43–0.86 µm, and contains 115 spectral bands with a spatial resolution of 1.3 m and a
spectral resolution of 4 nm. A total of nine classes including 42,776 labeled pixels were
covered, and after removing the 12 noisy bands, we based our classification analysis on the
remaining 103 bands. Compared to the IP dataset, even though the UP dataset contains
fewer bands, it still has a high dimensionality.

Yellow River Estuary wetland: The YRE was acquired by GF5_AHSI in 2019 at the
mouth of the Yellow River in Dongying City, Shandong Province, China, covering the
extent of the core area of the Yellow River Delta National Nature Reserve. The overall
image contains 330 spectral bands in the wavelength ranges of 390–1029 nm (VNIR) and
1005–2513 nm (SWIR). A total of 50 bad bands were removed, and the remaining 280 bands
were used for classification with a spatial resolution of 30 m. It is worth noting that
to improve the spatial resolution and reduce the effect of mixed pixels, we fused the
panchromatic bands of Landsat8 (Landsat8_Pan) satellite images with the preprocessed GF5
hyperspectral at the same time. The fusion algorithm used the Gram–Schmidt transform
method to improve the spatial resolution to 15 m while ensuring less loss of spectral
information. Both images before fusion were subjected to a series of preprocessing through
radiometric calibration, atmospheric correction, and geometric fine correction and cropping,
as shown in Figure 8. The classification data used in this paper were cropped in the center
part of the fused image. The dataset size was 710 × 673 pixels, with nine feature classes
covering 79,732 labeled pixels.
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Figure 8. Comparison between pre- and post-fusion images of YRE data fusion.

The false-color band settings in Figure 8b,c are uniform, i.e., 110, 58, and 38, respec-
tively. The spatial resolution of the fused image shows more details and richer color levels.
The number of spectral bands corresponds to that before fusion.

Each dataset was divided into three parts, i.e., the training, validation, and test sets,
where the training and validation sets were in equal proportions, the remainder was the
test set, and all the samples were randomly selected. The training set was used to iteratively
find the optimal parameters of the model, the validation set only shows the results of the
interim model simulation measurements for each training phase, and the test set was used
to evaluate the effect of the model that performs optimally in the validator. Due to the
difference in the overall sample order of magnitude and the preservation of the original
dataset number distribution, we used 5% of training samples for the Indian Pines (IP)
dataset, which has fewer samples, while the University of Pavia (UP) dataset and Yellow
River Estuary wetland (YRE) dataset had 0.5% and 0.1% training samples, respectively,
with the specific number of pixels shown in Tables 1–3.

Table 1. Groundtruth classes for the IP scenes and their respective sample number.

No. Class Train/Val Test Total

1 Alfalfa 2 42 46
2 Corn-notill 71 1286 1428
3 Corn-mintill 41 747 830
4 Corn 12 213 237
5 Grass-pasture 24 435 483
6 Grass-trees 37 657 730
7 Grass-pasture-mowed 1 26 28
8 Hay-windrowed 24 430 478
9 Oats 1 18 20
10 Soybean-notill 49 874 972
11 Soybean-mintill 123 2209 2455
12 Soybean-clean 30 533 593
13 Wheat 10 185 205
14 Woods 63 1139 1265
15 Buildings-grass-trees-drives 19 348 386
16 Stone-steel-towers 5 83 93

Total 512 9225 10,249
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Table 2. Groundtruth classes for the UP scenes and their respective sample number.

No. Class Train/Val Test Total

1 Asphalt 33 6565 6631
2 Meadows 93 18,463 18,649
3 Gravel 10 2079 2099
4 Trees 15 3034 3064
5 Painted metal sheets 7 1331 1345
6 Bare soil 25 4979 5029
7 Bitumen 7 1316 1330
8 Self-blocking bricks 18 3646 3682
9 Shadows 5 937 947

Total 213 42,350 42,776

Table 3. Groundtruth classes for the YRE scenes and their respective sample number.

No. Class Train/Val Test Total

1 Mudflat 4 3575 3583
2 Bare soil 5 5376 5386
3 Tamarix 4 3574 3582
4 Suaeda salsa 4 4235 4243
5 Spartina alterniflora 23 23,489 23,535
6 Turbid water 17 16,984 17,018
7 Tidal flat reed 6 5975 5987
8 Clear water 12 12,229 12,253
9 Bare lake beach 4 4137 4145

Total 79 79,574 79,732

3.2. Experimental Configuration

For a fair comparison, all the experiments were conducted on a workstation running
Windows 10 with an NVIDIA GeForce RTX3090 graphics card and 64 G of RAM. The
workstations were manufactured by Dell in Qingdao, China. The deep learning framework
used was Pytorch 1.10, and the programming language was Python 3.6. Both the model in
this paper and the comparison model were trained with an initial learning rate of 0.001;
Adam with a momentum term of 0.9 and weight decay of 0.01 was chosen as the optimizer
to optimize the network model, and the cross-entropy loss function was used for the
experiments. In addition, to speed up the training, we set the batch size to 32 and the
number of epochs to 100. The rest of the parameters were consistent with those described
in the respective original papers.

In order to evaluate the performance of the model classification, the reliability of the
predicted classification maps compared to the ground truth maps was obtained. In the
experiment, three common evaluation indexes were used, namely, Overall Accuracy (OA),
Average Accuracy (AA), and Kappa Coefficient, to evaluate it. OA (Overall Accuracy)
represents the ratio of correctly classified samples to the total test samples, i.e., the overall
effect of classification can be visualized. AA (Average Accuracy) represents the average
of all category Recalls, and based on the common situation that there is an imbalance of
samples in multi-categorization, this metric can reflect the model’s ability to assess the
accuracy of classification for fine-grained evaluation, reflecting the robustness of the model.
The Kappa Coefficient measures the degree of agreement between the true values and the
classification results. The values of these three evaluation indexes are positively correlated
with the classification effect.

3.2.1. Effectiveness of the k-Value in the HRPM Structure

The HRPM was initially designed to ensure the robustness of the classification results,
mainly in the case of fewer principal components, while other deep learning methods have
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a greater demand for the number of principal components. Therefore, we only explore the
effect of the number of kernels (k) it extracts per layer on the accuracy in this subsection,
and subsequent comparison experiments will not be added to this module. In addition, we
chose to keep five principal components to facilitate the smooth learning of deep features
for 3D convolution. We first experimented with the original DMAN structure and then
experimented with the DMAN structure combined with the HRPM for different values of
the hyperparameter k (6, 8, 10, 12, 14, and 16). As shown in Table 4, the poor classification
results for direct feature extraction for the five principal components occur because the
information of a small number of principal components is not well captured by the network,
and the difficulty of extraction is further exacerbated by the conditions of the samples that
we chose. It is 7.65% lower compared to the HRPM (k = 12) after incorporation, which
indicates that random extraction before HRPM training is beneficial in highlighting the
discriminative features of the samples in the small-sample case. Thus, combining shallow
and deep features like this gives the extracted features a multi-scale advantage, and the
hybrid convolution further enriches the features so that the classification information is
better utilized by the model.

Table 4. Effect of the number of convolution kernels (k) on accuracy.

IP (5%) Without
HRPM (k-Value)

6 8 10 12 14 16

OA (%) 87.74 93.32 93.92 94.74 95.39 95.12 95.58
AA (%) 73.60 83.62 88.90 90.42 91.86 90.48 92.83

Kappa × 100 86.03 92.38 93.05 94.00 94.74 94.43 94.95

However, when the k-value is set to 6 or 8, the performance drops slightly, which
occurs because fewer convolutional kernels are unable to carry the diversity of features,
resulting in a loss of information. There is a general trend of increasing accuracy as the
k-value increases. However, when the k-value exceeds 12, the classification accuracy starts
to fluctuate as the information starts to be redundant and the training slows down due
to the presence of more features in the input data. Therefore, based on the experimental
results and time cost, we set the k-value to 12.

3.2.2. Effect of the Number of Training Samples

To further analyze the effect of the number of training samples on the proposed
DMAN, we chose different proportions of training sets for the experiments based on the
characteristics of the sample distribution and the number of samples in each dataset. The
proportion of training samples for three of them for the three datasets is shown in Table 5.
The validation set had the same number of data samples as the partitioned training set, and
the remaining part was used as the test set.

Table 5. Percent of Training Samples.

Dataset Name Percent of Training Samples (%)

IP 3 5 7 10 15
UP 0.3 0.5 0.7 1 5

YRE 0.05 0.07 0.1 0.2 0.3

Figure 9 shows the classification results with different training sample ratios. The
vertical axis is the accuracy of the evaluation metrics, and the horizontal axis is the training
set ratio. As expected, the accuracy values for all three datasets increase with the number
of training samples and stabilize after reaching a certain ratio. For the IP dataset, the gap
between the AA value and the other two metrics is too large at the beginning, which is
due to the more heterogeneous distribution of the data volume. The effect stabilizes after
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the proportion reaches 10%. The spatial resolution of the UP and YRE datasets is higher.
Therefore, the metrics are all superior to the IP dataset with the same number of training
samples. The UP dataset has high spatial resolution, and the YRE dataset is rich in spectral
features; so, they do not need a large sample size to achieve close to 100% accuracy.
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Figure 9. The classification results of the DMAN with different training samples.

3.2.3. Effect of Patch Size

Another important factor that affects the performance of the network is the size
of the patch. Usually, patches that are too small contain less feature information and
have difficulty fitting the target, and patches that are too large may be harmful to the
classification process as they tend to introduce noise, especially when the categories are
closely connected.

In this section, we analyze the effect of patch size on the proposed method based
on the initially described dataset division ratio and parameters. Figure 10 presents the
classification results of the proposed method under different patch sizes. For the IP dataset,
there is a lag in the trend of AA compared to OA, which may be because larger patches
have a greater enhancement of the classification effect of certain classes, while the overall
tendency is stabilized. For the UP dataset, the three performance metrics are optimal at a
patch size of 9. This is because the labels of the UP dataset are very detailed and are suitable
for small patches. For the YRE dataset, there is a significant decrease in the size of the patch
after finding the most suitable one, which may be because there are more edge pixels in the
YRE dataset, which may contain more external padding for larger sizes, resulting in poor
classification results.

Remote Sens. 2024, 16, x FOR PEER REVIEW 14 of 25 
 

 

optimal at a patch size of 9. This is because the labels of the UP dataset are very detailed 
and are suitable for small patches. For the YRE dataset, there is a significant decrease in 
the size of the patch after finding the most suitable one, which may be because there are 
more edge pixels in the YRE dataset, which may contain more external padding for larger 
sizes, resulting in poor classification results. 

 
Figure 10. The classification results of the DMAN with different patch sizes. 

3.3. Results and Analysis 
To validate the performance of our designed network, we selected the DMAN 

network for comparison to six classification networks, namely, the HybridSN, DFFN, 
SSRN, RSSAN, GSC-ViT, AMS-M2ESL, FDSSC, and SSFTT, which were classified into 
unsupervised dimensionality reduction and all-band utilization input according to the 
data utilization. For the fairness of the comparison, we replaced the AMS-M2ESL 
dimensionality reduction method with PCA. In addition, we did not include the HRPM 
in this section because it manifests a significant effect when the number of bands after 
dimensionality reduction is small, while the accuracy does not increase significantly when 
more bands are retained. Therefore, we used pre-PCA downscaling of the data in this 
section to compare to other methods, in which 40 principal components are retained. The 
classification plots obtained for all methods are shown in Figures 10–12, and the 
classification accuracies of these methods on the three datasets are shown in Tables 6–8, 
where the highest accuracies in the classification results are shown in bold. 

 
Figure 11. Classification maps of different methods on the IP dataset. (a) False-color; (b) ground 
truth map; (c) FDSSC; (d) SSRN; (e) RSSAN; (f) GSC-ViT; (g) DFFN; (h) HybridSN; (i) SSFTT; (j) 
AMS-M2ESL; (k) DMAN; and (l) color bar. 

  
    (a) IP dataset     (b) UP dataset     (c) YRE dataset 

7×7 9×9 11×11 13×13 15×15 17×17
80

84

88

92

96

100

Ac
cu

ra
cy

(%
)

Patch Size

 OA
 AA
 Kappa

7×7 9×9 11×11 13×13 15×15 17×17
90

92

94

96

98

100

Ac
cu

ra
cy

(%
)

Patch Size

 OA
 AA
 Kappa

7×7 9×9 11×11 13×13 15×15 17×17
90

92

94

96

98

100

Ac
cu

ra
cy

(%
)

Patch Size

 OA
 AA
 Kappa

Figure 10. The classification results of the DMAN with different patch sizes.

3.3. Results and Analysis

To validate the performance of our designed network, we selected the DMAN network
for comparison to six classification networks, namely, the HybridSN, DFFN, SSRN, RSSAN,
GSC-ViT, AMS-M2ESL, FDSSC, and SSFTT, which were classified into unsupervised dimen-
sionality reduction and all-band utilization input according to the data utilization. For the
fairness of the comparison, we replaced the AMS-M2ESL dimensionality reduction method
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with PCA. In addition, we did not include the HRPM in this section because it manifests a
significant effect when the number of bands after dimensionality reduction is small, while
the accuracy does not increase significantly when more bands are retained. Therefore,
we used pre-PCA downscaling of the data in this section to compare to other methods,
in which 40 principal components are retained. The classification plots obtained for all
methods are shown in Figures 10–12, and the classification accuracies of these methods on
the three datasets are shown in Tables 6–8 where the highest accuracies in the classification
results are shown in bold.
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Figure 11. Classification maps of different methods on the IP dataset. (a) False-color; (b) ground
truth map; (c) FDSSC; (d) SSRN; (e) RSSAN; (f) GSC-ViT; (g) DFFN; (h) HybridSN; (i) SSFTT;
(j) AMS-M2ESL; (k) DMAN; and (l) color bar.
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Table 6. The classification results (%) of all compared methods on the IP dataset.

Class Name
All Bands PCA

Proposed
FDSSC SSRN RSSAN GSC-ViT DFFN HybridSN SSFTT AMS-M2ESL

1 Alfalfa 100.0 ± 0.0 91.89 ± 7.23 90.00 ± 6.93 100.0 ± 0.0 65.00 ± 11.22 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
2 Corn-notill 69.64 ± 3.45 99.39 ± 0.36 73.47 ± 1.03 82.92 ± 1.43 91.64 ± 2.01 88.07 ± 0.96 98.01 ± 1.07 87.97 ± 1.34 94.93 ± 1.35
3 Corn-mintill 98.32 ± 0.98 72.50 ± 2.03 73.14 ± 3.44 94.89 ± 0.67 95.77 ± 0.32 93.80 ± 1.42 92.45 ± 0.63 91.68 ± 1.22 96.23 ± 1.2
4 Corn 95.51 ± 2.34 81.15 ± 4.3 93.84 ± 4.45 75.56 ± 2.53 95.95 ± 2.7 85.71 ± 2.33 97.20 ± 2.06 97.18 ± 3.25 98.57 ± 1.37
5 Grass-pasture 100.0 ± 0.0 97.07 ± 2.34 49.62 ± 2.7 88.67 ± 3.92 94.33 ± 1.1 94.57 ± 3.7 95.89 ± 2.11 99.24 ± 0.42 96.43 ± 3.02
6 Grass-trees 95.33 ± 3.63 95.63 ± 0.57 71.73 ± 8.25 98.89 ± 0.25 91.30 ± 0.53 93.05 ± 1.04 97.75 ± 0.33 98.05 ± 0.52 99.53 ± 0.19
7 Grass-pasture-mowed 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 66.67 ± 8.22 86.36 ± 4.28 90.00 ± 6.21 72.73 ± 8.97 100.0 ± 0.0 100.0 ± 0.0
8 Hay-windrowed 96.39 ± 2.88 99.76 ± 0.19 98.71 ± 0.41 97.28 ± 2.45 99.54 ± 0.24 90.15 ± 2.2 98.81 ± 0.53 100.0 ± 0.0 100.0 ± 0.0
9 Oats 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 88.89 ± 10.03 83.33 ± 5.23 80.00 ± 6.72 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
10 Soybean-notill 92.25 ± 2.32 98.78 ± 0.21 81.42 ± 1.54 95.99 ± 1.09 98.01 ± 1.43 92.60 ± 2.29 96.50 ± 0.74 89.27 ± 1.1 96.72 ± 3.13
11 Soybean-mintill 87.05 ± 0.41 77.10 ± 0.25 86.76 ± 0.65 94.05 ± 0.22 95.17 ± 0.38 97.04 ± 0.61 93.74 ± 0.31 93.61 ± 0.25 97.08 ± 0.16
12 Soybean-clean 92.98 ± 3.22 94.48 ± 2.33 75.10 ± 5.2 85.10 ± 3.43 83.98 ± 3.21 91.57 ± 2.28 90.70 ± 1.99 88.39 ± 4.07 91.43 ± 2.45
13 Wheat 98.39 ± 0.78 100.0 ± 0.0 91.89 ± 3.13 99.41 ± 0.16 100.0 ± 0.0 91.28 ± 3.17 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
14 Woods 93.67 ± 1.91 96.04 ± 2.31 70.66 ± 4.2 97.26 ± 0.32 98.52 ± 1.11 97.74 ± 1.16 98.94 ± 0.25 98.36 ± 0.42 99.04 ± 0.35
15 Bldgs-grass-trees-drives 87.07 ± 6.42 89.34 ± 7.21 48.64 ± 6.77 98.11 ± 0.27 93.05 ± 3.44 89.64 ± 2.31 96.87 ± 2.6 89.04 ± 3.54 95.07 ± 2.28
16 Stone-steel-towers 86.32 ± 3.01 91.76 ± 3.22 77.94 ± 7.1 93.67 ± 5.65 60.29 ± 6.09 72.46 ± 4.27 79.73 ± 6.44 98.81 ± 1.13 83.00 ± 4.85

OA (%) 87.76 ± 0.66 87.40 ± 0.72 76.89 ± 1.22 92.28 ± 0.32 93.95 ± 0.49 93.18 ± 0.54 95.69 ± 0.29 93.46 ± 0.32 96.74 ± 0.23
AA (%) 76.18 ± 1.78 78.85 ± 1.55 64.00 ± 2.44 83.82 ± 1.48 87.84 ± 1.33 83.16 ± 1.53 90.19 ± 1.21 90.59 ± 1.07 95.88 ± 0.58

Kappa × 100 85.93 ± 0.53 85.52 ± 0.42 73.53 ± 1.28 91.17 ± 0.57 93.09 ± 0.67 92.23 ± 0.78 95.07 ± 0.49 92.55 ± 0.31 96.28 ± 0.21

Table 7. The classification results (%) of all compared methods on the UP dataset.

Class Name
All Bands PCA

Proposed
FDSSC SSRN RSSAN GSC-ViT DFFN HybridSN SSFTT AMS-M2ESL

1 Asphalt 96.36 ± 1.14 92.26 ± 2.5 73.12 ± 2.2 99.33 ± 0.83 95.69 ± 2.32 75.39 ± 3.24 98.34 ± 0.38 96.71 ± 0.35 98.65 ± 0.12
2 Meadows 94.74 ± 0.71 98.35 ± 1.03 89.93 ± 2.19 97.15 ± 0.63 97.68 ± 0.65 93.24 ± 0.45 97.56 ± 0.22 98.69 ± 0.1 99.19 ± 0.21
3 Gravel 75.78 ± 4.91 91.97 ± 6.23 49.92 ± 4.12 64.34 ± 5.22 72.21 ± 5.49 50.80 ± 3.79 84.78 ± 2.42 83.97 ± 1.96 96.30 ± 0.45
4 Trees 98.80 ± 0.72 99.03 ± 0.14 97.78 ± 1.22 95.97 ± 1.33 74.22 ± 1.57 73.72 ± 0.89 91.92 ± 1.28 98.34 ± 0.76 97.53 ± 1.06
5 Painted metal sheets 99.70 ± 0.25 99.85 ± 0.16 93.75 ± 0.37 97.58 ± 0.35 99.70 ± 0.08 82.77 ± 1.21 92.37 ± 0.87 99.40 ± 0.17 99.33 ± 0.51
6 Bare soil 97.75 ± 1.19 93.90 ± 2.35 90.38 ± 1.38 98.72 ± 0.19 99.43 ± 0.13 90.63 ± 3.45 98.98 ± 0.22 99.53 ± 0.21 98.83 ± 0.13
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Table 7. Cont.

Class Name
All Bands PCA

Proposed
FDSSC SSRN RSSAN GSC-ViT DFFN HybridSN SSFTT AMS-M2ESL

7 Bitumen 90.42 ± 2.66 99.80 ± 0.05 36.13 ± 3.23 91.72 ± 3.54 94.47 ± 3.74 75.51 ± 2.32 97.38 ± 0.95 99.29 ± 0.01 96.36 ± 1.02
8 Self-blocking bricks 87.12 ± 5.03 91.03 ± 3.56 77.86 ± 4.88 80.42 ± 3.11 70.11 ± 5.29 70.13 ± 3.73 89.76 ± 1.43 88.92 ± 1.93 85.68 ± 3.21
9 Shadows 98.11 ± 1.21 99.04 ± 0.17 99.88 ± 0.06 94.56 ± 1.57 97.69 ± 1.03 81.57 ± 2.01 88.01 ± 1.02 99.56 ± 0.29 96.25 ± 0.75

OA (%) 94.01 ± 0.62 96.02 ± 0.55 83.66 ± 0.68 93.76 ± 0.32 91.43 ± 0.87 84.02 ± 0.79 95.75 ± 0.42 96.98 ± 0.29 97.40 ± 0.18
AA (%) 90.85 ± 1.12 93.52 ± 1.19 73.83 ± 1.62 92.33 ± 0.72 88.82 ± 1.32 64.22 ± 1.15 93.45 ± 0.64 94.89 ± 0.33 95.97 ± 0.23

Kappa × 100 91.98 ± 0.66 94.72 ± 0.34 77.88 ± 0.87 91.72 ± 0.47 88.64 ± 0.52 78.42 ± 0.62 94.35 ± 0.31 95.98 ± 0.17 96.54 ± 0.19

Table 8. The classification results (%) of all compared methods on the YRE dataset.

Class Name
All Bands PCA

Proposed
FDSSC SSRN RSSAN GSC-ViT DFFN HybridSN SSFTT AMS-M2ESL

1 Mudflat 95.00 ± 2.3 98.15 ± 1.32 93.72 ± 1.78 98.67 ± 0.73 66.98 ± 4.02 92.79 ± 1.13 92.69 ± 0.87 98.13 ± 0.95 94.93 ± 1.2
2 Bare soil 98.89 ± 0.44 100.00 ± 0.0 95.20 ± 0.83 100.00 ± 0.0 91.44 ± 1.02 83.37 ± 1.02 98.81 ± 0.97 100.00 ± 0.0 99.47 ± 0.44
3 Tamarix 100.00 ± 0.0 98.37 ± 0.66 68.36 ± 0.92 100.00 ± 0.0 96.82 ± 1.22 92.94 ± 2.01 83.82 ± 1.04 95.16 ± 1.87 100.00 ± 0.0
4 Suaeda salsa 98.05 ± 3.01 84.92 ± 2.03 68.96 ± 3.32 67.40 ± 3.17 80.47 ± 5.03 96.96 ± 0.89 98.08 ± 0.73 90.06 ± 2.21 99.53 ± 0.61
5 Spartina alterniflora 94.16 ± 0.2 95.02 ± 0.32 93.96 ± 0.49 99.88 ± 0.3 99.68 ± 0.33 94.27 ± 0.42 98.92 ± 1.13 96.69 ± 0.63 99.71 ± 0.21
6 Turbid water 97.12 ± 0.64 100.00 ± 0.0 99.38 ± 0.57 100.00 ± 0.0 99.99 ± 0.02 99.71 ± 0.22 100.00 ± 0.0 98.23 ± 0.53 98.37 ± 0.72
7 Tidal flat reed 99.95 ± 0.12 99.90 ± 0.17 96.40 ± 1.22 100.00 ± 0.0 94.98 ± 1.13 86.39 ± 5.01 99.51 ± 0.42 99.61 ± 0.23 96.20 ± 2.03
8 Clear water 77.68 ± 1.03 98.80 ± 0.13 81.15 ± 0.32 99.66 ± 0.41 100.00 ± 0.0 94.63 ± 2.32 95.66 ± 0.59 99.18 ± 0.27 94.57 ± 0.43
9 Bare lake beach 100.00 ± 0.0 99.80 ± 0.22 51.38 ± 4.21 100.00 ± 0.0 99.08 ± 0.55 85.99 ± 3.25 76.36 ± 2.32 100.00 ± 0.0 99.51 ± 0.37

OA (%) 92.95 ± 0.64 97.19 ± 0.45 85.98 ± 0.87 97.30 ± 0.32 95.61 ± 0.47 93.74 ± 0.73 96.04 ± 0.63 97.57 ± 0.42 98.08 ± 0.28
AA (%) 83.29 ± 0.92 93.95 ± 0.67 80.42 ± 0.98 94.27 ± 0.65 93.65 ± 0.76 91.11 ± 0.93 96.06 ± 0.89 96.86 ± 0.72 98.06 ± 0.54

Kappa × 100 91.34 ± 0.33 96.57 ± 0.29 83.04 ± 0.43 96.70 ± 0.31 94.69 ± 0.32 92.39 ± 0.43 95.20 ± 0.41 97.05 ± 0.35 97.67 ± 0.26
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In the experiments on the IP dataset, our proposed DMAN achieved the best classi-
fication accuracy, with OA, AA, and Kappa Coefficients of 96.74%, 95.88%, and 96.28%,
respectively. The classification map achieved a near-truth map in general and outperformed
other classification maps in most aspects. It is worth mentioning that none of the compared
methods exceeded 90.6% AA in a very unbalanced sample environment with IP, and even
if the OA was higher, this only means that the prediction accuracy of the class with a large
proportion of samples is not bad. This suggests that the compared methods triggered an
overfitting phenomenon in the face of feature extraction, learning some of the noise points
of the classes into the features as well. The network structure with the worst classification
results is RSSAN, which preemptively localizes the extracted features with an attention
mechanism, but subsequently embeds an attention module for each layer that may dis-
rupt the null spectrum feature semantic information with few samples. Also, with the
introduction of the attention mechanism in the SSFTT, the OA decreased by only 1.05%
compared to the proposed method because it more rationally arranges the information
interaction and feature delivery. However, adding attention only to the shallow layer
will blur the key features that had been highlighted, which are not easily learned by the
linear layer, and will thus make the effect slightly lower. This is also reflected in the 5.69%
decrease in AA. In addition, the FDSSC and SSRN also use full-band data classification,
while the former uses dense connectivity compared to the latter’s residual connectivity,
and it was observed that the results of this study present a slight improvement, while the
computational effort is substantially higher. This is the reason why we chose the residual
structure in order to avoid gradient vanishing, which is simple in design and can effectively
improve the classification accuracy and pass the information layer by layer towards deeper
and more abstract features. As for the sample distribution and number of IPs, the DFFN
and HybridSN control the complexity of the model very well and therefore perform well
on this dataset. As shown in Figure 11, it is consistent with the accuracy. However, it is
noteworthy that the seventh (grass-pasture-mowed) and ninth (oats) feature classes are
the two classes that contain only one training sample and are the two classes that mainly
contribute to the unbalanced classification environment. As can be seen, the misclassifica-
tion area is significantly reduced compared to the other result maps while presenting purer
color patches. Overall, our proposed method significantly reduces the presence of noise
points when generating the classification maps and exhibits more accurate classification
results with a relatively small number of misclassified pixels on the inter-class boundaries.

From the experiments on the UP dataset, according to Table 7, it can be seen that the
DMAN method performs optimally. The OA value is 98.10%, which is 3.39%, 1.38%, 13.74%,
3.64%, 5.97%, 13.38%, 1.65%, and 0.42% higher than the other eight methods, respectively.
While most of the methods have less difference between AA and OA, this is because the
sample imbalance is lessened to a greater extent than in the IP dataset, with a Kappa
Coefficient of 96.54%. The classification accuracy of all the categories of the proposed
method reaches more than 96%, except for the eighth category. This is due to the lack of
distinctiveness of the category features of self-blocking bricks, reflecting the fact that the
DMAN is more difficult for extracting features with high discriminative degrees. Among
the compared methods, AMS-M2ESL has the best classification effect, with an OA of 96.98%.
This is due to the fact that the UP dataset samples are meticulously etched and have a
large number of edge pixels, while the original article uses a smaller patch size that does
not over-smooth on this data and the distance covariance-based descriptor in the model
effectively explores the linear and nonlinear interdependencies in the spectral domain. On
the contrary, in the HybridSN and DFFN, which perform well in the IP dataset, the accuracy
of the HybridSN decreases significantly. Since the patches of both methods are relatively
large, it can be inferred that the multi-scale fusion strategy that we adopted is effective. In
addition, the multiple scales in the DFFN include the merging of features at different levels.
Based on Figure 12, it can be visualized that the RSSAN results show many misassigned
pixels and a low classification accuracy. The DFFN, HybridSN, and SSFTT have intra-class
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pixel patch prediction errors, such as class VII (bare soil). Overall, the classification map of
our proposed DMAN method is closest to the truth map.

As shown in Table 3, the YRE dataset has only 79 training samples at a 0.1% data
partitioning ratio; yet, the majority of the methods achieved better results than before. This
is due to the balanced distribution of the number of categories while artificially labeling the
purer image elements. Our method still achieved the best results, with OA, AA, and Kappa
Coefficients of 98.08%, 98.06%, and 97.67%, respectively, and a classification accuracy of
94% or more for all categories. It can be seen that GSC-ViT achieved the highest accuracy
for most of the categories, but for category 4 (Suaeda salsa), there are a large number
of pixels that are misclassified as this, which indicates that the model is lightweight but
lacks sensitivity to feature similarity class distinction. For AMS-M2ESL, which is also a
transformer backbone network, this reflects the importance of considering relationships
between pixels within a block. Based on Figure 13, the misclassification and omission of
the fifth class (Spartina alterniflora) is more obvious, which is because it possesses two major
classes of features, and random samples may not portray them in a balanced and adequate
way. Among all the generated classification maps, the DMAN demonstrated superior
results, with significant improvements in the control of noise points. This is reflected not
only in the overall accuracy of the results but also in the subtleties that show a more precise
and robust classification.
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Comparing the results of the three datasets, it can be inferred that the design of the
RSSAN is not suitable for small-sample problems. Frequent per-layer attention block
embedding may be the main reason for the poor classification results. In contrast, the
performance of the SSFTT was relatively stable, and satisfactory results were obtained. So,
a reasonable attention setting can ensure the generalization of the model.

3.4. Ablation Study

To further investigate the real contribution of each part of the proposed model, we
conducted ablation experiments using three datasets, where the dataset division ratios
were consistent with those described in the previous section, and the parameters were
kept at their original settings. We investigated the effectiveness of the proposed three
attentions and proposed a total of seven combinations of S0 to S6, as shown in Table 9,
where the DMANs containing all the attentions are not described here without repeating
the experiments.
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Table 9. The way the attention modules are combined in the model.

Name NAM ESA PPA

S0 without attention
S1

√

S2
√

S3
√

S4
√ √

S5
√ √

S6
√ √

From the results in Figure 14, it can be seen that most of the classification methods
embedded in a single spectral, spatial, or hybrid attention module are inferior to the
classification methods of any two of the attention combinations, and thus, all three attention
modules positively contribute to each other. However, there are exceptions in the YRE
dataset, where the PPA slightly outperforms the model structure of the combination of the
NAM and ESA, with a 0.38% improvement in OA. First, because the YRE dataset has low
spatial resolution and rich spectral information, the multi-scale pooling and post-splicing
convolutional capture operation of the PPA can integrate the spatial context information and
band dependence, which is more in line with the characteristics of the YRE dataset. Second,
the number of parameters contained in the PPA is more than the other two attentions,
which can effectively improve the expression ability of the network to better recognize
the features.
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Figure 14. The OAs of various combinations in three datasets.

Each is viewed separately; first, for the comparison among the methods combining
the two attentions, the inclusion of the PPA tends to have a greater boost, reflecting the
importance of the integration process of the two branches, and the direct access to global
pooling and full connectivity may disturb the null spectral features. The three attentions
alone are difficult to compare, with different experimental effects in different datasets,
but the improvement over the backbone model without attention is still significant. Of
course, based on the aforementioned comparison experiments, the full DMAN will have
better results.

3.5. Analysis of the Hybrid Strategy in the HRPM Structure

Random projection theory reveals the feasibility of dimensionality reduction by ran-
dom matrices, on which the RPNet utilizes the potential value of the original data to
construct convolution for dimensionality reduction. We propose the HRPM as an RPNet
that includes a selectable convolution method, which was initially designed to retain cate-
gorical information more effectively under small-sample conditions. To demonstrate the
effectiveness of this module as well as to study the impact of the structural composition
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of the HRPM in the presence of fewer principal components, we chose to conduct this
experiment on an IP dataset containing 5% of the training samples. The different structures
of the HRPM are explained as follows. Fully considering the amount of computation
and time cost, we set the depth at three layers, and a total of six different structures were
involved in the experiment. The numbers 2 and 3 represent 2D convolution and 3D convo-
lution, respectively, and the numbers are arranged to represent the order of each layer in
the HRPM.

In addition, in order to ensure that the HRPM positively fuses the spectral and spa-
tial information during dimensionality reduction, it is stipulated that the convolutional
approach should not appear in turn because it would disrupt the feature information and
make the original data generate a lot of noise, which would impede the process of model
learning after our experiments.

According to the experimental results shown in Table 10, the 2D convolution alone,
which is the convolution method of the RPNet, is the least effective, with the OA being
0.68% to 1.14% lower than the other methods, illustrating the importance of the additional
consideration of spectral features during the dimensionality reduction process. The 2D
convolution essentially combines the full spectral and spatial information directly into
one channel after another, which would be redundant while also being sensitive to the
target. The 2D convolution is essentially a direct integration of all the spectral and spatial
information into one channel after another, which is redundant, and at the same time,
insensitive to the neighboring bands in the vicinity of the target band, focusing only on the
global features. The addition of 3D convolution allows for more targeted feature retention
and enables multi-level local and global learning. In general, the type of convolution
performed first does not have a significant impact on OA, but there is a significant difference
between the two in terms of AA. The 3D convolution has the effect of refining the features
in spectral dimensions; so, this approach naturally retains more categorical information
than the other convolution.

Table 10. Impact of the HRPM structure on categorization effects on IP.

IP (5%)
Structure of the HRPM

222 223 233 333 332 322

OA (%) 94.42 95.17 95.52 95.34 95.56 95.10
AA (%) 87.22 89.65 87.03 92.78 91.39 90.92

Kappa × 100 93.62 94.48 94.89 94.68 94.93 94.40

3.6. Analysis of the Model Complexity

In this section, to evaluate the complexity of the proposed DMAN concerning other
comparative methods, we counted the number of parameters as well as the average training
and testing times for the three runs. To maintain fairness, we used the Adam optimizer and
set the learning rate, batch size, and epoch to 1 × 10−3, 32, and 100, respectively, with the
same configuration for all models. The experimental results are shown in Table 11, where
the optimal results have been bolded. Overall, it can be seen that the number of parameters
of the DMAN is very small, mainly in two datasets, thanks to the light weight of the three
attention modules and the settings of the convolutional parameters. In addition, since our
model includes multi-scale as well as double-branching features, this directly affects the
forward and backward propagation process, leading to longer training and testing times
while still outperforming most methods. The increase in computational cost is acceptable
considering the improved classification accuracy. It is worth mentioning that the SSFTT
also has a very high training and prediction efficiency when the classification results of the
three datasets perform well, which may be because its Feature Tokenizer plays a key role in
capturing spatial–spectral features and abandons the traditional deep learning method of
simply stacking convolutional layers, which is the area we want to improve in the future.
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Table 11. Model complexity comparison.

Method

Datasets

IP UP YRE

Training
Time (s)

Testing
Time (s)

Params
(M)

Training
Time (s)

Testing
Time (s)

Params
(M)

Training
Time (s)

Testing
Time (s)

Params
(M)

FDSSC 53.94 5.35 2.39 21.94 42.86 1.23 23.18 308.15 3.35
SSRN 30.08 3.10 0.36 12.07 19.13 0.22 13.23 150.27 0.49

RSSAN 27.40 3.88 0.17 11.89 26.21 0.09 8.21 102.32 0.17
GSC-ViT 42.86 5.82 0.56 18.55 44.99 0.08 10.89 163.06 0.12

DFFN 34.38 3.12 0.38 17.37 31.31 0.38 10.24 81.42 0.38
HybridSN 25.64 2.72 5.12 13.89 27.93 5.12 8.04 59.62 5.12

SSFTT 13.84 1.22 0.15 9.17 11.93 0.15 5.31 27.68 0.15
AMS-M2ESL 53.46 13.56 1.0 22.36 133.7 0.99 12.37 402.48 1.33

DMAN 18.42 2.21 0.05 10.83 20.78 0.10 6.64 26.35 0.05

3.7. Analysis of Model Noise Robustness

To further assess the stability of the model in different sample environments, we
selected Gaussian noise and pretzel noise to verify the noise robustness of the model on
three datasets. Each of the two categories in the pretzel noise accounted for half of the
added proportion. In this experiment, the data were pre-normalized, and then, different
levels of noise were added. We observed a change in classification accuracy; when the
result showed a significant decrease, we terminated the experiment. The result is shown in
Figure 15.
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In (a), it can be seen that the classification effect enters a slower decreasing trend at 0.3
and beyond as the variance increases. In (b), a rapid decrease in accuracy can be observed
as the noise scale increases. When the noise reaches a scale of 10%, the accuracy drops close
to 5 percentage points, which is more variable than Gaussian noise, due to the fact that
the placement of zeros and ones interferes with the model’s ability to capture features to a
greater extent. Overall, the magnitude of change in OA is insensitive to noise, proving the
superior robustness of the proposed model.

4. Discussion

The proposed methodology was subjected to parametric analysis, comparative experi-
ments, and ablation experiments, respectively, to determine the advantages and significant
performance of the DMAN. The above results and phenomena are discussed next in
this section.

It is well known that the choice of window size is undoubtedly one of the key factors
affecting the performance of the model, and almost all analytical experiments on this
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parameter are prevalent in the application of deep learning methods for HIS categorization.
Of course, this is the case when using patch-based method inputs. It can be observed
that the model’s sensitivity to the window size is different under different datasets, but
all of them are small windows. The SSRN and SSFTT, which achieved optimal results in
the comparison experiments, also use smaller windows. This is because the small-sample
condition focuses more on the category quality of the patch block, which determines
the classification effect. The small window tends to contain more information about this
category and introduces less noise.

For the model itself, this paper divides the compared methods into two categories:
one with full-band input and one with input after applying PCA dimensionality reduction.
Both methods have advantages and disadvantages in terms of accuracy. Since this is closely
related to whether the model structure design is suitable for small-sample problems, it
was not possible to assess the classification effect based on the way the data were utilized.
However, dimensionality reduction tends to be more efficient in terms of running time; so,
in the future, small-sample problems may move towards using dimensionality reduction
methods for preprocessing. In addition, most deep learning methods do not utilize very few
bands or a few principal components after PCA for classification. Our proposed DMAN, in
combination with the HRPM, can compensate for this shortcoming. Since it additionally
considers the randomness of the spectral dimension, the accuracy does not degrade too
much in the case of a small number of samples.

From the classification results, it is clear that the DMAN achieves optimal results in
both balanced and unbalanced sample environments. The small-sample problem does have
limitations that reduce the accuracy, but the ablation experiments show that the attention
mechanism is indeed an important way to make the model approach the upper limit.
This is also because other fields have enhanced the maturity of the attention mechanism,
leading to further breakthroughs in the small-sample problem. In addition, the results also
show that the DMAN is expected to overcome the challenges associated with dispersed
sample distribution and misclassification at class boundaries by reducing the noise level
and rationalizing the use of pixels outside the central class within the window.

In summary, this study emphasizes the importance of continued in-depth research in
this area, focusing not only on improving classification accuracy, but also on overcoming
the serious challenges faced in small-sample classification, unbalanced sample distribution,
and misclassification of category boundaries. Overcoming these problems is expected to
provide useful guidance for the optimization and innovation of HSI classification methods
in the future.

5. Conclusions

This paper presents a two-branch network model based on embedded multivariate
attention and multi-scale fusion for hyperspectral image classification. The proposed model
effectively addresses the challenge of fully utilizing the spatial and spectral information
of hyperspectral images to extract key features in scenarios with limited sample sizes.
The method applies to cases where few bands are retained after dimensionality reduction,
where it will first be selected to enter the HRPM, which, after hybrid convolution and
feature stacking, makes it possible to retain most of the feature information while increasing
the inter-class separation. When the available bands are sufficient after dimensionality
reduction, they are directly fed into the classification network. After two branches of
spectral and spatial features are extracted separately with embedded attention, the attention
is pooled through pyramid pooling, fusing abstract features and further emphasizing
the key features, which enhances the network’s characterization capability. The best
classification results are demonstrated on two publicly available datasets and one of our
labeled datasets, ultimately validating the significance of combining multi-scale feature
extraction and attention in this model for small-sample classification.

In future work, more advanced and efficient methods need to be explored in the
composition of deep learning models, aiming to enhance accuracy while maintaining
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efficiency. For the small-sample problem, we plan to combine the sample expansion
method, embedded in the network, to break through the limitations of small sample sizes
for hyperspectral image classification.
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