Improvement of High-Resolution Daytime Fog Detection Algorithm Using GEO-KOMPSAT-2A/Advanced Meteorological Imager Data with Optimization of Background Field and Threshold Values
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. GK2A High-Resolution Fog Detection Algorithm
2.2.2. Dynamic Bias Correction
2.2.3. Validation
3. Results
3.1. Result of Dynamic Bias Correction
3.2. Qualitative Fog Detection Results of GK2A_HR_FDA
3.3. Quantitative Fog Detection Results of GK2A_HR_FDA
3.4. Comparison of Results between GK2A_FDA and GK2A_HR_FDA
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gultepe, I.; Tardif, R.; Michaelides, S.C.; Cermak, J.; Bott, A.; Bendix, J.; Müller, M.D.; Pagowski, M.; Hansen, B.; Ellrod, G.; et al. Fog Research: A Review of Past Achievements and Future Perspectives. Pure Appl. Geophys. 2007, 164, 1121. [Google Scholar] [CrossRef]
- Cermak, J.; Eastman, R.M.; Bendix, J.; Warren, S.G. European Climatology of Fog and Low Stratus Based on Geostationary Satellite Observations. Q. J. R. Meteorol. Soc. 2009, 135, 2125. [Google Scholar] [CrossRef]
- Egli, S.; Thies, B.; Bendix, J. A Hybrid Approach for Fog Retrieval Based on a Combination of Satellite and Ground Truth Data. Remote Sens. 2018, 10, 628. [Google Scholar] [CrossRef]
- Guo, X.; Wan, J.; Liu, S.; Xu, M.; Sheng, H.; Yasir, M. A scSE-LinkNet Deep Learning Model for Daytime Sea Fog Detection. Remote Sens. 2021, 13, 5136. [Google Scholar] [CrossRef]
- Yi, L.; Li, M.; Liu, S.; Shi, X.; Li, K.; Bendix, J. Detection of Dawn Sea Fog/Low Stratus using Geostationary Satellite Imagery. Remote Sens. Environ. 2023, 294, 113622. [Google Scholar] [CrossRef]
- Shin, D.G.; Kim, J.H. A New Application of Unsupervised Learning to Nighttime Sea Fog Detection. Asia-Pac. J. Atmos. Sci. 2018, 54, 527. [Google Scholar] [CrossRef]
- Tardif, R.; Rasmussen, R.M. Event-Based Climatology and Typology of Fog in the New York City Region. J. Appl. Meteorol. Climatol. 2006, 46, 1141. [Google Scholar] [CrossRef]
- Lee, H.D.; Ahn, J.B. Study on classification of fog type based on its generation mechanism and fog predictability using empirical method. Atmosphere 2013, 23, 103–112. [Google Scholar] [CrossRef]
- Akimoto, Y.; Kusaka, H. A Climatological Study of Fog in Japan Based on Event Data. Atmos. Res. 2014, 151, 200. [Google Scholar] [CrossRef]
- Lee, H.K.; Suh, M.S. A comparative study on the visibility characteristics of naked-eye observation and visibility meters of fog over South Korea. Atmosphere 2018, 28, 69–83. [Google Scholar] [CrossRef]
- Lee, Y.H.; Lee, J.S.; Park, S.K.; Chang, D.E.; Lee, H.S. Temporal and Spatial Characteristics of Fog Occurrence Over the Korean Peninsula. J. Geophys. Res. 2010, 115, D14117. [Google Scholar] [CrossRef]
- Park, H.M.; Kim, J.H. Detection of sea fog by combining MTSAT infrared and AMSR microwave measurements around the Korean Peninsula. Atmosphere 2012, 22, 163–174. [Google Scholar] [CrossRef]
- Oh, Y.J.; Suh, M.S. Development of quality control method for visibility data based on the characteristics of visibility data. Korean J. Remote Sens. 2020, 36, 707–723. [Google Scholar] [CrossRef]
- Eyre, J.R.; Brownscombe, J.L.; Allam, R.J. Detection of fog at night using Advanced Very High Resolution Radiometer (AVHRR) imagery. Meteorol. Mag. 1984, 113, 266–271. [Google Scholar]
- Anthis, A.I.; Cracknell, A.P. Use of satellite images for fog detection (AVHRR) and forecast of fog dissipation (METEOSAT) over lowland Thessalia, Hellas. Int. J. Remote Sens. 1999, 20, 1107–1124. [Google Scholar] [CrossRef]
- Bendix, J.; Thies, B.; Nauß, T.; Cermak, J. A Feasibility Study of Daytime Fog and Low Stratus Detection with TERRA/AQUA-MODIS Over Land. Meteorol. Appl. 2006, 13, 111. [Google Scholar] [CrossRef]
- Shang, H.; Chen, L.; Letu, H.; Zhao, M.; Li, S.; Bao, S. Development of a daytime cloud and haze detection algorithm for Himawari-8 satellite measurements over central and eastern China. Geophys. Res. Atmos. 2017, 122, 3528–3543. [Google Scholar] [CrossRef]
- Cermak, J. SOFOS—A New Satellite-Based Operational Fog Observation Scheme. Ph.D. Thesis, Phillipps-University, Marburg, Germany, 2006. [Google Scholar]
- Gultepe, I.; Pagowski, M.; Reid, J. A satellite-based fog detection scheme using screen air temperature. Weather. Forecast. 2007, 22, 444–456. [Google Scholar] [CrossRef]
- Musial, J.P.; Hüsler, F.; Sütterlin, M.; Neuhaus, C.; Wunderle, S. Daytime low stratiform cloud detection on AVHRR imagery. Remote Sens. 2014, 6, 5124–5150. [Google Scholar] [CrossRef]
- Weston, M.; Temimi, M. Application of a nighttime fog detection method using SEVIRI over an arid environment. Remote Sens. 2020, 12, 2281. [Google Scholar] [CrossRef]
- Shin, D.G.; Park, H.M.; Kim, J.H. Analysis of the fog detection algorithm of DCD method with SST and CALIPSO data. Atmosphere 2013, 23, 471–483. [Google Scholar] [CrossRef]
- Suh, M.S.; Lee, S.J.; Kim, S.H.; Han, J.H.; Seo, E.K. Development of land fog detection algorithm based on the optical and textural properties of fog using COMS data. Korean J. Remote Sens. 2017, 33, 359–375. [Google Scholar] [CrossRef]
- Han, J.H.; Suh, M.S.; Kim, S.H. Development of day fog detection algorithm based on the optical and textural characteristics using Himawari-8 data. Korean J. Remote Sens. 2019, 35, 117–136. [Google Scholar] [CrossRef]
- Kim, S.H.; Suh, M.S.; Han, J.H. Development of fog detection algorithm during nighttime using Himawari-8/AHI satellite and ground observation data. Asia-Pac. J. Atmospheric Sci. 2019, 55, 337–350. [Google Scholar] [CrossRef]
- Ryu, H.S.; Hong, S. Sea fog detection based on Normalized Difference Snow Index using advanced Himawari imager observations. Remote Sens. 2020, 12, 1521. [Google Scholar] [CrossRef]
- Han, J.H.; Suh, M.S.; Yu, H.Y.; Roh, N.Y. Development of fog detection algorithm using GK2A/AMI and ground data. Remote Sens. 2020, 12, 3181. [Google Scholar] [CrossRef]
- Yu, H.Y.; Suh, M.S. Development of High-Resolution Fog Detection Algorithm for Daytime by Fusing GK2A/AMI and GK2B/GOCI-II Data. Korean J. Remote Sens. 2023, 39, 1779–1790. [Google Scholar] [CrossRef]
- Chung, S.R.; Ahn, M.H.; Han, K.S.; Lee, K.T.; Shin, D.B. Meteorological products of Geo-KOMPSAT 2A (GK2A) satellite. Asia-Pac. J. Atmos. Sci. 2020, 56, 185. [Google Scholar] [CrossRef]
- Lee, H.B.; Heo, J.H.; Sohn, E.H. Korean fog probability retrieval using remote sensing combined with machine-learning. GISci. Remote Sens. 2021, 58, 1434–1457. [Google Scholar] [CrossRef]
- Piani, C.; Weedon, G.P.; Best, M.; Gomes, S.M.; Viterbo, P.; Hagemann, S.; Haerter, J.O. Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J. Hydrol. 2010, 395, 199–215. [Google Scholar] [CrossRef]
- Durai, V.R.; Bhradwaj, R. Evaluation of statistical bias correction methods for numerical weather prediction model forecasts of maximum and minimum temperatures. Nat. Hazards 2014, 73, 1229–1254. [Google Scholar] [CrossRef]
- Jung, H.C.; Suh, M.S. Correction of mean and extreme temperature simulation over south Korea using a trend-preserving bias correction method. Atmosphere 2015, 25, 205–219. [Google Scholar] [CrossRef]
- Kang, T.H.; Suh, M.S. Detailed Characteristics of Fog Occurrence in South Korea by Geographic Location and Season—Based on the Recent Three Years (2016–2018) Visibility Data. J. Clim. Res. 2019, 14, 221–244. [Google Scholar] [CrossRef]
- Lee, H.K.; Suh, M.S. Objective classification of fog type and analysis of fog characteristics using visibility meter and satellite observation data over South Korea. Atmosphere 2019, 29, 639–658. [Google Scholar] [CrossRef]
- Kim, E.J.; Park, S.Y.; Yoo, J.W.; Lee, S.H. Fog type classification and occurrence characteristics based on fog generation mechanism in Korea Peninsula. J. Environ. Sci. Int. 2023, 32, 883–898. [Google Scholar] [CrossRef]
- Wu, D.; Lu, B.; Zhang, T.; Yan, F. A method of detecting sea fogs using CALIOP data and its application to improve MODIS-based sea fog detection. J. Quant. Spectrosc. Radiat. Transf. 2015, 153, 88–94. [Google Scholar] [CrossRef]
Channel | AMI Band | Central Wavelength [µm] | Spatial Resolution [km] | Usage |
---|---|---|---|---|
1 | VIS0.4 | 0.470 | 1 | - |
2 | VIS0.5 | 0.511 | 1 | - |
3 | VIS0.6 | 0.640 | 0.5 | O |
4 | VIS0.8 | 0.856 | 1 | - |
5 | NIR 1 1.3 | 1.374 | 2 | - |
6 | NIR1.6 | 1.610 | O | |
7 | IR 2 3.8 | 3.830 | O | |
8 | WV 3 6.2 | 6.241 | - | |
9 | WV6.9 | 6.952 | - | |
10 | WV7.3 | 7.344 | - | |
11 | IR8.7 | 8.592 | O | |
12 | IR9.6 | 9.625 | - | |
13 | IR10.5 | 10.403 | O | |
14 | IR11.2 | 11.212 | O | |
15 | IR12.3 | 12.364 | O | |
16 | IR13.3 | 13.310 | O |
Code | MAM | # of Fog 1 | Code | JJA | # of Fog | Code | SON | # of Fog | Code | DJF | # of Fog |
---|---|---|---|---|---|---|---|---|---|---|---|
T1 | 03.01.20 | 139 | T6 | 07.26.19 | 82 | T11 | 09.24.19 | 304 | T16 | 12.08.19 | 127 |
T2 | 03.05.21 | 525 | T7 | 08.25.19 | 73 | T12 | 09.29.19 | 327 | T17 | 12.28.20 | 501 |
T3 | 03.08.21 | 223 | T8 | 08.26.19 | 137 | T13 | 10.04.19 | 326 | T18 | 01.24.21 | 97 |
T4 | 03.14.21 | 422 | T9 | 08.30.19 | 247 | T14 | 10.20.19 | 717 | T19 | 02.07.21 | 404 |
T5 | 03.25.21 | 96 | T10 | 08.31.19 | 42 | T15 | 11.06.19 | 553 | T20 | 02.13.21 | 113 |
V1 | 04.17.21 | 205 | V4 | 06.06.21 | 27 | V7 | 09.30.19 | 354 | V10 | 12.11.19 | 106 |
V2 | 05.03.21 | 106 | V5 | 06.12.21 | 100 | V8 | 11.05.19 | 498 | V11 | 02.13.20 | 124 |
V3 | 05.19.21 | 258 | V6 | 06.19.21 | 82 | V9 | 11.12.19 | 271 | V12 | 12.08.21 | 254 |
Step | Test Element | Definition | Threshold | Category | SFC Type | |
---|---|---|---|---|---|---|
Start | All fog | L | S | |||
1 | ΔVIS | <3.0% | Clear | O | O | |
2 | ΔFTs | <−4.25 K >1.0 K | Cloud Clear | O | O | |
3 | NLSD_VIS | ≥0.2 | Unknown | O | O | |
4 | BTD1 | <−19.0 K | Clear | O | O | |
5 | NDSI | <−0.15 >0.4 | Clear Snow | O | - | |
6 | BTD2 | >4.0 K | Cloud | O | O | |
7 | BTD3 | >−1.3 K | Clear | O | O | |
8 | Strict threshold test | ΔVIS > 4.0% ΔFTs > −4.0 K NLSD_VIS < 0.1 | Fog (else Unknown) | O | - | |
9 | DCD | Unknown | O | O | ||
10 | ΔDCD | DCD(t) − DCD(t − 1) | −0.14 < ΔDCD < 0.35 | Unknown | O | - |
Visibility [km] | RH [%] | WS [m/s] | Land–Sea Mask | Observation Fog |
---|---|---|---|---|
<1 | ≥88 | <2.5 | Land/Coast | Fog |
≥2.5 | Land | Non-fog | ||
Coast | Fog | |||
<88 | - | Land/Coast | Non-fog | |
No data | Land/Coast | Fog | ||
1–2 | ≥98 | <1.5 | Land/Coast | Fog |
≥1.5 | Land | Non-fog | ||
Coast | Fog | |||
No data | Land/Coast | Non-fog | ||
≥2 | - | - | Land/Coast | Non-fog |
GK2A_HR_FDA | Observation Fog | |||
---|---|---|---|---|
Fog | Non-fog | |||
Nearest satellite pixel (1:1 vali.) | Fog | Hit (H) | Fog | False alarm (F) |
Non-fog | Miss (M) | Non-fog | Correct negative (C) | |
# of fog pixel for 3 × 3 pixels (1:9 vali.) | ≥1 | Hit (H) | ≥5 | False alarm (F) |
=0 | Miss (M) | <5 | Correct negative (C) |
Validation Method | 20 Training Cases | 12 Validation Cases | |||||||
---|---|---|---|---|---|---|---|---|---|
1:9 Vali. | 1:1 Vali. | 1:9 Vali. | 1:1 Vali. | ||||||
Before | After | Before | After | Before | After | Before | After | ||
POD | Mean | 0.74 | 0.75 | 0.60 | 0.61 | 0.66 | 0.65 | 0.50 | 0.48 |
SD | 0.13 | 0.13 | 0.15 | 0.14 | 0.15 | 0.16 | 0.16 | 0.17 | |
FAR | Mean | 0.59 | 0.56 | 0.65 | 0.63 | 0.62 | 0.56 | 0.69 | 0.65 |
SD | 0.20 | 0.21 | 0.17 | 0.17 | 0.27 | 0.28 | 0.24 | 0.25 | |
Bias | Mean | 1.79 | 1.71 | 1.70 | 1.63 | 1.71 | 1.49 | 1.61 | 1.38 |
SD | 1.42 | 1.25 | 1.39 | 1.21 | 2.45 | 2.59 | 2.53 | 2.67 | |
CSI | Mean | 0.36 | 0.38 | 0.29 | 0.30 | 0.32 | 0.35 | 0.24 | 0.26 |
SD | 0.14 | 0.15 | 0.11 | 0.11 | 0.20 | 0.20 | 0.15 | 0.14 |
Validation Method | Status | POD | FAR | KSS | Bias | CSI |
---|---|---|---|---|---|---|
1:1 vali. | Before | 0.21 | 0.18 | 0.02 | 0.26 | 0.20 |
After | 0.55 | 0.28 | 0.27 | 0.76 | 0.45 | |
1:9 vali. | Before | 0.39 | 0.13 | 0.27 | 0.45 | 0.37 |
After | 0.72 | 0.18 | 0.55 | 0.88 | 0.63 |
Validation Method | Status | POD | FAR | KSS | Bias | CSI | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
1:1 vali. | Before | 0.62 | 0.16 | 0.71 | 0.16 | −0.09 | 0.19 | 2.14 | 2.63 | 0.25 | 0.11 |
After | 0.60 | 0.15 | 0.69 | 0.17 | −0.10 | 0.18 | 1.93 | 2.44 | 0.26 | 0.11 | |
1:9 vali. | Before | 0.76 | 0.12 | 0.65 | 0.23 | 0.11 | 0.18 | 2.20 | 2.61 | 0.31 | 0.16 |
After | 0.74 | 0.12 | 0.63 | 0.23 | 0.11 | 0.18 | 2.00 | 2.34 | 0.33 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.-H.; Suh, M.-S.; Yu, H.-Y.; Kim, S.-H. Improvement of High-Resolution Daytime Fog Detection Algorithm Using GEO-KOMPSAT-2A/Advanced Meteorological Imager Data with Optimization of Background Field and Threshold Values. Remote Sens. 2024, 16, 2031. https://doi.org/10.3390/rs16112031
Han J-H, Suh M-S, Yu H-Y, Kim S-H. Improvement of High-Resolution Daytime Fog Detection Algorithm Using GEO-KOMPSAT-2A/Advanced Meteorological Imager Data with Optimization of Background Field and Threshold Values. Remote Sensing. 2024; 16(11):2031. https://doi.org/10.3390/rs16112031
Chicago/Turabian StyleHan, Ji-Hye, Myoung-Seok Suh, Ha-Yeong Yu, and So-Hyeong Kim. 2024. "Improvement of High-Resolution Daytime Fog Detection Algorithm Using GEO-KOMPSAT-2A/Advanced Meteorological Imager Data with Optimization of Background Field and Threshold Values" Remote Sensing 16, no. 11: 2031. https://doi.org/10.3390/rs16112031
APA StyleHan, J. -H., Suh, M. -S., Yu, H. -Y., & Kim, S. -H. (2024). Improvement of High-Resolution Daytime Fog Detection Algorithm Using GEO-KOMPSAT-2A/Advanced Meteorological Imager Data with Optimization of Background Field and Threshold Values. Remote Sensing, 16(11), 2031. https://doi.org/10.3390/rs16112031