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Abstract: Evaluating sea surface temperature (SST) products is essential before their application
in marine environmental monitoring and related studies. SSTs from the in situ SST Quality Mon-
itor (iQuam) system, Advanced Microwave Scanning Radiometer 2 (AMSR2) aboard the Global
Change Observation Mission 1st-Water, and the Microwave Radiation Imager (MWRI) aboard the
Chinese Fengyun-3D satellite are intercompared utilizing extended triple collocation (ETC) and direct
comparison methods. Additionally, error characteristic variations with respect to time, latitude,
SST, sea surface wind speed, columnar water vapor, and columnar cloud liquid water are analyzed
comprehensively. In contrast to the prevailing focus on SST validation accuracy, the random errors
and the capability to detect SST variations are also evaluated in this study. The result of ETC analysis
indicates that iQuam SST from ships exhibits the highest random error, above 0.83 ◦C, whereas
tropical mooring SST displays the lowest random error, below 0.28 ◦C. SST measurements from
drifters, tropical moorings, Argo floats, and high-resolution drifters, which possess random errors
of less than 0.35 ◦C, are recommended for validating remotely sensed SST. The ability of iQuam,
AMSR2, and MWRI to detect SST variations diminishes significantly in ocean areas between 0◦N and
20◦N latitude and latitudes greater than 50◦N and 50◦S. AMSR2 and iQuam demonstrate similar
random errors and capabilities for detecting SST variations, whereas MWRI shows a high random
error and weak capability. In comparison to iQuam SST, AMSR2 exhibits a root-mean-square error
(RMSE) of about 0.51 ◦C with a bias of −0.05 ◦C, while MWRI shows an RMSE of about 1.26 ◦C with
a bias of −0.14 ◦C.

Keywords: sea surface temperature; validation; AMSR2; MWRI; iQuam; extended triple collocation

1. Introduction

Sea surface temperature (SST) serves as a fundamental variable for monitoring, un-
derstanding, and predicting the fluxes of heat, momentum and gases across various scales,
which govern the intricate interplay between the atmosphere and the ocean [1–5]. SST pat-
terns exhibit close associations with subsurface dynamics, including fronts and eddies [6–8].
Alterations in SST patterns offer valuable insights into large-scale disruptions to global
circulation and multi-decadal climate changes [9–11]. Continuous monitoring of the spatial
and temporal distributions of SST is indispensable for advancing the understanding of the
mechanisms and impacts associated with SST variations.

In situ SST measurements can extend back over 160 years [12]. Traditionally, these
measurements were collected from moored buoys, drifting buoys, and ships [13]. How-
ever, these sources of data suffer from temporal and spatial discontinuities. In contrast,
satellite-based sensors including infrared radiometers and microwave radiometers pro-
vide an optimal method for global ocean SST observations [14]. In the infrared band, sea
temperature can be observed with a spatial resolution of a few kilometers and an accuracy
ranging from 0.3 to 0.6 ◦C [15–17]. However, infrared radiometers cannot observe SST
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under cloudy conditions, which restricts their application in global SST monitoring. In
contrast, microwave radiometers operate in the microwave band with longer electromag-
netic wave wavelengths, allows them to penetrate through clouds and rain, enabling the
observation of SST in all weather conditions [18].

Since 1978, with the launch of the Multichannel Microwave Radiometer (SMMR)
onboard the SEASAT spacecraft, satellite-based microwave radiometers have facilitated
global SST observations for several decades [14,19]. Compared with ship observation,
SST accuracy derived from SMMR is 0.75 ◦C due to inadequate calibration [20]. The
launch of the Tropical Rainfall Measuring Mission Microwave Imager (TMI) facilitated
the acquisition of high-quality microwave SST data. Compared with Reynolds and
Smith SST analysis and in situ measurements, TMI SST products were shown have
a standard deviation below 0.6 ◦C [21,22]. Since then, satellite-based microwave
radiometers, such as the Advanced Microwave Scanning Radiometer-Earth Observing
System (AMSR-E), WindSat, Advanced Microwave Scanning Radiometer 2 (AMSR2),
and Global Precipitation Measurement Microwave Imager (GMI), have significantly
contributed to global SST observations. The accuracy of SST products derived from
these satellite-based microwave radiometers has been demonstrated to fall within the
range of 0.4~0.6 ◦C [23–26]. Scanning microwave radiometers aboard Chinese marine
dynamic environment satellites Haiyang 2A (HY-2A) and HY-2B were launched in
2011 and 2018, respectively. Compared to global in situ measurements from mooring
and Argo buoys, the root-mean-square error (RMSE) of the SST product derived from
the scanning microwave radiometer onboard HY-2A is approximately 1.7 ◦C [27,28].
Following updates to the design of the cold space antenna, sensor calibration, and
retrieval algorithm, the RMSE of SST observations from the scanning microwave
radiometer onboard HY-2B was reduced to 1.06 ◦C [29]. The Chinese Fengyun-3 (FY-3)
series of meteorological satellites, including FY-3 A, B, C, and D also equipped with
the Microwave Radiation Imager (MWRI), which were launched in 2008, 2010, 2013,
and 2017, respectively. Compared to global buoy measurements, FY-3C MWRI SST
exhibits a standard deviation of 1.22 K and 1.28 K for ascending and descending orbits,
respectively [30].

In this study, the accuracies of SST products from MWRI onboard FY-3D, AMSR2
onboard the Global Change Observation Mission 1st-Water (GCOM-W1), and in situ
SST Quality Monitor (iQuam) are evaluated using extend triple collocation (ETC) and
direct comparison methods. Additionally, their capability to detect SST variation is also
evaluated. The dataset and methods are described in Section 2, and the validation results
and discussion are presented in Sections 3 and 4, respectively. Section 5 provides a summary.

2. Materials and Methods
2.1. Data
2.1.1. MWRI SST

The MWRI is a primary sensor onboard the FY-3D satellite, operating at frequencies
of 10.65, 18.7, 23.8, 36.5, and 89 GHz. It conducts dual-polarized (vertical and horizontal)
observations at all frequencies [31]. Table 1 presents the instrument parameters of the
MWRI. The FY-3D satellite operates on a sun-synchronous orbit with a Local Time of the
Ascending Node (LTAN) at 14:00. This configuration implies that observations in the
ascending orbit occur during the daytime, while those in the descending orbit occur during
the nighttime.
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Table 1. Instrument parameters of MWRI.

Frequency
(GHz) Polarization Band Width

(MHz)
IFOV
(km)

NE∆T
(k)

10.65 V.H 180 51 × 85 0.5
18.7 V.H 200 30 × 50 0.5
23.8 V.H 400 27 × 45 0.5
36.5 V.H 900 18 × 30 0.5
89 V.H 2 × 2300 9 × 15 0.8

The SST product of FY-3 MWRI was generated using a multi-channel linear regres-
sion method [30]. This paper evaluates the Level 2 orbital SST product provided by the
National Satellite Meteorological Center. All Level 2 SST products from 30 April 2019 to 31
December 2023 were collected in February 2024 from the National Satellite Meteorological
Center website. Approximately 28 Level 2 orbital SST data files are available each day.
Each data file contains observations from a single pass and provides scientific parameters
including longitude, latitude, scanning line time, sea surface temperature, rain status, sea
ice status, and data quality markers. Quality indicators for the SST product are defined
as follows for these parameters: 1 denotes invalid observation pixels, 2 denotes precipita-
tion pixels, 3 denotes sea ice pixels, 4 denotes estimated SST values outside the range of
271.15–308.15 K, 50 represents the difference between estimated SST values and monthly
mean SST values less than 2.5 K, and 51 represents the difference between estimated SST
values and monthly mean SST values greater than 2.5 K.

2.1.2. AMSR2 SST

The AMSR2 onboard the GCOM-W1 satellite was launched on 18 May 2012 [32].
GCOM-W1 operates in a sun-synchronous orbit with the LTAN at 13:30 ± 15, similar to FY-
3D. This enhances the likelihood of matching SST observations between AMSR2 and MWRI.
AMSR2 operates in seven channels: 6.93, 7.3, 10.65, 18.7, 23.8, 36.5, and 89 GHz, with both
horizontal and vertical polarizations. Notably, AMSR2 includes an additional frequency of
7.3 GHz to mitigate radio frequency interference, distinguishing it from other spaceborne
microwave radiometers [32]. Table 2 presents the instrument parameters of AMSR2.

Table 2. Instrument parameters of AMSR2.

Frequency
(GHz) Polarization Band Width

(MHz)
IFOV
(km)

NE∆T
(k)

6.925 V.H 350 35 × 62 <0.34
7.3 V.H 350 35 × 62 <0.43

10.65 V.H 100 24 × 42 <0.70
18.7 V.H 200 14 × 22 <0.70
23.8 V.H 400 15 × 26 <0.60
36.5 V.H 1000 7 × 12 <0.70
89 V.H 3000 3 × 5 <1.20/1.402

The AMSR2 daily product, version 8.2, generated by the Remote Sensing Systems
(RSS), is evaluated in this study. The daily product files consist of seven parameters: time
(UTC), SST, 10 m surface wind speed, atmospheric water vapor, cloud liquid water, and
rain rate. All parameters are mapped onto a 0.25◦ grid, which is further divided into two
maps based on ascending and descending passes.

2.1.3. iQuam SST

In situ SST measurements are commonly used as the standard “ground truth” for cali-
brating and validating satellite SST retrievals. However, the quality of in situ measurements
varies depending on the platforms, sensors, agencies, and manufacturers involved [33]. To
meet the demands of satellite calibration and validation using in situ data, which require
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flexible and scalable quality control, the National Oceanic and Atmospheric Administration
(NOAA) developed a near real-time in situ SST Quality Monitor system (iQuam). iQuam
conducts advanced, flexible, and unified community consensus quality control for in situ
SST data, including duplicate removal, plausibility checks, platform tracking, SST spike
checking and reference and cross-platform verification [13].

This study uses iQuam version v2.1, which includes in situ SST measurements from
various platforms, such as conventional ships, drifters, tropical moorings (T-M), coastal
moorings (C-M), Argo floats, high-resolution drifters (HR-D), Integrated Marine Observing
System (IMOS) ships, and Coral Reef Watch (CRW) coastal buoys.

2.2. Method
2.2.1. Quality Control

Utilizing the quality flag associated with MWRI Level 2 SST product, pixels with
precipitation, sea ice, and anomalous temperature inversion data are initially filtered out.
Following the suggestion from Zhang et al. (2018), MWRI SST with a quality flag of 51
is excluded from this study [30]. Pixels with a quality flag of 51 account for 21% of the
total. All the SSTs from MWRI and AMSR2 with an off-shore distance of less than 50 km
are excluded, filtering the SST retrievals with land contamination.

iQuam SSTs with a quality level of 5, recommended for high-precision applications,
are selected for SST comparison in this study. To minimize discrepancies in sea water
temperature caused by different depths, iQuam SSTs with a measuring depth greater than
5 m are excluded.

2.2.2. Data Collocation

SSTs collected from MWRI, AMSR2, and iQuam span from 30 April 2019 to 31 Decem-
ber 2023. Initially, spatiotemporal matching is performed between MWRI SST and iQuam
SST, followed by matching the results with AMSR2 SST to create triple-collocations. During
the matching process, the spatial distance constraint between observations is set at 25 km,
and the time difference limit is 30 min. Considering the differences in the performance
of in situ measuring platforms and buoy types, the collocations are stratified into ships,
drifters, T-M, C-M, Argo, HR-D, and IMOS. Figure 1 exhibits the spatial distribution of the
collocations. To avoid interference from diurnal variations in SST during intercomparison,
the collocations are divided into daytime and nighttime groups. Table 3 lists the number
of collocations.
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Table 3. Counts of collocations.

Observation
Time

iQuam Platforms

ALL Ship Drifting T-M C-M Argo HR-D IMOS

Daytime 279,246 14,534 171,704 3194 67,499 2001 12,655 7625
Nighttime 268,786 11,702 171,578 3516 57,092 2318 13,244 9301

2.2.3. Comparison Method

Compared SST observations from infrared or microwave radiometers with in situ SST
measurements from moored buoys, drifting buoys, and ship-based buoys is a common
method for assessing the accuracy of remotely sensed SST [21,26,27,29,34]. This method as-
sumes that the in situ data represent the ground truth. However, in situ SST measurements
suffer from observational random and systematic observational errors, leading to biases and
uncertainties that cannot be neglected in high-precision applications [12,35]. Additionally,
in situ SST, which represents the temperature free of diurnal temperature variability, is akin
to foundation SST. In situ SST is typically measured by temperature sensors mounted on
various buoys and ships at depths of 1–5 m, whereas remote sensors observe the water tem-
perature at a shallow depth near the ocean surface [36,37]. Infrared radiometers measure
skin SST at a depth on the order of 0.01 mm, depending on the wavelength of the measure-
ment [37,38]. Microwave radiometers measure subskin SST, representing the temperature at
the bottom of the skin SST gradient at a depth of approximately 1 mm, corresponding to the
attenuation length of microwave radiation [37]. Two processes, the cool-skin and diurnal
warming effects, cause significant differences among the skin, subskin, and foundation
SSTs [39,40]. These differences introduce errors in validating remotely sensed SST when
using in situ SST as a single reference. To overcome the limitations of direct comparison
methods and generate more reliable validation results, a triple collocation (TC) method was
developed [41]. TC is a methodology for estimating the random error variances of three
mutually independent measurement systems when there is no known “truth” [41,42]. TC
has been widely used for validating soil moisture [43–45], precipitation [46,47], sea surface
salinity [48], SST [49], sea surface wind, and waves [41,50]. Based on TC, extended triple
collocation (ETC) was proposed. ETC utilizes the same assumptions as TC but derives
additional performance metrics, including the correlation coefficient of the measurement
system with respect to the unknown target and the scaled, unbiased signal-to-noise ratio.
ETC provides a complementary perspective compared to the error standard deviation [51].
However, TC or ETC should not substitute the direct comparison method because they
estimate limited product errors [42]. A single method can never capture all the relevant
characteristics of the relationship between the measurement system and the target, includ-
ing the measurement system’s bias, noise, RMSE, and sensitivity with respect to the target
variable [52].

SST measurement validation primarily aims to estimate the absolute accuracy of the
observations. However, it is also essential to evaluate the sensitivity of the SST measurement
system to local or larger-scale spatial variability and temporal changes, such as diurnal
warming and cooling. In this study, both ETC and direct comparison methods are utilized
to intercompare SSTs from MWRI, AMSR2, and iQuam. ETC is used to estimate the
independent random errors of the three SST measurement systems and their abilities
for SST variation detection. The direct comparison method is employed to calculate the
systemic bias and RMSE of MWRI SST and AMSR2 SST relative to iQuam SST. Additionally,
variations in errors with respect to time, latitude, SST, sea surface wind, columnar water
vapor, and columnar cloud liquid water are analyzed to deepen the understanding of
the errors.

(a) Extend triple collocation
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The most commonly used error model for TC analysis can be expressed as follows:

Xi = αi + βiT + εi (1)

where Xi(i ∈ {1, 2, 3}) represents collocated measurements from three independent mea-
surement systems, linearly related to the unknown truth value T. αi and βi represent the
systematic additive and multiplicative biases of measurement i relative to the truth, while
εi represents random noise. The underlying assumptions for the error model are as follows:
(i) the triple measurements are entirely independent of each other (zero cross-correlation
assumption); (ii) the errors of the three measurement systems are independent of each other
and unrelated to other products as long as the truth value is known (error orthogonality);
and (iii) the expected values of the errors are zero (zero error expectation) [53].

The covariances between the different measurement systems are given by

Qij = Cov
(
Xi, Xj

)
= E

(
XiXj

)
− E(Xi)E

(
Xj
)
= βiβjσ

2
T + βjCov(T,εi) + βiCov

(
T,εj

)
+ Cov

(
εi, εj

)
(2)

σ2
T = Var(T) (3)

Based on the assumptions ii and iii, we have Cov(T,εi) = 0, Cov
(
T,εj

)
= 0, Cov

(
εi,εj

)
= 0,

and E(εi) = 0. So, Equation (4) can be reduced to

Qij =

{
βiβjσ

2
T for i ̸= j

β2
i σ

2
T + σ2

ϵi
for i = j

(4)

where σ2
εi
= Var(εi

)
. If we define a new variable θi = βiεT, then Equation (5) can be

written as

Qij =

{
θiθj for i ̸= j
θ2

i + σ2
εi

for i = j
(5)

The error standard deviations (ESD) of the three measurement systems can be obtained
by solving six equations (Q11, Q12, Q13, Q22, Q23, Q33) with six unknown variables (θ1, θ2,
θ3, σε1 , σε2 , σε3 ).

σεi =


√

Q11 −
Q12Q13

Q23√
Q22 −

Q12Q23
Q13√

Q33 −
Q13Q23

Q12

 (6)

Beyond σε, ETC [51] obtains the correlation coefficient between T and Xi,

ρT,Xi
= ±


√

Q12Q13
Q11Q23

sign(Q13Q23)
√

Q12Q23
Q22Q13

sign(Q12Q23)
√

Q13Q23
Q33Q12

 (7)

where ρt,Xi
represents the correlation coefficient. Moreover, the scaled unbiased signal-to-

noise ratio SNRSUb is defined as follows [51].

SNRSub = ρ2
T,Xi

=
β2

i σ
2
T

β2
i σ

2
T + σ2

εi

=
SNRub

SNRub+1
(8)

where SNRub =
β2

i σ
2
t

σ2
εi

is unbiased signal-to-noise-ratio. SNRSUb contains the information

about the sensitivity of the measurement system and can be used to evaluate the noise level
of the measurement system if found suitable for detecting the signal of the variation in the
target variable [51]. In this study, SNRSUb was employed as an indicator for the ability of
the measurement system to detect SST variations.
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(b) Direct comparison

The bias and RMSE of MWRI SST and AMSR2 SST relative to iQuam SST are calculated
using the direct comparison method. These two parameters are defined as follows.

Bias =
∑n

i=0(SSTRS,i − SSTiQuam,i)

n
(9)

RMSE =

√
∑n

i=0(SSTRS,i − SSTiQuam,i)
2

n
(10)

where SSTRS represents the SST observed by MWRI or AMSR2, and SSTiQuam represents
the SST measurements of iQuam.

3. Results
3.1. ETC Analysis

ETC is utilized to assess the performance of three independent SST measurement
systems. ESD represents the random error of the measurement system, while SNRSUb
indicates the system’s ability to detect variations in SST. Tables 4 and 5 present the ESD and
SNRSUb values of iQuam, AMSR2, and MWRI during daytime and nighttime, respectively.
iQuam exhibits a total ESD of 0.41 ◦C during the day and 0.38 ◦C at night, with SNRSUb
values being closely matched between the two periods. Comparing the performance
of iQuam SST across different platforms reveals that ships consistently exhibit higher
random errors than other platforms. Drifters and HR-D, being of the same platform type,
share identical ESD values during both daytime and nighttime, yet the differences in their
spatial distributions lead to distinct SNRSUb values. Argo demonstrates nearly identical
performance to Drifters. T-M exhibits the lowest random error during both daytime and
nighttime, but its minimum SNRSUb values suggest inadequate noise levels for detecting
full tropical SST variations. Both T-M and C-M show higher random errors during the
day than at night, possibly due to diurnal warming effects causing SST differences at
varying depths. Compared to T-M, C-M displays greater random error, yet higher SNRSUb
values indicate that the noise level of C-M is acceptable for detecting coastal SST variation.
During the day, AMSR2 records a total ESD of 0.43 ◦C and SNRSUb of 0.9972. AMSR2’s
total ESD at night is slightly lower, while that of SNRSUb is slightly higher, indicating
better nighttime performance. MWRI exhibits similar characteristics but with a higher ESD
and lower SNRSUb Due to differences in the spatial distribution of the iQuam platform
(illustrated in Figure 1), the results of both AMSR2 and MWRI SST ETC analyses vary with
the iQuam platform.

Table 4. Results of ETC analysis during daytime.

Data ETC
Results ALL Ship Drifting T-M C-M Argo HR-D IMOS

iQuam
ESD ◦C 0.41 0.83 0.30 0.28 0.51 0.32 0.30 0.52
SNRSUb 0.9976 0.9892 0.9986 0.9852 0.9962 0.9988 0.9979 0.9962

AMSR2
ESD ◦C 0.43 0.65 0.42 0.15 0.38 0.45 0.38 0.31
SNRSUb 0.9972 0.9935 0.9974 0.9962 0.9979 0.9976 0.9966 0.9987

MWRI
ESD ◦C 1.22 1.27 1.21 0.89 1.21 1.22 1.21 1.17
SNRSUb 0.9775 0.9752 0.9777 0.8640 0.9778 0.9817 0.9637 0.9806
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Table 5. Results of ETC analysis during nighttime.

Data ETC
Results ALL Ship Drifting T-M C-M Argo HR-D IMOS

iQuam
ESD ◦C 0.38 0.84 0.32 0.20 0.41 0.35 0.32 0.54
SNRSUb 0.9978 0.9896 0.9985 0.9913 0.9976 0.9985 0.9975 0.9960

AMSR2
ESD ◦C 0.41 0.58 0.39 0.21 0.42 0.34 0.36 0.44
SNRSUb 0.9975 0.9952 0.9976 0.9913 0.9975 0.9986 0.9969 0.9975

MWRI
ESD ◦C 1.19 1.17 1.18 0.97 1.13 1.20 1.17 1.15
SNRSUb 0.9788 0.9799 0.9787 0.8016 0.9810 0.9823 0.9666 0.9828

3.2. Direct Comparison

The systemic bias and RMSE of SST observations from AMSR2 and MWRI are es-
timated through direct comparison with SST measurements from iQuam serving as the
ground truth. These parameters bolster confidence in the operational application of re-
motely sensed SST and provide crucial insights for enhancing retrieval algorithms. It
is noteworthy that, considering the random error assessed by ETC analyses (listed in
Tables 4 and 5) and the spatial distribution of each iQuam platform, only SST measure-
ments from Drifter, T-M, Argo, and HR-D are chosen for direct comparison in this section
and error analyses in Section 3.2. Figure 2 illustrates density plots of AMSR2 SST (y-axis)
versus iQuam SST (x-axis). Compared to iQuam SST, AMSR2 SST exhibits a total bias of
−0.04 ◦C and an RMSE of 0.52 ◦C during daytime and a bias of −0.05 ◦C and an RMSE
of 0.50 ◦C during nighttime. Similarly, Figure 3 presents the SST comparison between
MWRI and iQuam. The total bias and RMSE of MWRI SST during daytime are −0.33 ◦C
and 1.30 ◦C, respectively, while during nighttime, they are 0.05 ◦C and 1.22 ◦C. It can be
inferred that both AMSR2 and MWRI perform better at night than during the day, aligning
with the findings of the ETC analyses.
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The results of the ETC analyses indicate that the performances of AMSR2 and MWRI
vary depending on the location. To comprehensively assess the performance of SST mea-
surements from AMSR2 and MWRI across the global ocean, the spatial distributions of
SST bias relative to iQuam are examined. Figure 4 illustrates the mean difference between
AMSR2 SST and iQuam SST in geogrids with a spatial resolution of 1◦ during both daytime
and nighttime. As depicted in Figure 4a, AMSR2 SST during the daytime exhibits the
warmest bias in oceanic regions with latitudes greater than 60◦, with a maximum bias value
of approximately 0.8 ◦C. The abnormal warm bias of AMSR2 SST in the Arctic Ocean may
be attributed to ice contamination, along with the robustness of the retrieval algorithm in
cold water. In the northeast Pacific, tropical ocean, and coastal areas, AMSR2 SST during
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the daytime shows a warm bias ranging from 0.25 ◦C to 0.5 ◦C, while bias in the open
ocean ranges from −0.25 ◦C to 0.25 ◦C. The spatial distribution of bias for AMSR2 SST
during nighttime (Figure 4b) exhibits similarities. Compared to daytime bias, nighttime
bias for AMSR2 SST shows a warmer trend in the Southern Ocean and areas affected by the
Kuroshio and North Pacific currents, while the warm bias in the northeast Pacific weakens.
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It should be noted that the warm bias of AMSR2 SST relative to iQuam SST in coastal
areas is likely due to representativeness differences rather than errors in AMSR2 SST. The
footprint size of AMSR2 at 6.925 GHz is 35 × 62 km, which is the primary channel for SST
retrieval, indicating that AMSR2 SST closely represents the mean SST over this footprint.
In contrast, iQuam SST represents a point measurement. When SST variation within the
footprint is significant, the representativeness difference results in discrepancies between
AMSR2 and iQuam SSTs. Coastal areas typically exhibit significant SST variations, which
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highlight the representativeness difference. This situation also occurs in regions with
significant SST gradients, such as those affected by the Kuroshio current.

Figure 5 illustrates the spatial distribution of MWRI bias relative to iQuam SST during
both daytime and nighttime. Compared to AMSR2 SST, MWRI SST exhibits greater bias
variation and distinct spatial distributions. During the daytime, MWRI SST shows warmer
bias in oceanic regions with latitudes lower than −30◦, while most areas with latitudes
greater than −30◦ exhibit negative biases. As depicted in Figure 5b, MWRI SST during
nighttime displays warm bias across most oceanic regions in the Southern Hemisphere,
with a maximum bias of approximately 2.0 ◦C. In the northern Pacific and northern Atlantic,
MWRI SST during nighttime exhibits biases ranging from 0 to 0.5 ◦C.
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3.3. Error Analyses

To mitigate spurious signals in SST variation, all the SST measurement systems are
expected to have uniform performance across time and location. The SST observations
from satellite-based microwave radiometers are susceptible to crosstalk effects from sea
surface wind, water vapor, and cloud liquid water, as documented in prior studies [54,55].
In light of these considerations, variations in the ESD and SNRSUb of AMSR2, MWRI, and
iQuam are examined with respect to time, latitude, SST, sea surface wind, columnar water
vapor, and columnar cloud liquid water. Additionally, variations in bias and RMSE of
AMSR2 and MWRI SST, relative to iQuam SST, are concurrently analyzed.

(a) Temporal variation in error characteristics

Figure 6 depicts the temporal variation in error characteristics. Monthly and global
collocations are extracted to calculate the error characteristics. From April 2019 to December
2023, all error characteristics of AMSR2 and iQuam SST demonstrate temporal stability,
with daytime and nighttime curves nearly overlapping. During July 2019 to March 2022,
iQuam SST exhibits lower ESD and higher SNRSUb compared to AMSR2, indicating reduced
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random error and increased sensitivity to SST variation. However, from April 2019 to June
2019 and from April 2022 to December 2023, distinguishing between the ESD and SNRSUb
of AMSR2 and iQuam proves challenging. In contrast to AMSR2 and iQuam, MWRI
displays significantly higher ESD and lower SNRSUb. Abnormal fluctuations in ESD and
SNRSUb commence in February 2021, suggesting issues with MWRI sensor calibration or
data processing. Resolution of this problem occurs by July 2022, with subsequent recovery
of ESD and SNRSUb.

Compared to iQuam SST, the bias in AMSR2 SST shows slight fluctuations around
0 ◦C, while the RMSE remains close to 0.5 ◦C. In contrast, both the bias and RMSE of MWRI
SST exhibit larger and less regular fluctuations. From April 2019 to July 2022, the biases of
MWRI SST during daytime and nighttime vary between −0.6 ◦C and 0.9 ◦C and between
−1.25 ◦C and 0.8 ◦C, respectively. Similarly, the RMSE of MWRI SST during daytime and
nighttime fluctuates between 1.1 ◦C and 1.6 ◦C and between 1.1 ◦C and 1.7 ◦C, respectively,
over the same period. Since July 2022, the biases of MWRI SST during both daytime and
nighttime have been constrained within the range of −0.5 ◦C to 0.25 ◦C, with the RMSE
reduced to below 1.2 ◦C. Considering the variations in ESD, SNRSUb, bias and RMSE, it
can be concluded that the performance of MWRI has improved following the resolution of
sensor calibration or data processing issues since July 2022.
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(b) Latitudinal variation in error characteristics

Figure 7 exhibits how SST error characteristics of iQuam, AMSR2, and MWRI changing
with latitude. All the SST error characteristics of iQuam, AMSR2, and MWRI exhibit clear
latitudinal variations. The curves of ESD and SNRSUb for iQuam, AMSR2, and MWRI
during both daytime and nighttime nearly overlap, making it difficult to distinguish per-
formance differences between daytime and nighttime. The ESDs of all three measurement
systems show similar variation patterns with latitude, increasing as latitude increases.
However, MWRI exhibits significantly higher ESD values compared to the other two sys-
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tems. iQuam and AMSR2 have similar ESD values in the latitude range of 62◦S to 50◦N,
with AMSR2’s ESD surpassing that of iQuam for latitudes greater than 50◦N. In the latitude
range of 0◦ to 20◦N, all three measurement systems exhibit relatively low random error.
However, low SNRSUb values indicate poor performance in detecting SST variation within
this latitude range, especially around 10◦N where the SST variation is relatively weak. For
latitudes greater than 50◦N and 50◦S, SNRSUb values for all three measurement systems
decrease as latitude increases due to synchronous increases in random error. In areas
with high latitudes, sea surface wind speeds tend to increase, particularly in the Southern
Hemisphere, which can have a negative impact on SST retrievals.
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As illustrated in Figure 7c, the bias of AMSR2 SST compared with iQuam SST ranges
between −0.2 ◦C and 0.2 ◦C in the latitude range of 62◦S to 50◦N. Beyond 50◦N, the bias of
AMSR2 SST increases with latitude, peaking at 0.65 ◦C around 77◦N. The RMSE of AMSR2
SST varies between 0.5 ◦C and 0.6 ◦C in the latitude range of 62◦S to 35◦S, decreasing to
below 0.5 ◦C in the latitude range of 35◦S to 35◦N. From 35◦N to 77◦N, the RMSE of AMSR2
SST monotonically increases with latitude, reaching a maximum of 0.95 ◦C. The bias of
MWRI SST compared with iQuam SST exhibits irregular fluctuations ranging from −0.8 ◦C
to 1.1 ◦C, with the maximum occurring around 62◦S. During daytime, MWRI SST shows
warm biases for latitudes greater than 40◦S in the Southern Hemisphere and negative biases
in the latitude range of 26◦S to 72◦N. Conversely, during nighttime, the curve of the bias of
MWRI SST mostly lies above the zero-bias line from 62◦S to 7◦N, indicating a warm bias
across most of the Southern Hemisphere. However, from 7◦N to 72◦N, the curve of the bias
of MWRI SST during nighttime mostly lies below the zero-bias line, indicating a negative
bias across most of the Northern Hemisphere. This corresponds to the findings depicted in
Figure 5. The RMSE of MWRI SST increases with latitude, exhibiting a minimum value of
about 0.92 ◦C around 6◦N and a maximum value of about 1.67 ◦C around 62◦N. For MWRI,
both the bias and the RMSE show significant jumps around 35◦S, 0◦, 18◦N, and 52◦N.
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(c) Variation in error characteristics relate to SST

Error characteristics are depicted in Figure 8 within 2 ◦C SST intervals ranging from
−3 ◦C to 34 ◦C. The ESD of iQuam decreases with increasing SST. AMSR2 exhibits increas-
ing ESD from −3 ◦C to 8 ◦C and decreasing thereafter. MWRI’s ESD exhibits a similar
pattern with a higher magnitude, peaking around 10 ◦C. The SNRSUb of iQuam, AMSR2,
and MWRI exhibit similar variations with SST. Within the SST range of 2 ◦C to 27 ◦C,
SNRSUb slightly increases with rising SST, whereas it exhibits a rapid decline as SST de-
creases from 2 ◦C to −3 ◦C, and increases from 27 ◦C to 34 ◦C. The variations in ESD and
SNRSUb with respect to SST align with the latitudinal variation findings; low latitudes
correspond to high SST, while high latitudes correspond to low SST.

Illustrated in Figure 8c,d, the bias of AMSR2 SST relative to iQuam SST decreases
from 0.4 ◦C to 0 ◦C within the SST range of −3 ◦C to 10 ◦C, whereas the RMSE exhibits a
monotonic decline with increasing SST. Between SSTs of −3 ◦C and 5 ◦C, both daytime and
nighttime biases of MWRI SST decline sharply. Within the SST range of 5 ◦C to 34 ◦C, MWRI
SST exhibits a negative bias during the daytime, while nighttime bias varies around 0 ◦C.
Similarly to AMSR2 SST, the RMSE of MWRI SST decreases monotonically with increasing
SST, both during the daytime and nighttime, albeit with the daytime RMSE being smaller.
Compared to AMSR2 SST, the bias and RMSE of MWRI SST exhibit more significant
accuracy variations for SSTs below 5 ◦C. This is because MWRI has a lowest working
frequency of 10.7 GHz, while AMSR2 has a lowest working frequency of 6.925 GHz. As
concluded by Gentemann et al. (2010), 11 GHz SST retrievals are less accurate than 7 GHz
retrievals, particularly in colder water [56].
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(d) Variation in error characteristics relate to sea surface wind

Sea surface wind speed is an important environmental parameter that affects the
accuracy of SST measurements. High sea surface wind speeds increase ocean water mixing,
thereby reducing temperature differences between different depths. Additionally, white-
caps appear in association with high sea surface wind speeds, increasing the uncertainty of
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SST retrievals. Figure 9 illustrates the changes in error characteristics with sea surface wind
speed in 1 m/s intervals. Due to the limited number of triple collocations for sea surface
wind speeds higher than 15 m/s, the variation in error characteristics related to sea surface
wind is analyzed within the range of 0 m/s to 15 m/s.

The ESD of AMSR and MWRI exhibits a similar relationship with sea surface wind
speed. Fluctuations are minimal when the sea surface wind speed is less than 9 m/s.
However, when the wind speed exceeds 9 m/s, the ESD increases with increasing sea
surface wind speed. Furthermore, the ESD of AMSR2 and MWRI is higher during the
daytime than at nighttime. The SNRSUb of AMSR2 and MWRI tends to decrease when the
wind speed exceeds 9 m/s, with daytime values being lower than nighttime values. This
suggests that the performance of AMSR2 and MWRI during the daytime is inferior to that
during the nighttime. In contrast to AMSR2 and MWRI, the iQuam ESD decreases with
increasing wind speed when it exceeds 9 m/s. This occurs because the mixing of seawater
at high wind speeds reduces the difference between the subsurface temperature and the
skin temperature, thereby making the iQuam SST closer to the true SST value.

Compared to iQuam SST, the bias of AMSR2 SST exhibits slight oscillations near zero
when the sea surface wind speed exceeds 5 m/s. However, the absolute bias increases as
the wind speed decreases below 5 m/s. The RMSE of AMSR2 SST is minimized at a wind
speed of 4.5 m/s, approximately 0.38 ◦C. The RMSE of AMSR2 SST increases as the wind
speed deviates from 4.5 m/s, reaching its maximum of 0.84 ◦C at a wind speed of 15 m/s.
For MWRI SST, the bias is negative during nighttime when the sea surface wind speed
is less than 10 m/s. Positive bias occurs during the daytime when the wind speed is less
than 4.5 m/s or greater than 8 m/s. The RMSE of MWRI SST is relatively large at low and
high wind speeds, but smaller at moderate wind speeds. The minimum RMSE for MWRI
SST occurs at a wind speed of 8.5 m/s, approximately 1.23 ◦C, during the daytime, and at
a wind speed of 4.5 m/s, approximately 1.15 ◦C, during nighttime. During daytime, the
RMSE of MWRI SST is lower than that of nighttime when the wind speed exceeds 2 m/s.
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(e) Variation in error characteristics relate to columnar water vapor

The attenuation and radiation of water vapor in the atmosphere contribute to the
signal received by spaceborne microwave radiometers, which increase the uncertainty of
SST retrieval. Figure 10 illustrates the variation in error characteristics with columnar water
vapor. iQuam SST is not included in the analyses in this section because columnar water
vapor does not directly affect iQuam SST.

The ESD of AMSR2 decreases with increasing columnar water vapor within the range
of 2 mm to 30 mm, stabilizing at approximately 0.3 ◦C thereafter. The SNRSUb of AMSR2
decreases as columnar water vapor decreases below 10 mm or increases above 40 mm.
The bias of AMSR2 SST relative to iQuam SST is positive within the range of 3 mm to
11 mm of columnar water vapor, with a maximum bias of 0.2 ◦C. When columnar water
vapor exceeds 12 mm, the bias of AMSR2 SST ranges from −0.13 ◦C to 0 ◦C, with slight
fluctuations. For columnar water vapor less than 50 mm, the RMSE of AMSR2 SST decreases
with increasing columnar water vapor, whereas it tends to increase when columnar water
vapor exceeds 50 mm.

The ESD of MWRI increases with columnar water vapor when it is less than 8 mm,
and decreases when it exceeds 8 mm. The SNRSUb of MWRI follows a similar trend as
the ESD with columnar water vapor, peaking at 14 mm. Relative to iQuam SST, MWRI
SST during the daytime exhibits a negative bias except for columnar water vapor less than
7 mm or greater than 59 mm, while nighttime bias is positive. The RMSE of MWRI SST
decreases with columnar water vapor when it is less than 58 mm. However, in nighttime
conditions, it tends to increase when columnar water vapor exceeds 58 mm. Furthermore,
the RMSE of MWRI SST is lower during nighttime than during daytime, indicating higher
accuracy at night.
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High columnar water vapor in the atmosphere results in high attenuation and radi-
ation, which negatively affect SST retrieval from the brightness temperature received by
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satellite-based microwave radiometers. Consequently, both the bias and RMSE of MWRI
and AMSR2 increase with increasing columnar water vapor. For columnar water vapor
below 10 mm, the bias and RMSE also increase because lower columnar water vapor
commonly exists in areas with colder SST, where the accuracy of SST retrieval declines.

(f) Variation in error characteristics relate to columnar cloud liquid water

Like water vapor, the presence of liquid water in the atmosphere elevates the un-
certainty of SST retrieval by spaceborne microwave radiometers. Figure 11 depicts the
variation in error characteristics of AMSR2 and MWRI with columnar cloud liquid water.

With increasing columnar liquid water, the ESD of AMSR2 and MWRI tends to increase,
while the SNRSUb tends to decrease. The ESD during nighttime is consistently lower than
during the day, while the SNRSUb during nighttime is higher than that during the daytime.
These differences become more pronounced with higher levels of columnar liquid water.
The bias of AMSR2 SST relative to iQuam SST shows no obvious change with columnar
liquid water, but the RMSE increases with increasing levels of columnar liquid water.
The bias of MWRI SST during the daytime is consistently negative, with a mean value of
−0.35 ◦C. However, during the nighttime, it ranges from −0.4 ◦C to 0.15 ◦C, with positive
bias when columnar cloud liquid water is less than 0.1 mm and negative bias when it
exceeds 0.1 mm. The lower ESD, higher SNRSUb, and smaller RMSE during nighttime
compared to daytime indicate that both AMSR2 and MWRI perform better at night.
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4. Discussion

The accuracy of sea surface temperature (SST) observations obtained from satellite-
based infrared radiometers ranges from 0.3 to 0.6 ◦C [15–17], while those from microwave
radiometers range from 0.4 to 0.6 ◦C [23–26]. Nevertheless, the results of ETC analyses
indicate that the random error in in situ SST measurements falls within the range of 0.20 to
0.84 ◦C, a range consistent with previous findings [49]. Additionally, the random errors in
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iQuam SST measurements exhibit variability dependent on the platform and location. Thus,
employing iQuam SST measurements to validate SST observations from satellite-based
infrared radiometers and microwave radiometers requires careful consideration of in situ
SST selection. This study recommends the use of SST measurements from Drifters, T-M
platforms, Argo, and HR-D platforms, which exhibit relatively lower random errors, for
validating SST observations from satellite-based microwave radiometers. Conversely, SST
measurements from ships, C-M platforms, and IMOS should be utilized cautiously.

The RSS AMSR2 SST product is generated based on well-calibrated brightness temper-
atures [26]. A significant enhancement in version 8.2 is the elimination of spurious drift
in the AMSR2 SST, the version utilized in this study. The validation results demonstrate
higher accuracy compared to version 7.2 of the SST product [26]. The SST observations
from MWRI aboard FY-3D utilized in this study are operational products officially pub-
lished by the National Satellite Meteorological Center. The validation results are consistent
with those reported in [30], which validate the SST from MWRI aboard FY-3C. In a recent
study, Li et al. (2024) endeavored to enhance the accuracy of FY-3D MWRI SST retrieval
by incorporating pseudo-sea surface emissivity into the retrieval algorithm [57]. They
achieved an SST retrieval with a RMSE of 1.10 ◦C and a bias of 0.12 ◦C. It can be inferred
that the FY-3D MWRI SST has the potential for improvement.

Variations in SST magnitude across different locations can lead to inconsistencies
between the abilities of various platforms to detect SST variations and their associated
random errors or RMSE. For example, T-M platforms typically exhibit minimal random
errors; however, their minimum SNRSUb suggests that this noise level may not be adequate
for detecting fully tropical SST variations. Moreover, the SNRSUb introduced in ETC
evaluates only the relative performance of SST variation detection, rather than providing
information on the minimum detectable SST variation by the measurement system. This
aspect warrants further investigation in future research.

5. Summary

SST is crucial for marine environmental studies and has significant implications for
global climate and marine ecosystems. Validating remote-sensed SST products is a key step
preceding their operational applications. In situ SST measurements collected by various
platforms, utilizing different sensor types, and published by various organizations also
need to be carefully evaluated and selected before specific applications. The focus is on
intercomparing the in situ SST product of iQuam with the remotely sensed SST products
from the spaceborne microwave radiometers AMSR2 and MWRI. The intercomparisons
cover the period from 1 April 2019 to 31 December 2023, aiming to assess the quality
of these SST products. Both ETC and direct comparison methods are employed in the
intercomparison. In contrast to validation focused solely on SST measurement accuracy,
this study also evaluates the capability to detect SST variations and assesses the random
errors of the SST measurement systems.

While the iQuam SST product undergoes quality control, ETC analysis results demon-
strate that the quality of SSTs varies among different platforms. Ships exhibit the highest
random error, exceeding 0.83 ◦C, while T-M platforms demonstrate the minimum random
error, below 0.28 ◦C. Drifters and HR-D platforms exhibit equal random errors since they
belong to the same platform type. The total ESD and SNRSUb of AMSR2 are about 0.42 ◦C
and 0.9974, respectively, which are similar to those of iQuam. MWRI exhibits a total ESD
approximately 1.20 ◦C and a total SNRSUb around 0.9782. In comparison to iQuam and
AMSR2, MWRI demonstrates a higher total ESD and a lower SNRSUb, indicating higher
random error and weaker capability for detecting SST variations. The bias and RMSE of
AMSR2 and MWRI are examined through direct comparison using SST measurements from
Drifters, T-M platforms, Argo floats, and HR-D platforms as the ground truth. The RMSE of
AMSR2 SST is approximately 0.51 ◦C, with a bias of −0.05 ◦C. The RMSE of MWRI SST is
approximately 1.26 ◦C, with a bias of −0.14 ◦C, consistent with [30]. The RMSE of AMSR2
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SST and MWRI SST is lower during the daytime compared to nighttime. The biases of
AMSR2 and MWRI exhibit obvious spatial variations.

Further analysis reveals the good temporal stability of iQuam and AMSR2 SSTs. MWRI
experienced issues with sensor calibration or data processing between February 2021 and
July 2022. The bias and RMSE of MWRI SST decreased after the problem was resolved. In
the latitude range of 0◦ to 20◦N, as well as for latitudes greater than 50◦N and 50◦S, the SST
variation detection capability of iQuam, AMSR2, and MWRI significantly declines. For sea
surface wind speeds exceeding 9 m/s, the random error of iQuam declines with increasing
wind speed. However, the random errors and RMSE of AMSR2 and MWRI tend to increase,
resulting in a decline in SNRSUb. Compared with AMSR2 SST, the error characteristics of
MWRI SST exhibit significant variations related to columnar water vapor, indicating that
MWRI SST suffers from the crosstalk effect of columnar water vapor. Additionally, the error
characteristics of AMSR2 SST and MWRI SST show a similar relationship with columnar
cloud liquid water. As columnar cloud liquid water increases, the ESD and RMSE increase,
while SNRSUb declines.
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