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Abstract: The algorithm proposed in this paper aims at solving the problem of star map matching
in high-limiting-magnitude astronomical images, which is inspired by geometric voting star identi-
fication techniques. It is a two-step star map matching algorithm relying only on angular features,
and adopts a reasonable matching strategy to overcome the problem of poor real-time performance
of the geometric voting algorithm when the number of stars is large. The algorithm focuses on
application scenarios where there are a large number of dense stars (limiting magnitude greater than
13, average number of stars per square degree greater than 185) in the image, which is different
from the sparse star identification problem of the star tracker, which is more challenging for the
robustness and real-time performance of the algorithm. The proposed algorithm can be adapted to
application scenarios such as unreliable brightness information, centroid positioning error, visual
axis pointing deviation, and a large number of false stars, with high accuracy, robustness, and good
real-time performance.

Keywords: star map matching; dense star scenes; robustness; real time; high accuracy

1. Introduction

Space environment observation is the basis for ensuring the safety of space activities.
As an important part of space environment observation, optical observation of space or-
biting objects, improving the accuracy of orbital object celestial fixing, is one of the key
technologies to ensure high-precision orbit determination and space environment fore-
casting. Star map matching is the core technology to achieve high-accuracy astronomical
positioning, the key is to find suitable invariant features and use them to match stars in star
images and catalogs [1]. Brightness, angle, and their derived features are the basic features
of almost all star map matching algorithms [2]. The algorithm proposed in this paper only
relies on inter-star angular features, and the test results on the synthetic and measured
data show that it solves the star map matching problem well for dense star scenes, and can
provide a better basis for the astronomical positioning of orbital objects in images.

There are three main types of algorithms for star map matching: subgraph isomor-
phism, pattern recognition, and neural network [3]. In the subgraph isomorphism type of
algorithm, stars are considered as vertices in a graph, whose edges are generally the angles
between neighboring stars, and the matching is considered successful when a subgraph
in the star image matches with a subgraph in the database. The main algorithms include
triangle algorithms [4–10], and polygon algorithms [11–15] derived from triangle algo-
rithms. The number of candidate combinations for these algorithms is Cn

N , where N is the
number of stars in the field of view and n is the number of subgraph vertices; the number of
combinations in a dense stellar scene is massive, leading to a lack of real-time performance
of the algorithms [16]. Initially most of the algorithms in this type were similar to Liebe’s
algorithm [17,18], relying only on angular information independent of stellar brightness
information, but in order to speed up and reduce mis-matches later on many subgraph
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isomorphism-type algorithms chose the combination of angular and magnitude features
as the matching features, which resulted in algorithms that were sensitive to magnitude
noise [19].

Pattern recognition-type algorithms generally need to select two stars to form the base
axis according to the position and brightness, and correlate each star with the patterns or
features determined by its neighboring stars. When the similarity between the pattern in
the star image and the pattern in the database is the largest, the matching is considered
successful, but the false matching rate is high due to the influence of false stars and
brightness uncertainty, and the process of establishing the pattern and calculating the
similarity is extremely time consuming in the case of a large number of dense stars. Grid
algorithms are typical representatives of pattern recognition algorithms and are classified
into grid algorithms based on rectangular coordinates [20–24] and grid algorithms based
on polar coordinates [25–30]. Compared to subgraph isomorphism-type algorithms, grid
algorithms are more suitable for star-rich scenes, but when the limiting magnitude is
greater than magnitude 13 (more than 185 stars per square degree), this results in all grids
being full of stars, making the feature vectors lack differentiation. The solutions that can
be considered include (a) reducing the buffer radius, which leads to a sharp increase in
the length of the feature vector for each star, making the memory required to store the
catalog massive, and the excessively long vectors will inevitably slow down the matching
speed; (b) reducing the pattern radius, which seems to be a reasonable solution, but a large
number of faint stars have a very concentrated distribution of brightness, and their imaging
quality is highly susceptible to background interference. Therefore, the probability that the
closest neighboring star selected when building the grid using the catalogs is consistent
with the closest neighboring star in the grid in the image is very low, and the inconsistency
of the closest neighboring star will lead to the consequence of mis-matching or failure to
match. In addition, rotation-invariant additive vector sequence (RIAV) [31] also belongs
to subgraph isomorphism algorithms; it has a certain robustness to position deviation
and false stars, but its performance will significantly decrease as the number of stars and
magnitude of noise increase. In order to improve the shortcomings of pattern recognition
algorithms, Refs. [32,33] used the geometric voting (GMV) strategy to effectively improve
the robustness of the algorithms, but its real-time performance is poor when the number of
stars is large.

Neural network star map matching algorithms are an important direction in this
field in recent years, this type of algorithm usually uses artificial intelligence networks
to extract combinatorial features for star map matching; to obtain robust neural network
algorithms, over-parameterization is necessary [34]. Therefore, if the neural network star
identification algorithms need to have high robustness, the model needs to be large enough,
and its requirement of computational resources is often higher than that of traditional
algorithms. Ref. [35] utilizes neural networks and robust feature extraction methods for
star map matching in the lost-in-space (LIS) state of the star tracker, a database lookup step
is not required in the matching process as the neural network implicitly stores patterns
associated with the guide stars. Ref. [36] is a star map matching algorithm based on
Vgg16 convolutional neural networks. Ref. [37] proposed an end-to-end star recognition
network for smeared star scenarios. Ref. [38] constructed a spider web image and proposed
a hierarchical convolutional neural network model to recognize the spider web image.
Refs. [39,40] are all one-dimensional convolutional neural network (1D CNN)-based star
map matching algorithms. Neural networks have shown good potential in the field of star
map matching, but at present almost all neural network star map matching algorithms are
still only applicable to sparsely distributed star scenarios, in order to ensure robustness
in the dense star scenarios they will be faced with the challenge of over-parametrization,
resulting in too large a network model and the huge computational resources required.

From the above overview of star map matching algorithms, it can be seen that most
of the current algorithms are only applicable to sparse star scenes, and there are many
shortcomings in accuracy, robustness, and real-time performance for dense star scenes.
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Nowadays, the limiting magnitude of scientific astronomical telescopes for optical obser-
vation of orbiting objects is usually better than 13 magnitudes, while most of the limiting
magnitudes of star trackers are around 6 magnitudes. From Figure 1, it can be seen that
the average number of stars per square degree when the limiting magnitude is equal to
13 is about 185, while the average number of stars per square degree when the limiting
magnitude is equal to 6 is only 0.12, i.e., the former is about 1500 times as many as the
latter, and the number of stars in a single image of a dense star scenario is often larger than
that in a whole catalog of sparse stars. Moreover, in order to observe faint orbital objects,
exposure time is usually longer and the stars in the image are striped, resulting in larger
positioning errors compared to point-like images. Therefore, it is particularly important to
develop star map matching algorithms that are suitable for massive and dense star scenes.

Figure 1. Frequency distribution and cumulative counts of stars of different magnitudes. (The num-
bers in parentheses are the average number of stars per square degree.)

In general, the difficulties faced in star map matching of orbiting objects’ optical obser-
vation are mainly in the following three aspects: (1) These factors make it difficult to use
brightness as a reliable feature for star map matching because of the unreliability of bright-
ness information due to background interference such as clouds and earth–atmosphere
radiation, and the concentration of brightness when the magnitude is large due to the
inclusion of a large number of stars; (2) due to CCD stitching, background interference,
and not all stars being included in the catalogs, there are a large number of unmatched
stars in both the stellar images and the catalogs during the star map matching process (here,
unmatched stars in the image include false stars caused by noise and stars not included
in the catalog, and unmatched stars in the catalog include stars that are not imaged on
the star image although they are within the limiting magnitude due to CCD stitching
or other reasons); and (3) long exposures cause motion blur, resulting in large centroid
positioning errors. In addition, the center of the field of view is often an orbiting object
when the sensor is operating in target tracking mode, which causes significant problems
for matching algorithms that select the central bright star as the reference star. Unlike the
lost-in-space state, this scenario is usually known to have coarse pointing information,
and the inaccuracies in pointing come from three main sources: (1) errors in the reference
datum for pointing; (2) errors in the sensor’s main optical axis due to manufacturing and
assembly; and (3) errors due to the telescope’s pointing mechanism (pitch and azimuth
rotational axis), and in the case of space-based telescopes, also from errors due to the
satellite’s attitude adjustments [41].

The star map matching algorithm based on the GMV [32] is a good solution to the
above problem, which relies almost exclusively on star angular information and is robust
to unreliable brightness information, centroid positioning errors, and false stars. However,
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it is designed for star trackers with a sparse star distribution, and faces the following
shortcomings when solving the problem of high-density star map matching: (1) GMV votes
for all the stars in the star image, which is not a problem when there are very few stars,
but when a large number of stars exists, the real-time performance will be seriously affected;
and (2) although GMV is highly robust to unmatched stars, when there are massive amounts
of unmatched stars, its robustness will still be affected, resulting in a lower matching rate.
Aiming at the above deficiencies, this paper proposes an improved algorithm that optimizes
the voting process, which not only improves the real-time performance, but also enhances
the robustness to a large number of unmatched stars. And an implementation suitable
for matrix parallel computing is designed to avoid a large number of loops and judgment
instructions in the voting process and further improve the computational speed.

The rest of this paper is structured as follows. In Section 2, we describe in detail the
principle and implementation steps of the proposed algorithm. Section 3 deals with the
verification of the algorithm performance using simulated and measured data, as well
as a comparison with good star map matching algorithms. Section 4 discusses the com-
prehensive performance of star map matching algorithms. Finally, Section 5 concludes
the paper.

2. Star Map Matching

This part is the core of this paper, which treats the star map matching process as
two sets of three-dimensional vector transformation processes. The celestial sphere co-
ordinates of any star Ci in the catalog are (α, δ), then its unit right angle coordinates are
vCi = (cos αcos δ, sin αcos δ, sin δ)T . The image coordinates of any star Si in the catalog
are (x, y), then its image space coordinates are v = (x − x0, y − y0,− f0)

T , where (x0, y0)
are the rank coordinates of the center point of the catalog, f0 is the focal length, and the
corresponding unit vector is vSi = v/∥v∥. Let there be N pairs of matched stars in the
catalog and star image, forming the two unit vector groups shown in Equation (1):

VC =

vC1
. . .

vCN

; VS =

vS1
. . .
vSN

. (1)

According to the small-aperture imaging principle, the angles of the star vectors in the
catalog and star image are equal, so the transformation relation between matched star pairs
can be represented by the transformation matrix T, shown in Equation (2):

VC = VST. (2)

From the above analysis, it is clear that the key to matching is to find at least three
matching pairs of stars, and then, use the least squares method, as shown in Equation (3),
to calculate the transformation matrix T:

T =
(

VS
TVS

)−1(
VS

TVC

)
. (3)

In the process of calculating T, the measured data face the following problems: (1) the
stars recorded in the catalog are not all extracted in the image due to CCD stitching and
background occlusion; (2) the points extracted in the image are not all stars due to the
interference of radiation noise and orbital objects; and (3) the stellar angles in the image
are not exactly equal to those of the corresponding stars in the catalog due to unavoidable
positioning errors. Figure 2 shows the correspondence between catalog and star image stars.
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Figure 2. Correspondence between catalog and star image stars. The stars in (a) are located in the
catalog, the star points in (b) are extracted from the star image; C1, C2, C3 match with S1, S2, S3,
and no star points corresponding to C4 have been extracted from the star image; S4 is a false star due
to noise.

We follow the two-step matching strategy of rough matching first and fine matching
later, refer to the more robust geometric voting star recognition technique, and overcome its
disadvantage of poor real-time performance when the number of stars is large, and finally,
obtain a high-accuracy transformation matrix T, which effectively solves the problem of
star map matching in dense star scenarios.

2.1. Rough Matching

The purpose of rough matching is to find three matching pairs of stars, and then,
roughly calculate the transformation matrix T. When there are massive and dense stars,
the process of determining matching stars is computationally expensive. Therefore, in order
to improve real-time performance, only three pairs of matching stars need to be found
here—the minimum requirement for calculating the transformation matrix T. This strategy
is a significant improvement to the GMV algorithm. GMV tries to find all matching
star pairs at once, which requires voting on all stars, and the computational effort is
huge. In addition, the one-time voting strategy of GMV may lead to matching failure
when there are many unmatched stars, while the strategy in this paper is a feedback
iterative process that can avoid this problem as much as possible. The rough matching
process in this paper is similar to the RANSAC strategy, with the main difference that
the rough matching process in this paper selects the stars in order, whereas RANSAC
achieves its goal by repeatedly selecting a random subset of the data. In dense star scenes,
the RANSAC strategy faces the disadvantages of difficult subset selection, no upper limit
on the number of iterations, and no assurance of obtaining the correct transformation
matrix. Compared to RANSAC, the rough matching process in this paper avoids the
randomness of the algorithm, there exists an upper limit on the number of iterations, and it
can ensure obtaining the correct transformation matrix (if the correct transformation matrix
exists). In addition, since the rough matching process in this paper is similar to Liebe’s
method [17,18], in that the three matching star pairs are selected based on angles, it is
necessary to emphasize the main differences between the two in order to avoid confusion.
Firstly, the angular features used for identification are different, the angular features chosen
in this paper are only the angle distances between stars, while the angular features of
Liebe’s method include two angle distances and a spherical triangle inner angle. Secondly,
the search methods used to determine the matching star pairs are different. Simply because
the angular features selected in this paper are only the angle distances between stars,
this paper can use all the star angle information in the field of view to determine the
matching stars using the voting method, which is more robust. Liebe’s method, on the
other hand, is similar to the typical triangular star identification method, in which the main
star and the corresponding first neighboring star and second neighboring star need to be
identified first, and then, the candidate matches are found by comparing the features of
all the combinations, and when the number of stars and the degree of denseness are very
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large, neither real-time performance nor robustness of this strategy can be guaranteed.
The principle and implementation process of rough matching are described in detail below.

For any star point Si extracted from the star image, the problem of finding its matching
star Cj in the catalog can be described as the process of taking the maximum value of the
matching metric function shown in Equation (4):

Uij = max
(
D
(
Si, Cj

)
, j = 1, · · · , NC

)
, (4)

where Uij denotes the degree of match when star Si in the image is matched with star Cj
in the catalog (the maximum value of the degree of match between Si and all the stars in
the catalog). The matching metric function D(Si, Cj) is defined as follows. Let the angles
between all stars extracted from the star image and Si be ASi = [ASi ,S1 , ASi ,S2 , · · · , ASi ,SNS

],
and the angles between all stars in the catalog of the sky region of interest and Cj be
ACj = [ACj ,C1 , ACj ,C2 , · · · , ACj ,CNC

], then D(Si, Cj) = |ASi

⋂
ACj |, where | · | denotes the

potential of the set, i.e., the number of elements.
Since there are positioning errors of stars in the star image, it should be noted that the

above intersection operation does not require the angles to be exactly equal; as long as the
difference between the two angles is within the set threshold, they are considered equal.

In view of the large computational effort required to calculate the above matching
metric function when the number of stars is large, the joint sorting algorithm is used here
to reduce the computational effort and to further improve the real-time performance by
avoiding frequent loops and judgment instructions as much as possible in the specific
implementation of the algorithm. Firstly, the angle vectors of the star image and the catalog
are joined, and then, the joint angle vectors are sorted, and the sorting result needs to return
the number of the original position at the same time, as shown in Figure 3.

Figure 3. Schematic diagram of joint sorting operation. The star image angle vector is in front and the
catalog angle vector is behind to form the joint angle vector. NS and NC are the number of elements
of the star image angle vector and the catalog angle vector, respectively.

After sorting, it is only necessary to check whether the angular difference between
adjacent combinations whose original position number is greater than NS and the other
less than or equal to NS is less than the set threshold.

The absolute value of the difference between adjacent elements of the angle vector
after sorting and the sum of adjacent elements of the original position number vector is
calculated, as shown in Equations (5) and (6):

∇A = [|Ak − Ak−1|]
NS+NC
k=2 , (5)

SIdx = [Idxk + Idxk−1]
NS+NC
k=2 , (6)
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where Ak and Idxk denote the value and ordinal number of the kth element, respectively,
∇A denotes the set consisting of the absolute values of the differences of all neighboring
elements, and SIdx denotes the set consisting of the sum of the ordinal numbers of all
neighboring elements. As shown in Equation (7), candidate combinations are selected
based on the result SIdx of Equation (6):

FM = Bool
(

SIdx > NS + 1
)

&Bool
(

SIdx < 2NS

)
, (7)

here “&” denotes the elementwise AND operation, FM is the logical matrix of candidate
combinations, and the element that is true represents the combination associated with it
as a candidate combination. To calculate the matching metric function it is also necessary
to eliminate angular differences greater than the threshold and to ensure that there are
no one-to-many combinations. Combinations with angular differences greater than the
threshold are eliminated using Equation (8):

·
FM = FM&Bool

(
∇A < TA

)
, (8)

where ∇A is the result of Equation (5) and TA is the set threshold value. The threshold TA
needs to be set according to the pixel scale and the stellar centroid positioning accuracy,
and it is recommended to set it to half of the pixel scale when the centroid positioning
accuracy is unknown.

Finally, the non-one-to-one combinations are processed and the matching metric
function is calculated. To simplify the calculation, this paper adopts the matching degree
maximum criterion, which can avoid loops and judgment instructions as much as possible.
In fact, the number of matching pairs (matching degree) that can be obtained according to
Figure 4 is not unique, and here, the maximum matching degree is the maximum number
of matching pairs that can be obtained.

Figure 4. Schematic diagram of the maximum matching degree calculated from
·
FM. L denotes the

number of subsegments in
·
FM whose elements are all true, and nk represents the number of true

elements in the kth subsegment.

As shown in Figure 4, the number of elements of the subsegments in
·
FM whose

elements are all true is counted, and then, the maximum matching degree is calculated as
shown in Equation (9):

D
(
Si, Cj

)
=

L

∑
k=1

⌊
nk + 1

2

⌋
, (9)

where “⌊·⌋” denotes rounding down. To avoid loops and judgment instructions as much
as possible, the following reference algorithm is given in this paper for the process of

calculating the maximum matching degree from
·
FM (Algorithm 1).
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Algorithm 1 Calculate Matching Degree

Input:
·
FM //Logical Matrix of Candidate Combinations

Output: D // Matching Degree

1: ∇
·
FM ⇐

·
FM[0 : end − 1]−

·
FM[1 : end]

2: Idx ⇐ 1 : ∇
·
FM.length()

3: ∇
··
FM ⇐ ∇

·
FM. ∗ Idx

4: remove(∇
··
FM.begin(),∇

··
FM.end(), 0)

5: A∇
··
FM = abs(∇

··
FM)

6: if ∇
··
FM[0] > 0 then

7: insert(A∇
··
FM.begin(), 0)

8: end if
9: if ∇

··
FM[end] < 0 then

10: tv ⇐ NS + NC − 1

11: insert(A∇
··
FM.end(), tv)

12: end if
13: tu ⇐ A∇

··
FM[1 : 2 : end]− A∇

··
FM[0 : 2 : end − 1]

14: tu ⇐ tu + 1 //Add 1 to all elements
15: tu ⇐ f loor(tu/2)
16: D ⇐ sum(tu)

Based on the above definition of the matching metric function and its calculation
method, the actual operation process of rough matching is described below.

A Calculate the Angle Matrix

The angles of stars extracted from the star image and the angles of stars in the sky
region of interest in the catalog are calculated separately to obtain the angle matrices AS
and AC, shown in Equations (10) and (11):

AS =


AS1,S1 · · · AS1,SNS

...
. . .

...
ASNS ,S1 · · · ASNS ,SNS

 =

 AS1
. . .

ASNS

, (10)

AC =


AC1,C1 · · · AC1,CNC

...
. . .

...
ACNC ,C1 · · · ACNC ,CNC

 =

 AC1
. . .

ACNC

, (11)

where NS and NC are the number of candidate stars in the image and catalog, respectively.
The selection rule for the stars in the catalog in Equation (11) is NC bright stars are selected
in the sky region of interest in the catalog, Nc = min(150, 1.5 × Ns), and the sky region
of interest is determined by the a priori rough visual axis pointing and the field-of-view
angle. When calculating the angle, in order to reduce the calculation, since the square of the
difference vector mode is proportional to the angle, it is recommended to use the square of
the difference vector mode instead of the angle, as shown in Equation (12):

l2 = ∥v1 − v2∥2 ∝ ⟨v1, v2⟩. (12)

B Finding Matching Stars

The angular vectors of the three stars extracted from the star image are selected,
Equation (4) is used to find the matching stars in the catalog, and the information is
recorded as shown in Table 1, where “Num_SM” denotes the star number in the star image,
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“Num_SC” denotes the star number in the catalog, and “Deg_Match” denotes the matching
degree of the candidate matching stars.

Table 1. Information on suspected matching stars recorded during rough matching.

Num_SM Num_SC Deg_Match

Si1 Cj1 Ui1j1

Si2 Cj2 Ui2j2

Si3 Cj3 Ui3j3

A preliminary test of the three candidate pairs of matched stars is performed, us-
ing whether the mutual angular differences are all less than a threshold, as shown in
Equation (13): 

∣∣∣ASi1,Si2 − ACj1,Cj2

∣∣∣ < TA∣∣∣ASi1,Si3 − ACj1,Cj3

∣∣∣ < TA∣∣∣ASi2,Si3 − ACj2,Cj3

∣∣∣ < TA

, (13)

where the threshold TA is the same as in Equation (8).
If the preliminary test is not passed, the pair with the lowest matching degree among

the three matching pairs is deleted, and then, an unmatched star is selected in the star
image and a match is found for that star in the catalog using Equation (4). The appeal step
is repeated until three matching pairs are found that pass the preliminary test.

C Determine the Rough Transformation Matrix

First, the transformation matrix for the rough matching process is calculated using the
three pairs of matched stars found, as shown in Equations (14) and (15):

T =
(

V3
S

)−1
V3

C, (14)

V3
S =

vSi1
vSi2
vSi3

, V3
C =

vCj1

vCj2

vCj3

. (15)

Then, the number of all matched stars is counted and a quadratic test is performed
on the rough transformation matrix. To count the number of all matching stars, all stars in
the chart need to be transformed using the rough transformation matrix T, as shown in
Equation (16). After that, the number of matching stars is counted by calculating whether
the angle between the transformed vector in the star image and the vector in the catalog is
less than a threshold value.

VT
S = VST, (16)

where VS and T are shown in Equations (1) and (14), respectively.
The matching star pairs need to satisfy the constraint that any star in the star image

has at most one star matching it in the catalog, and any star in the catalog has at most one
star matching it in the star image. To satisfy this constraint, the process of counting the
number of matching star pairs is as follows.

Calculate the angle matrix between the transformed star vector in the star image and
the star vector in the catalog, as shown in Equation (17):

ASC =


AS1,C1 · · · AS1,CNC

...
. . .

...
ASNS ,C1 · · · ASNS ,CNC

 =

 AS1,C
. . .

ASNS ,C

 =

 AS,C1
. . .

AS,CNC

T

, (17)
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where ASi ,Cj denotes the angle between the ith transformed star vector in the image (see
Equation (16)), and the jth star vector in the catalogs. ASi ,C and AS,Cj denote the ith row
and the jth column of ASC, respectively.

Use Equations (18) and (19) to obtain the logical matrix indicating the location of the
row and column minima, respectively.

FC = Bool


 AS1,C

. . .
ASNS ,C

 ==

 min
(
AS1,C

)
. . .

min
(

ASNS ,C

)

, (18)

FS = Bool


 AS,C1

. . .
AS,CNC

T

==

 min
(
AS,C1

)
. . .

min
(

AS,CNC

)


T
. (19)

The logical matrices indicating the location of the row and column minima are ele-
mentwise AND to obtain the logical matrix indicating the candidate matches, as shown in
Equation (20):

F = FC&FS. (20)

Use Equation (21) to check whether the angle value of all candidate matches in ASC
indicated in F is smaller than the matching threshold TA. If it is smaller, it is judged as a
match, otherwise it is judged as no match, and the corresponding element in F is set to false.

·
F = F&(ASC < TA). (21)

If
·
Fij = true, this means that the star in the catalog that has the smallest angle to the star Si

in the star image is Cj, and similarly the star in the star image that has the smallest angle to
the star Cj in the catalog is Si, and the angle between the two is small enough (less than
the threshold) so that the two can be considered to be a match. Therefore, the number of

true elements in
·
F is the number of matching star pairs that need to be counted. The rough

transformation matrix is tested again using the counted number of matched star pairs. If the
number of matched star pairs is greater than the matching threshold TN , the rough match is
judged to be successful, otherwise new matched star pairs need to be found until it passes
the test. In this paper, the setting is TN = max(100, min(NS, NC)/2), in which NS and
NC are the number of candidate stars in the image and catalog, respectively. In summary,
Figure 5 gives the detailed flow of the rough matching process.

Figure 5. Rough matching process flow chart.

2.2. Fine Matching

The accuracy of the transformation matrix obtained by the rough matching process
is limited due to the stellar centroid localization error. In this paper, the least squares
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iterative algorithm is used to further improve the accuracy of the transformation matrix.
The process uses adaptive thresholding to delete matched star pairs with large errors and
uses least squares iterative techniques to continuously improve the matching accuracy
of the transformation matrix. The vectors of matched star pairs obtained from the rough
matching process, as shown in Equation (22), are used as the iterative initial values for
fine matching.

V0
C =

 vC1
. . .

vCN0

; V0
S =

 vS1
. . .

vSN0

. (22)

The iterative initial transformation matrix for the fine matching process is calculated
using the least squares method, as shown in Equation (23):

T0 =
(

V0
S

T
V0

S

)−1(
V0

S
T

V0
C

)
. (23)

The matching error is calculated using Equation (24):

E0 =
∥∥∥V0

C − V0
ST0

∥∥∥r

2
=


∥∥vC1 − vS1 T0

∥∥
2

. . .∥∥vCN0 − vSN0 T0
∥∥

2

, (24)

where ∥·∥r
2 denotes a row-by-row computation of 2-paradigm numbers. Adaptive thresh-

olds are calculated using Equation (25):

t0 = E0 + ktσE0 , (25)

where E0 and σE0 represent the expectation and standard deviation of the error E0, respec-
tively, and kt is the adjustment coefficient (it was set to 0.5 for the tests in this paper).

Matching star pairs with errors greater than the adaptive threshold are deleted, and the
transformation matrix is recalculated until the adaptive threshold is less than the set
matching accuracy threshold TM.

3. Synthesis and Measured Data Testing

The specifications of the testing platform are as follows: CPU, Montage Jintide(R)
C6248R×4; RAM, 128 GB. This platform is produced by super cloud (Beijing, China)
Technology Co., Ltd.

3.1. Introduction to Comparison Algorithms

Currently, there are few star map matching algorithms applicable to dense stellar
scenes in the accessible literature, and after sufficient analysis, RIAV [34] and GMV [37] are
selected as comparison algorithms in this paper. RIAV can be regarded as an improved grid
algorithm, which overcomes the problem of redundant or non-unique features of the grid
method to a certain extent; the GMV algorithm is a pattern recognition type of algorithm
aiming to improve robustness, and the algorithm proposed in this paper draws on its ideas
in designing the matching strategy. In view of the fact that no suitable neural network star
map matching algorithm for dense star scenes has been found, such algorithms are not
included in the comparison algorithms of this paper. During the test, because the original
feature calculation process of RIAV is too cumbersome, this paper optimizes it, and the
feature calculation results before and after the optimization are the same; in addition,
in order to improve the problem that the robustness of RIAV is too poor in the dense star
scenario, only relatively bright star images are input when the RIAV algorithm is running
(accounting for 20% of the total number of stars extracted from the image).
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3.2. Introduction to Test Data

This section carries out a comprehensive and rigorous test of the star map matching
algorithm using both synthetic and measured data.

3.2.1. Synthetic Data

The synthetic data are mainly used for a comprehensive test of the algorithm’s per-
formance in a specific scene. The parameters of the synthetic data are field of view of
2.5 degrees, image size of 1 k × 1 k, image bit depth of 16 bits, limiting magnitude of 13 Mv,
90% of the energy of the star image is concentrated in the 3 × 3 pixel region, the maxi-
mum diameter of the out-of-focus blur is 7 pixels, the length of the star image streak is
15 pixels, and the streak angle is 45 degrees. The image background parameters were set
by statistically counting 1000 measured image backgrounds at different times; see [42].

Random noise generated by cosmic rays is simulated using Gaussian-blur-processed
salt-and-pepper noise, and high-frequency random noise such as bad points is simulated
using salt-and-pepper noise. The brightness distribution of these noises is set to be consis-
tent with the brightness distribution of stars in the catalog. The proportion of noise to total
pixels, and the size of star image magnitude deviation and positioning deviation are set
according to different testing scenarios. The data synthesis process is shown in Figure 6.

Figure 6. Block diagram of the data synthesis process.

In order to ensure the completeness of the catalogs as much as possible, the catalogs
used in the simulation are the union of Tycho-2, UCAC5 (The fifth U.S. Naval Observatory
CCD Astrograph Catalog) and BSC5 (Yale Bright Star Catalog 5th Edition). The center of the
view axis points to the celestial equator (0 degrees of declination, 0 to 360 degrees of right
ascension), which has a large variation in star density, and the algorithm’s performance can
be verified in different star density scenarios, with the number of stars in the field of view
corresponding to the different right ascensions shown in Figure 8 of [42]. Figure 7 shows
typical synthetic images for presentation.
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(a) (b)
Figure 7. Typical synthetic star background image. (a) Synthetic image of a sparsely distributed star
sky region (visual axis pointing: 0° declination, 0° right ascension). (b) Synthetic image of a densely
distributed star sky region (visual axis pointing: 290° declination, 0° right ascension).

3.2.2. Measured Data

The measured data parameters are as follows: field of view, 2.5 degrees; image
size, 1 k × 1 k; image bit depth, 16 bits; limiting magnitude about 13 Mv; and a total of
338,577 measured images included in 523 tasks over 31 days. The imaging environment
of the measured data is more complex to better verify the comprehensive performance of
the algorithm, especially the real complex background simulation algorithm is difficult
to simulate realistically, so the measured images can be a good test of the algorithm’s
performance of the star map matching in the complex background.

3.3. Introduction to Evaluation Metrics

In this paper, matching rate, matching accuracy, and running time are used to evaluate
the robustness, accuracy, and real-time performance of the star map matching algorithms.

Matching rate: This metric is defined as the ratio of the number of successfully matched
image frames to the total number of image frames.

Matching accuracy: The deviation of the transformed position of the star image from
the reference true value position. For the synthetic image, truth positions are given in the
simulation, and the measured image truth is the celestial sphere coordinates of the star
in the catalogs. It should be noted that the exact position of the star is rounded in the
synthetic data, which results in a rounding error that is uniformly distributed over the
interval [−0.5, 0.5] with a mean value of about 0.38 pixels (for the synthetic data in this
paper it is about 3.36 arcseconds), as shown in Equation (26).

Es =

0.5∫
−0.5

0.5∫
−0.5

√
x2+y2dxdy ≈ 0.38(pixels). (26)

3.4. Test Results
3.4.1. Synthetic Data Visual Axis Pointing Deviation Test Results

The purpose of this test is to test the performance of the star map matching algorithm
under different sky regions and different visual axis pointing deviations. Specific configu-
ration: visual axis pointing deviation 0 to 1 degree, step size 0.03 degrees; each deviation
angle test 360 images (reference center pointing: 0 degrees of declination, 0 to 360 degrees
of right ascension, step size 5 degrees, select 5 points as the center of the image to be tested
in the concentric circle centered on the reference center pointing), a total of 12,240 images;
do not add the noise, magnitude deviation and positioning deviation, and the rest of the
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parameters for the default values. Figures 8–10 show the statistics of the matching rate,
average matching error, and average running time of each algorithm in this test scenario
with different visual axis pointing deviations.

Figure 8. Matching rates for different visual axis pointing deviations.

Figure 9. Average matching accuracy for different visual axis pointing deviations (black line is the
error introduced by the synthetic data).
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According to the test results, overall the proposed algorithm performs significantly
better than the RIAV and GMV algorithms. Specifically for the matching rate, the proposed
algorithm maintains a matching rate of over 98.6%, indicating that it is robust to visual
axis pointing deviation; the matching rate of GMV in the comparison algorithms fluctuates
between 52% and 66%, indicating that the GMV algorithm is insensitive to visual axis
pointing deviation but is not robust; the worst matching rate of the RIAV algorithm is
below 14%, indicating that the algorithm is very poor in robustness. In terms of matching
accuracy, the proposed algorithm maintains a high matching accuracy (overall average
error is only 0.01 arcseconds); RIAV and GMV are not very accurate and fluctuate a lot,
especially the GMV algorithm has an overall average error of 26.48 arcseconds. In terms
of running time, since the RIAV algorithm only tests 20% of the total number of stars its
real-time performance is optimal (the rest of the test scenarios are in the same situation,
and the running time of the RIAV algorithm will not be explained subsequently); the GMV
algorithm takes the longest time at about 2.5 s, and the overall average running time of the
proposed algorithm is 0.13 s, which is a very good real-time performance.

Figure 10. Average running time for different visual axis pointing deviations.

3.4.2. Synthetic Data False Star Test Results

The purpose of this test is to test the performance of the star map matching algorithm in
different sky regions and with different numbers of false stars. Here, false stars refer to noise
and bad points, which are simulated by adding patchy noise (salt-and-pepper noise after
Gaussian blurring) and highlighted individual pixels (salt-and-pepper noise). The specific
configuration is as follows: the proportion of patchy noise to the total pixels is from 0 to
5 × 10−4, with a step size of 1.613 × 10−5; the proportion of highlighted independent pixels
to the total pixels is from 0 to 5 × 10−5, with a step size of 1.613 × 10−6; i.e., the proportion
of total false stars to the total pixels is from 0 to 5.5 × 10−4, with a step size of 1.774 × 10−5;
each sub-scene was tested with 360 images (center pointing: 0 degrees of declination,
0 to 359 degrees of right ascension, 1 degree step), a total of 11,160 images; no magnitude
deviation and positioning deviation were added, and the rest of the parameters were
default values. Figures 11–13 show the statistics of the matching rate, average matching
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error, and average running time of each algorithm in this test scenario when the proportion
of false stars in the total pixels varies; where the horizontal axis percentage of false stars is
the ratio of the number of false stars to the total number of stars (the sum of the number of
real stars and false stars).

Figure 11. Matching rates for different numbers of false stars.

Figure 12. Average matching accuracy for different numbers of false stars (black line is the error
introduced by the synthetic data).
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Figure 13. Average running time for different numbers of false stars.

According to the test results, overall the proposed algorithm performs significantly
better than the RIAV and GMV algorithms. Specifically, the proposed algorithm maintains a
matching rate of more than 96.8% with only slight fluctuations, indicating that the algorithm
is robust to the number of false stars; its average matching error is the smallest and hardly
fluctuates with the number of false stars, and its average running time is around 0.16 s.
The matching rate, matching accuracy, and running time of the GMV algorithm deteriorate
with the increase in the number of false stars, indicating that the algorithm is more sensitive
to false stars. The RIAV algorithm has the worst overall performance and its performance
is also sensitive to false stars.

3.4.3. Synthetic Data Positioning Deviation Test Results

The purpose of this test is to test the performance of the star map matching algorithm
in different sky regions and with different positioning deviations. The process is simulated
by adding Gaussian noise with a mean value of 0 and a standard deviation of σ pixels in the
row and column directions of the stellar coordinates, respectively. Specific configurations:
0 ≤ σ ≤ 1.5, with a step size of 0.1 pixels, 360 images are tested for each value of σ (center
pointing: 0 degrees of declination, 0 to 359 degrees of right ascension, with a step size of
1 degree), a total of 5760 images; no noise and magnitude deviation are added, and the rest
of the parameters are default values. Figures 14–16 show the statistics of the matching rate,
average matching error, and average running time of each algorithm in this test scenario
with different positioning deviations.
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Figure 14. Matching rate for different positioning deviations.

Figure 15. Average matching accuracy for different positioning deviations (black line is the error
introduced by the synthetic data).
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Figure 16. Average running time for different positioning deviations.

According to the test results, overall the proposed algorithm has the best perfor-
mance, and the RIAV and GMV algorithms are worse. Specifically, for the matching rate,
the proposed algorithm basically stays above 95%, and only decreases when the position-
ing deviation is 1.5 pixels, which indicates that it is robust to positioning deviation; the
matching rate of the GMV algorithm in the comparison algorithms decreases drastically
with the increase in the deviation, which indicates that it is sensitive to the positioning
deviation; and the matching rate of the RIAV algorithm is the worst, around 10%, which
indicates that the robustness of the algorithm is very poor. In terms of matching accuracy,
the proposed algorithm can eliminate the outliers with large errors as soon as possible,
and its performance is optimal, and the overall error is lower than that introduced by the
synthetic data; the accuracy of RIAV and GMV is not high and fluctuates a lot, and the total
average matching error is more than 50 arcseconds. In terms of running time, the GMV
algorithm takes the longest time at about 5.3 s, and the proposed algorithm has an average
running time of about 0.2 s for a single frame, which meets the task requirements.

3.4.4. Synthetic Data Magnitude Deviation Test Results

The purpose of this test is to test the performance of the star map matching algorithm
in different sky regions and with different magnitude deviations. The process is simulated
by adding Gaussian noise with mean value 0 and standard deviation σ Mv to the actual
magnitude values. Specific configurations: 0 ≤ σ ≤ 1.5, with a step size of 0.05 Mv;
360 images are tested for each value of σ (center pointing: 0 degrees of declination, 0 to
359 degrees of declination, with a step size of 1 degree), for a total of 11,160 images; no
noise and positioning deviation are added, and the rest of the parameters are default values.
Figures 17–19 show the statistics of the matching rate, average matching error, and average
running time of each algorithm in this test scenario with different magnitude deviations.
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Figure 17. Matching rate for different magnitude deviations.

Figure 18. Average matching accuracy for different magnitude deviations (black line is the error
introduced by the synthetic data).
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Figure 19. Average running time for different magnitude deviations.

According to the test results, the proposed algorithm has a better matching rate,
matching accuracy, and runtime performance with little fluctuation, indicating that it
is insensitive to the magnitude deviation; the GMV algorithm basically stabilizes the
matching rate at about 60%, with little fluctuation in the matching error and runtime when
the magnitude deviation is less than 0.5 Mv, but the performance gradually deteriorates
with the increase in the magnitude deviation; and the RIAV algorithm still performs the
worst and is sensitive to the magnitude deviation.

3.4.5. Measured Data Test Results

The performance of the star map matching algorithms on measured images of dense
stars with complex backgrounds was tested using measured data. Figures 20–22 show the
statistics of the matching rate, average matching error, and average running time of each
algorithm for different tasks when tested using measured data.

According to the test results, overall the proposed algorithm outperforms the RIAV
and GMV algorithms. Specifically, the proposed algorithm maintains a matching rate of
100% for most of the tasks, and only a few tasks have a slightly lower matching rate due to
poor image quality and a large deviation in the visual axis pointing, indicating that it is
suitable for almost all scenes in the measured images; the GMV algorithm in the comparison
algorithm has a slightly lower matching rate than the proposed algorithm, maintaining a
matching rate of more than 94%, which reflects the high robustness characteristics of the
GMV algorithm; the RIAV algorithm has the worst matching rate and fluctuates greatly,
indicating that the algorithm cannot adapt to most of the scenes in the measured images.
In terms of matching accuracy, the proposed algorithm maintains a matching error of 0.5
to 1 arcseconds for most of the tasks, which is significantly better than the comparison
algorithms; the errors of both RIAV and GMV fluctuate greatly between 1 and 15 arcseconds.
In terms of running time, the proposed algorithm maintains an overall time of about 0.03 s,
which fully meets the real-time requirements; the GMV algorithm is still the most time
consuming, with a total average time of 0.92 s.
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Figure 20. Matching rate for different tasks.

Figure 21. Average matching accuracy for different tasks.
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Figure 22. Average running time for different tasks.

For a more in-depth analysis of the performance of the star map matching algorithms,
the matching errors of each algorithm are plotted in Figures 23–25, with the horizontal
and vertical axes showing the errors in the right ascension (∆αcos δ) and declination (∆δ)
directions, respectively. Each matched star corresponds to an error point on the figure, the
frequency distributions of the errors in the right ascension and declination directions are
given on the lower and right sides of the figure, respectively, and the statistical results
are given in the upper right corner. “Num” is the total number of matched stars, which
reflects the robustness of the algorithm, and the larger the value is, the better the algorithm
is; “mean∆∠” is the mean value of the error angle of all the star images (error angle: the
angle between the celestial sphere coordinates based on the transformation parameters
provided by the matching algorithm and the reference coordinates of the same star in the
catalog; it should be noted that this is different from the mean value of the error calculated
according to the number of images in Figure 21); the smaller the value is, the higher the
algorithm’s accuracy is; “mean∆αcos δ” and “mean∆δ” denote the mean values of the
errors in the right ascension and declination directions, respectively, and “std∆αcos δ” and
“std∆δ” denote the standard deviation of the errors in the right ascension and declination
directions, respectively. Ideally, the right ascension and declination errors should be
normally distributed, so the mean values of the right ascension and declination errors
should be close to 0, and the smaller the standard deviation is, the better the performance
of the algorithm is.

The error statistics show that the total number of matched stars of the proposed
algorithms is significantly more than that of the comparison algorithms, and the average
error angle of 0.77 arcsec (equivalent to about 0.1 pixel) is the smallest, which indicates
that the proposed algorithms are optimal in terms of robustness and accuracy. In terms
of error distribution, the mean error values of all the algorithms are basically around 0,
but the standard deviations of the errors in the right ascension and declination directions
of the proposed algorithm are significantly smaller than those of the comparison algorithm,
which indicate that the errors of the proposed algorithm in both the right ascension and
declination directions are more concentrated near 0.
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Figure 23. Matching error of RIAV.

Figure 24. Matching error of GMV.
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Figure 25. Matching error of the proposed algorithm.

4. Discussion

In this section, the comprehensive performance of the algorithms proposed in this
paper and the comparison algorithms are discussed. In order to evaluate the comprehensive
performance of the star map recognition algorithms, a scoring function of the following
equation is defined in reference [42]:

S =
1
N

N

∑
i=1

Ss
i
(
wa ∗ Sa

i + wt ∗ St
i
)
, (27)

where N is the number of matched image frames, Ss
i , Sa

i , and St
i are the performance scores

of matching rate, accuracy, and running time, respectively; wa = 0.8 and wt = 0.2 are the
weights of accuracy and running time, respectively, considering that the accuracy is more
reflective of the core performance of the algorithm than the running time in the practical
application, the weight of the accuracy is bigger here. Ss

i , Sa
i , and St

i are defined as follows:

Ss
i =

{
1 Success
0 Fall

, (28)

Sa
i = 100 × max

(
0, 1 − max(0, ai − Rai)

2 × max( f , Rai)

)
, (29)

where ai is the accuracy of the algorithm, Rai is the reference accuracy (for synthetic data it
is the introduced error, measured data is 0), f is the adjustment factor (3.4 arcseconds).

St
i =


100 0 ≤ ti ≤ 0.2s
90 0.2 < ti ≤ 0.5s
70 0.5 < ti ≤ 1s
50 1 < ti ≤ 3s
30 ti > 3s

, (30)
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where ti is the running time of the algorithm.
Table 2 shows the statistics of the comprehensive performance of the algorithm, where

“score” is the average score of all test scenarios to indicate the comprehensive performance
of the algorithm. The radar chart of the comprehensive performance of the star map
matching algorithm is shown in Figure 26.

Table 2. Comprehensive performance statistics of star map matching algorithms.

Pointing
Deviation False Star Positioning

Deviation
Magnitude
Deviation

Measured
Data Score

RIAV 8.46 3.33 6.48 5.61 55.48 15.87

GMV 38.43 3.75 5.08 19.18 68.17 26.92

Proposed
Method 98.97 97.75 96.39 98.91 90.08 96.42

According to the comprehensive performance evaluation results, the proposed algo-
rithm has significantly better comprehensive performance than the comparison algorithms,
and its performance is more balanced in each scene. Among the comparison algorithms,
the GMV algorithm performs reasonably well in the measured data, but its performance
is obviously insufficient in the synthetic data scenario not covered by the measured data,
indicating that the GMV algorithm is less suitable for the dense star scenario; the RIAV al-
gorithm has the worst performance overall, and according to the test results, this algorithm
is not suitable for star map matching in the dense star scenario.

Figure 26. Comprehensive performance radar charts for star map matching algorithms.
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5. Conclusions

In this paper, we propose a robust star map matching algorithm for dense star scenes,
which is derived from the geometric voting star map matching technique, relies on angular
features, includes two steps of rough matching and fine matching, and has the character-
istics of high accuracy, robustness, and good real-time performance. The synthetic data
test results show that the proposed algorithm is robust to stellar positioning error, false
stars, visual axis pointing deviation, and magnitude uncertainty in a dense star applica-
tion scenario. Its matching rate and matching accuracy are significantly better than the
comparison algorithm, and the average running time fully meets the task requirements.
The excellent performance of the algorithm is further verified by the results of processing
a large amount of real measurement data. Overall its comprehensive performance score
reaches 96.42, indicating that it is a relatively ideal star map matching algorithm for dense
star scenes. Finally, we present future related work. Given that the matching rate of the
proposed algorithm has not yet reached 100%, further research on more robust improve-
ment algorithms will be carried out; in addition, the development of a dense star scene star
map matching algorithm that does not rely on pointing information will also be a part of
future work.
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