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Abstract: The unknown relative motions between synthetic aperture radar (SAR) and a ground
moving target will lead to serious range cell migration (RCM) and Doppler frequency spread (DFS).
The energy of the moving target will defocus, given the effect of the RCM and DFS. The moving
target will easily produce Doppler ambiguity, due to the low pulse repetition frequency of radar,
and the Doppler ambiguity complicates the corrections of the RCM and DFS. In order to address
these issues, an efficient ground moving target focusing method for SAR based on scaled Fourier
transform and scaled inverse Fourier transform is presented. Firstly, the operations based on the
scaled Fourier transform and scaled inverse Fourier transforms are presented to focus the moving
targets in consideration of Doppler ambiguity. Subsequently, in accordance with the detailed analysis
of multiple target focusing, the spurious peak related to the cross term is removed. The proposed
method can accurately eliminate the DFS and RCM, and the well-focused result of the moving target
can be achieved under the complex Doppler ambiguity. Then, the blind speed sidelobe can be further
avoided. The presented method has high computational efficiency without the step of parameter
search. The simulated and measured SAR data are provided to demonstrate the effectiveness of the
developed method.

Keywords: Doppler ambiguity; computationally efficient; scaled Fourier transform (SCFT); scaled
inverse Fourier transform (SCIFT); synthetic aperture radar (SAR)

1. Introduction

Synthetic aperture radar (SAR) can image scenes of interest with high resolution with-
out being affected by time and weather. SAR can be used in military reconnaissance, traffic
monitoring, and other fields [1–10]. In the observed scene of interest, non-cooperative mov-
ing targets often appear. Therefore, in order to obtain the characteristics and information of
the moving targets, the indication processing of the ground moving targets using synthetic
aperture radar has become a research hotspot [11–18].

However, the unknown relative motion between the SAR platform and the moving
target can cause range cell migration (RCM) and Doppler frequency spread (DFS), making
it difficult to focus on the moving target [19,20]. RCM includes quadratic RCM (QRCM)
and linear RCM (LRCM), caused by target along- and cross-track velocities, respectively.
DFS induced by the along-track velocity will cause the target energy to be defocused along
the azimuth Doppler frequency. Therefore, RCM and DFS should be effectively eliminated
in order to obtain a well-focused result for the moving target [17–21]. In addition, due
to the low pulse repetition frequency (PRF) of SAR, Doppler ambiguity easily exists in
the moving target signal. Doppler ambiguity includes Doppler center blur and spectrum
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ambiguity [20,22]. In the azimuth dimension, when the Doppler center shift (DCS) of the
target signal is more than half that of the pulse repetition frequency, the target signal will
produce Doppler center blur. On the other hand, when the Doppler spectrum of the target
occupies two or more PRF bands, the target signal will produce Doppler spectrum splitting,
resulting in Doppler spectrum blurring. Complex Doppler ambiguity (including Doppler
spectrum and center ambiguity) complicates the correction of DFS and RCM.

The keystone transform (KT) [23–25] and the second-order keystone transform
(SOKT) [26,27] are widely used in moving target focusing, which can compensate the
LRCM or QRCM of a moving target without knowing the prior motion parameters of the
moving target. Subsequently, the Doppler KT (DKT) is proposed [28], which can remove
LRCM and QRCM. However, these methods (i.e., DKT, SKT, and KT) are troubled by
DFS and Doppler ambiguity. In order to solve the problem of Doppler ambiguity and
DFS, the 2D frequency matched filtering (2-DFMF) method based on the stationary phase
principle has been proposed [21]. However, when the time–bandwidth product is small,
the focusing performance of this method deteriorates dramatically. In order to solve the
problem of the influence of DFS, a method combining KT and Doppler filter has been
proposed [29]. Although this method can solve RCM and DFS at the same time, it requires
a multi-dimensional parameter search and has great computational complexity. In addition,
a method based on KT without parameter estimation has been proposed. Nevertheless,
this method is affected by Doppler spectrum splitting [30]. In [31], considering the blur-
ring of the Doppler spectrum, a piecewise KT-Doppler Lv’s transform algorithm has been
proposed. However, this algorithm verifies that the Doppler center shift operation used
to solve the Doppler spectrum ambiguity will be invalid when the spectrum bandwidth
is more than half that of PRF. In [20], a Deramp-KT processing (DKP) method based on
instantaneous range-Doppler processing has been proposed. However, this method does
not take into account the influence of the unknown along-track velocity of the moving
target, which leads to serious coherent accumulation loss.

In addition, various multi-dimensional searching methods have been developed to
obtain well-focused results, for example, radon-linear canonical transform [32], radon-
fractional Fourier transform [33], and extended generalized radon Fourier transform [34].
However, considering the multi-dimensional parameter search operation, the computa-
tional complexity of these algorithms is very large. In order to reduce the amount of
computational complexity, several one-dimensional search algorithms have been proposed,
for example, modified SOKT (MSOKT) [17] and improved axis-rotation–time-reversal
transform (IAR–TRT) [14]. Nevertheless, because the search operation is one-dimensional,
these methods’ computational costs are still high. In addition, the IAR–TRT method is
affected by the aliasing of the scaled frequency spectrum, and the MSOKT approach suffers
from the problem of blind speed sidelobe (BSSL).

On the basis of the previous work, a computationally efficient SAR ground moving
target imaging method is proposed in this paper. Firstly, a second-order phase estimation
method based on scaled Fourier transform (SCFT) is proposed. Secondly, an operation
based on improved slow-time reversal transform and scaled inverse Fourier transform
(ISTRT–SCIFT) is proposed for first-order phase estimation. Finally, according to the
estimated parameters, the focusing matched function is constructed to focus the moving
target. Furthermore, the features of cross terms related to the multiple target case are
analyzed in detail, and the spurious peak identification procedure is presented to eliminate
the effect of cross term. The processed results of the simulated and measured data show
that the proposed method and the spurious peak identification procedure are effective.

The main contributions of this study can be summarized as follows: (1) The proposed
approach can estimate the coefficients of the first- and second-order terms within only two
steps, and the operation steps are relatively simple. (2) The proposed method has robust to
complex Doppler ambiguity and avoids the searching operation of the Doppler ambiguity
number. (3) The proposed method can address the BSSL problem. (4) The developed
approach has a low computational cost because the parameter-searching step is avoided.
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(5) The spurious peak identification method that eliminates the influence of cross terms is
proposed based on a detailed analysis of multiple target focusing.

The remainder of this article is organized as follows: Section 2 introduces the proposed
method. Section 3 provides the experimental results. Section 4 presents the discussion
associated with the proposed method. Section 5 presents a summary of this paper.

2. Methods
2.1. Signal Model and Signal Characteristics

Figure 1 shows the geometric relationship between the ground moving target and the
platform in the SAR side-looking operation mode. During the coherent cumulative time Ta,
the point target moves from point A to point B. The platform flies along the straight line
at speed v. va and vc are the along-track velocity and the cross-track velocity of the target,
respectively. R0 represents the shortest slant range between the ground moving target and
the SAR platform. tn indicates the azimuth slow-time variable.
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Figure 1. Motion geometric model between the moving target and the SAR platform.

Combined with the motion geometric model shown in Figure 1, on the basis of Taylor
series expansion, the instantaneous slant range between the SAR and moving target can be
expressed as follows:

Rs(tn) =
√
(vtn − vatn)

2 + (R0 − vctn)
2

≈ R0 − vctn +
(v−va)

2

2R0
tn

2

= R0 + ρ0tn + ρ1tn
2

(1)

where ρ0 = −vc and ρ1 = (v− va)
2/2R0 represent the first and second coefficients of the

distance’s Taylor expansion, respectively.
The chirp signal emitted by the radar can be expressed as follows:

p(t) = rect(
t

Tp
) exp(jπγt2) exp(j2π fct) (2)

where rect( t
Tp
) =

{
1, |t| ≤ TP

2
0, |t| ≥ TP

2
represents the rectangular window function; and TP, fc, t,

and γ represent the pulse width, carrier frequency, range fast-time variable, and frequency
modulation rate, respectively.
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After range pulse compression processing [12,14,23], the model of the target echo
signal in the range-frequency and azimuth slow-time domain can be expressed as follows:

s1( f , tn) = rect(
f
B
) exp

{
− j4π

c
( f + fc)

[
R0 + ρ0tn + ρ1t2

n

]}
(3)

where c, f , and B are the speed of light, the range-frequency variable, and the bandwidth of
the transmitted signal, respectively. In particular, the azimuth window function and signal
amplitude are omitted for the convenience of algorithm derivation.

After the inverse Fourier transform (IFT) of the range dimension is applied to (3), the
target echo signal in the range fast-time and azimuth slow-time can be obtained as follows:

s1(t, tn) = sin c
{

B
[

t− 2R0

c
− 2ρ0tn

c
− 2ρ1t2

n
c

]}
exp

[
− j4π

λ

(
R0 + ρ0tn + ρ1t2

n

)]
(4)

where sin c(x) = sin(πx)/(πx) stands for the sinc function.
It can be seen from (4) that there is a serious coupling between the range time and

azimuth time. In the sinc function term, the tn-term and the t2
n-term will cause the LRCM

and the QRCM in the range dimension, respectively. RCM contains the LRCM and QRCM.
In general, RCM will cause the target to be defocused along the range dimension. In
addition, in the exponential term, the tn-term will cause the DCS without causing the
defocusing of the target energy, and the t2

n-term will cause DFS, which will cause the
defocusing of target energy along the azimuth Doppler frequency dimension. According to
the analysis of the azimuth Doppler spectrum distribution characteristics, when the DCS
exists for more than half of PRF, the signal will produce Doppler center blur, as exhibited in
Figure 2a. As shown in Figure 2b,c, due to the existence of DCS and DFS, the target Doppler
spectrum may occupy two or more PRF bands, resulting in Doppler spectrum splitting, that
is, the phenomenon of Doppler spectrum ambiguity. ftn , f , and ∆ f1 in the figure represent
the azimuth Doppler frequency in respect to tn, the range-frequency in respect to t, and the
azimuth Doppler frequency offset caused by the azimuth time tn, respectivley. The existence of
Doppler ambiguity (including Doppler spectrum ambiguity and Doppler center blur) makes
the compensation of RCM and DFS more difficult. Therefore, how to effectively compensate
for RCM and DFS in the case of Doppler ambiguity is particularly critical.
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Figure 2. Azimuth Doppler spectrum distribution diagram. (a) The Doppler spectrum occupies a PRF
band. (b) Doppler spectrum occupies two PRF bands. (c) Doppler spectrum occupies more PRF bands.
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2.2. Description of the Proposed Algorithm

As shown in (3), the coupling of the first-order phase and the second-order phase
makes the imaging of the moving target more complex. In order to eliminate the coupling
effect between the first- and second-order phases, the slow-time reversal transform in the
range-frequency is introduced, as follows:

s2( f , tn) = s1( f , tn)s1( f ,
←
t n)

= s1( f , tn)s1( f ,−tn)

= rect( f
B ) exp

{
− j8π

c ( f + fc)
[
R0 + ρ1t2

n
]} (5)

where “←” represents the azimuth slow-time reversal transform.
As shown in (5), after slow-time reversal transform is performed, only the effects of

the second-order phase (QRCM and DFS) remain, and the effects of the first-order phase
(i.e., LRCM and DCS) can be eliminated. Therefore, in order to eliminate the QRCM and
DFS simultaneously, the SCFT along the azimuth time domain is introduced, as follows:

s2
(

f , fψ

)
=

∫
s2( f , tn) exp

[
−j2π fψ φ

(
f + fc

fc

)
t2
n

]
dt2

n

= rect
(

f
B

)
exp

[
− j8π

c
( f + fc)R0

]
δ

(
fψ +

4ρ1

φλ

) (6)

After IFT is performed for (6) along the range-frequency dimension, we obtain
the following:

s2
(
t, fψ

)
= sinc

[
B
(

t− 4R0

c

)]
δ

(
fψ +

4ρ1

φλ

)
(7)

where φ, fψ, and δ(·) indicate the scale zoom factor of SCFT, the scaled frequency variable
after applying SCFT, and the Dirac function, respectively. The constant term is omitted
in (7), given that it does not affect the result of the subsequent analysis. Unless otherwise
specified, similar constant terms in the following equations are also omitted. The selection
criteria of the scale zoom factor of SCFT are provided in [17]. The selection criteria for the
scaling factor are detailed in Appendix A.

On the basis of peak position in (7), the second-order phase coefficient estimated value
of the moving target is:ρ̂1 = −φλ f̂ψ/4.

The second-order phase compensation function in the range-frequency and azimuth
slow-time can be constructed by using the estimated second-order phase coefficient value,
as follows:

H( f , tn, ρ̂1) = exp
[

j4π

c
( f + fc)ρ̂1t2

n

]
(8)

After (8) is multiplied by (3), we obtain the following:

s3( f , tn) = s1( f , tn)H( f , tn, ρ̂1)

= rect
(

f
B

)
exp

[
− j4π

c ( f + fc)(R0 + ρ0tn)
] (9)

As shown in (9), the influence of the second-order phase of the target signal is effec-
tively removed. Nevertheless, the first-order phase remains, and the LRCM caused by
the first-order phase still exists. KT is usually performed in the traditional approaches.
However, KT easily suffers from the problem of Doppler ambiguity. Therefore, in order
to effectively remove LRCM in the presence of Doppler ambiguity, an operation based on
ISTRT–SCIFT is proposed.
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First, as shown in (9), the first-order phase (ρ0tn-term) is coupled with the zero-order
phase (i.e., R0-term). To eliminate the zero-order phase and keep only the first-order phase,
the ISTRT is proposed, as follows:

s4( f , tn) = s3( f , tn)s∗3( f ,
←
t n) = rect

(
f
B

)
exp

[
− j8π

c
( f + fc)ρ0tn

]
(10)

where ∗ stands for conjugate operation.
According to (10), although the coupling between the zero- and first-order phases is

removed, there is still coupling between the azimuth slow-time and the range-frequency.
Therefore, the SCIFT along the range-frequency variable is introduced, as follows:

s4(tα, tn) =
∫

s4( f , tn) exp(j4πtαtn f )d(tn f )

= δ

(
tα +

2ρ0

c

)
exp

(
− j8π

λ
ρ0tn

)
(11)

After FT is performed to (11) along the azimuth slow-time variable, we have the following:

s4(tα, ftn) = δ

(
tα +

2ρ0

c

)
δ

(
ftn −

4ρ0

λ

)
(12)

where tα and ftn denote the scaled range time variable after performing SCIFT and the
azimuth Doppler frequency variable, respectively.

In accordance with the peak position in (12), the estimated value of the first-order
phase coefficient can be obtained as: ρ̂0 = −t̂αc/2. Therefore, the effect of the BSSL is
avoided for the proposed method, given that the searching operation of the first-order
phase coefficient (i.e., radial velocity) is absent.

Then, with the estimated first- and second-order phase coefficients, the focus matching
filter function can be constructed as follows:

H1( f , tn, ρ̂0, ρ̂1) = exp
(

j4π f ρ̂0tn

c

)
exp

[
j4π

c
( f + fc)ρ̂1t2

n

]
(13)

Finally, after (13) is multiplied by (3), we can obtain the following:

s5( f , tn) = s1( f , tn)H1( f , tn, ρ̂0, ρ̂1)

= rect
(

f
B

)
exp

[
− j4π

c ( f + fc)R0

]
exp

(
− j4π

λ ρ0tn

) (14)

After range IFT and azimuth FT are applied to (14), the final focused result of the
target is as follows:

s5(t, ftn) = sin c
[

B
(

t− 2R0

c

)]
sin c

[
Ti

(
ftn +

2ρ0

λ

)]
(15)

where Ti represents the azimuth accumulation time.
A flow chart of the proposed method is provided in Figure 3.
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Figure 3. Flow chart of the proposed method.
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2.3. Multiple Target Analysis

The above content analyzes the focusing situation of a single moving target, and it
can be seen that this method can effectively focus the target. However, for the observation
scene, multiple moving targets should be considered in the actual scenario. Therefore, the
influence of cross terms related to multiple targets needs to be further studied. For the case
of multiple targets, the signal in (3) can be expressed as follows:

s1,m( f , tn) =
G

∑
i=1

rect(
f
B
) exp

[
− j4π

c
( f + fc)(R0,i + ρ0,itn + ρ1,it2

n)

]
(16)

where G indicates the number of moving targets and R0,i denotes the nearest slant range
of the ith moving target. ρ0,i = −vc,i and ρ1,i = (v − va,i)/(2R0,i) denote the first- and
second-order range model coefficients of the ith moving target, respectively.

After performing the operations in (5) to (16), we can obtain the following:

s2,m( f , tn) =
G

∑
i=1

rect(
f
B
) exp

[
− j8π

c
( f + fc)(R0,i + ρ1,it2

n)

]
︸ ︷︷ ︸

auto terms

+
G
∑

i=1

G
∑

j=1j ̸=i
rect(

f
B
) exp

[
− j4π

c
( f + fc)(R0,i + R0,j)

]
× exp

{
− j4π

c
( f + fc)

[
(ρ0,i − ρ0,j)tn + (ρ1,i + ρ1,j)t2

n

]}
︸ ︷︷ ︸

cross terms

(17)

It can be seen from (17) that DCS and LRCM are effectively eliminated for the auto
terms, while the effects of QRCM and DFS still exist. However, for cross terms, the influence
of the first- and the second-order terms exists. The following will analyze the two cases of
ρ0,i ̸= ρ0,j and ρ0,i = ρ0,j.

In the first case, when ρ0,i ̸= ρ0,j, the cross terms are defocused, and the effective
peak cannot be formed. The formation of auto term peaks is unaffected by the cross terms.
Therefore, only the peak formed by the auto terms is needed to estimate the second-order
phase coefficient.

According to SCFT processing, the estimated second-order phase coefficient of the
moving target can be expressed as follows:

ρ̂1,i = −φλ f̂ψ/4 (18)

Using the estimated second-order phase coefficient, the second-order phase compen-
sation function in the range-frequency domain and azimuth slow-time domain can be
constructed as follows:

H2,m( f , tn, ρ̂1,i) = exp
[

j4π

c
( f + fc)ρ̂1,it2

n

]
(19)

As the single target analysis above is the same, the influence of the second-order phase
of the moving target signal is effectively removed. Nevertheless, the first-order phase
remains, and the LRCM caused by the first-order phase still exists.
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After the operations in (9) and (10) are performed to (16), we have the following:

s4,m( f , tn) = [s1,m( f , tn)H2,m( f , tn, ρ̂1,i)] ·
[
s1,m( f ,

←
t n)H2,m( f ,

←
t n, ρ̂1,i)

]∗
=

G

∑
i=1

rect(
f
B
) exp

[
− j8π

c
( f + fc)ρ0,itn

]
︸ ︷︷ ︸

auto terms

+
G
∑

i=1

G
∑

j=1j ̸=i
rect(

f
B
) exp

[
− j4π

c
( f + fc)(R0,i − R0,j)

]
× exp

[
− j4π

c
( f + fc)(ρ0,i + ρ0,j)tn

]
× exp

[
j4π

c
( f + fc)(ρ1,i − ρ1,j)t2

n

]
︸ ︷︷ ︸

cross terms

(20)

According to (20), the DFS and QRCM of the auto terms are eliminated. The auto terms
can be effectively focused and form obvious peaks after performing the SCIFT operation.
In the cross term, when R0,i ̸= R0,j or ρ1,i ̸= ρ1,j are satisfied, the cross terms will be
defocused after applying SCIFT operation. Therefore, as for this case, the determination of
the auto terms’ peak values is not influenced by the cross terms, and the target is focused
after the matching function is constructed from the estimated parameters related to the
self-term peak.

However, moving targets may have the same nearest slant range and azimuth velocity,
i.e., R0,j = R0,i, ρ1,i = ρ1,j, in a particular situation. Then, the signal in (20) is rewritten
as follows:

s4,m( f , tn)

=
G

∑
i=1

rect(
f
B
) exp

[
− j8π

c
( f + fc)ρ0,itn

]
︸ ︷︷ ︸

auto terms

+
G

∑
i=1

G

∑
j=1j ̸=i

rect(
f
B
) exp

[
− j4π

c
( f + fc)(ρ0,i + ρ0,j)tn

]
︸ ︷︷ ︸

cross terms

(21)

After SCIFT is performed to (21) along the range-frequency variable, we obtain
the following:

s4,m(tα, tn) =
∫

s4,m( f , tn) exp(j4πtαtn f )d(tn f )

=
G

∑
i=1

δ

(
tα +

2ρ0,i

c

)
exp

(
− j8π

λ
ρ0,itn

)
︸ ︷︷ ︸

auto terms

+
G

∑
i=1

G

∑
j=1j ̸=i

δ

(
tα +

ρ0,i + ρ0,j

c

)
exp

(
− j4π

λ
(ρ0,i + ρ0,j)tn

)
︸ ︷︷ ︸

cross terms

(22)
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After FT is performed to (22) along the azimuth slow-time and the constant terms are
omitted, we have the following:

s4,m(tα, ftn) =
G

∑
i=1

δ

(
tα +

2ρ0,i

c

)
δ

(
ftn −

4ρ0,i

λ

)
︸ ︷︷ ︸

auto terms

+
G

∑
i=1

G

∑
j=1j ̸=i

δ

(
tα +

ρ0,i + ρ0,j

c

)
δ

(
ftn −

2(ρ0,i + ρ0,j)

λ

)
︸ ︷︷ ︸

cross terms

(23)

As shown in (23), the locations of the focused peak of the auto terms are
tα = −2ρ0,i/c and ftn = 4ρ0,i/λ, and the locations of the focused peak of the cross terms are
tα = −ρ0,i + ρ0,j/c and ftn = 2(ρ0,i + ρ0,j)/λ. Therefore, the estimated first-order
phase coefficient of the auto terms and cross terms are ρ̂0,i = −t̂αc/2 and
ρ̂0,i,j = ρ0,i + ρ0,j = −t̂αc, respectively.

Then, based on the first- and second-order phase coefficients estimated by the auto
terms and cross terms, the corresponding focusing matched functions are constructed
as follows:

H3,auto( f , tn, ρ̂0,i, ρ̂1,i) = exp
(

j4π f ρ̂0,itn

c

)
exp

[
j4π

c
( f + fc)ρ̂1,it2

n

]
(24)

H3,cross( f , tn, ρ̂0,i,j, ρ̂1,i) = exp
( j4π f ρ̂0,i,jtn

c

)
exp

[
j4π

c
( f + fc)ρ̂1,it2

n

]
(25)

Compared with the expressions in (24) and (25), an extra defocusing term exists in
(25), as follows:

exp(
j4π f ρ0,jtn

c
) (26)

Finally, after (16) is multiplied by (24) or (25) for auto terms or cross terms, respectivley,
the corresponding results are written as follows:

s5,auto( f , tn) = s1,m( f , tn)H3,auto( f , tn, ρ̂0,i, ρ̂1,i)

=
G
∑

i=1
rect

(
f
B

)
exp

[
− j4π

c
( f + fc)R0,i

]
exp

(
− j4π

λ
ρ0,itn

)
(27)

s5,cross( f , tn) = s1,m( f , tn)H3,cross( f , tn, ρ̂0,i,j, ρ̂1,i)

=
G
∑

i=1
rect

(
f
B

)
exp

[
− j4π

c
( f + fc)R0,i

]
exp

(
− j4π fc

c
ρ0,itn

)
× exp

(
j4π f

c
ρ0,jtn

) (28)

After range IFT and azimuth FT are applied to (27) and (28), the final moving target
focusing result can be obtained as follows:

s5,auto(t, ftn) =
G

∑
i=1

sin c
[

B(t− 2R0,i

c
)

]
sin c

[
Ti( ftn +

2ρ0,i

λ
)

]
(29)

s5,cross(t, ftn) =
G

∑
i=1

G

∑
j=1j ̸=i

sin c
[

B(t− 2R0,i

c
+

2ρ0,jtn

c
)

]
sin c

[
Ti( ftn +

2ρ0,i

λ
)

]
(30)

Comparing (29) and (30), the signal in (30) indicates that the effect of LRCM still
remains. Therefore, if the filter function is constructed using the cross term parameters,
the obvious peaks are absent. However, the filter function constructed with the auto term
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parameters can obtain obvious peaks, because there is no defocus term in (26). Therefore,
in the above cases, the proposed algorithm can further eliminate the effect of the cross term.

In the second case, when ρ0,i = ρ0,j, the signal in (17) can be rewritten as follows:

s2,m( f , tn) =
G

∑
i=1

rect(
f
B
) exp

[
− j8π

c
( f + fc)(R0,i + ρ1,it2

n)

]
︸ ︷︷ ︸

auto terms

+
G
∑

i=1

G
∑

j=1j ̸=i
rect(

f
B
) exp

[
− j4π

c
( f + fc)(R0,i + R0,j)

]
× exp

{
− j4π

c
( f + fc)(ρ1,i + ρ1,j)t2

n

}
︸ ︷︷ ︸

cross terms

(31)

After SCFT is performed to (31) along the azimuth-frequency variable, we obtain
the following:

s2,m
(

f , fψ

)
=

∫
s2,m( f , tn) exp

[
−j2π fψ φ

(
f + fc

fc

)
t2
n

]
dt2

n

=
G

∑
i=1

rect
(

f
B

)
exp

[
− j8π

c
( f + fc)R0,i

]
δ

(
fψ +

4ρ1,i

φλ

)
︸ ︷︷ ︸

auto terms

+
G

∑
i=1

G

∑
j=1j ̸=i

rect
(

f
B

)
exp

[
− j4π

c
( f + fc)(R0,i + R0,j)

]
×δ

(
fψ +

2(ρ1,i + ρ1,j)

φλ

)
︸ ︷︷ ︸

cross terms

(32)

After IFT is performed to (32) along the range-frequency variable, we obtain the following:

s2,m
(
t, fψ

)
=

G

∑
i=1

sinc
[

B
(

t− 4R0,i

c

)]
δ

(
fψ +

4ρ1,i

φλ

)
︸ ︷︷ ︸

auto terms

+
G

∑
i=1

G

∑
j=1j ̸=i

sinc
{

B
[

t−
2(R0,i + R0,j)

c

]}
δ

[
fψ +

2(ρ1,i + ρ1,j)

φλ

]
︸ ︷︷ ︸

cross terms

(33)

As shown in (33), both the auto term and the cross term can form valid peaks. There-
fore, the estimated second-order phase coefficients based on the auto term and the cross
term are ρ̂1,i = −φλ fψ/4 and ρ̂1,i,j = ρ̂1,i + ρ̂1,j = −φλ fψ/2, respectively.

Then, based on the second-order phase coefficient estimated by the auto terms and
cross terms, the corresponding focusing matched functions are constructed as follows:

H4,m,auto( f , tn, ρ̂1,i) = exp
[

j4π

c
( f + fc)ρ̂1,it2

n

]
(34)

H4,m,cross( f , tn, ρ̂1,i,j) = exp
[

j4π

c
( f + fc)ρ̂1,i,jt2

n

]
(35)
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After (16) is multiplied by (34) or (35) for the auto terms or cross terms, respectivley,
the corresponding results are written as follows:

s3,m,auto( f , tn) = s1,m( f , tn)H4,m,auto( f , tn, ρ̂1,i)

= rect(
f
B
) exp

[
− j4π

c
( f + fc)(R0,i + ρ0,itn)

]
︸ ︷︷ ︸

auto terms

+
G

∑
j=1j ̸=i

exp
{
− j4π

c
( f + fc)

[
R0,j + ρ0,jtn + (ρ1,i − ρ1,j)t2

n

]}
︸ ︷︷ ︸

cross terms

(36)

s3,m,cross( f , tn) = s1,m( f , tn)H4,m,cross( f , tn, ρ̂1,i,j)

= rect(
f
B
) exp

[
− j4π

c
( f + fc)(R0,i + ρ0,itn − ρ̂1,jt2

n)

]
︸ ︷︷ ︸

auto terms

+
G

∑
j=1j ̸=i

exp
{
− j4π

c
( f + fc)

[
R0,j + ρ0,jtn + (ρ1,i − ρ1,i,j)t2

n

]}
︸ ︷︷ ︸

cross terms

(37)

Comparing (36) and (37), it can be seen that, in the auto-term of (36), the influence
of DFS and QRCM caused by the second-order phase has been eliminated. Similar to the
analysis of the case of ρ0,i ̸= ρ0,j, when R0,i ̸= R0,j or ρ1,i ̸= ρ1,j are satisfied, the first-order
phase coefficient can be estimated by SCIFT. Similar to the analysis of the case of ρ0,i ̸= ρ0,j,
after the matched filtering function in (13) constructed by the estimation value related to
the cross term is performed to (16), the influence of the second-order phase still exists,
and the DFS and QRCM cannot be eliminated. Finally, the effective focusing result of the
moving target cannot be obtained. Therefore, in this case, the proposed algorithm can still
reject the effect of the cross term.

In summary, although the influence of the cross terms may be introduced in processing
steps (5) and (10), only the focusing matching function in (13) constructed using the auto
terms’ estimation parameters can obtain the final focusing result. When the focus matching
filter function is constructed using the parameters estimated by the cross terms, it cannot
obtain the final focus result. According to the above phenomena, the wrong parameters
estimated by the cross term can be identified, and the spurious peaks can be suppressed.
In addition, the proposed operation for the identification of spurious peaks includes the
nonlinear transform. If the intensity of the background is high (i.e., a low signal-to-noise
ratio (SNR) circumstance), the performance of the nonlinear transform will significantly
degrade. The presented operation of the spurious peak identification is not suitable for the
low SNR circumstance.

In the following explanation, two simulation examples are presented to demonstrate
the above analysis for multiple target focusing and spurious peak identification procedures.
The parameters of simulated SAR are provided as follows: fc = 10 GHz, B = 200 MHz, and
PRF = 1200 Hz.

As for Case A, two target signals, indicated by TA and TB, with different first-order
parameters are considered for simplicity. The simulated first- and second-order parameters
of TA and TB are set as follows: ρ0,TA = −27.5 m/s and ρ1,TA = 1.21 m/s2 for TA;
ρ0,TB = −4.6 m/s and ρ1,TB = 1.21 m/s2 for TB.

Figure 4 shows the results of Case A. Figure 4a shows the results of range compression
for TA and TB. Two curved trajectories related to TA and TB are shown in the figure. The
result after applying SCFT operation is shown in Figure 4b. Two peaks, with respect to TA
and TB, are superposed together, as shown in Figure 4b. The results after the SCIFT and
phase compensation operations are shown in Figure 4c. The figure shows three obvious
peaks, denoted by TA, TB, and TC. Then, the recognition procedures for spurious peaks are
adopted. The matching filter functions are constructed by using the peaks of TA, TB, and
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TC shown in Figure 4c, respectively, to focus the moving targets. The well-focused results
of TA and TB obtained by the method proposed in this paper are shown in Figure 4d,e.
Figure 4f shows the results of defocus, which verify the previous judgment that TC is a
spurious peak.
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As for Case B, two target signals—indicated by TD and TE—with different second-
order parameters, are considered for simplicity. The simulated first- and second-order
parameters of TD and TE are set as follows: ρ0,TD = −5.2 m/s and ρ1,TD = 1.21 m/s2 for
TD; ρ1,TE = −5.2 m/s and ρ1,TE = 1.52 m/s2 for TE.

The experimental results of Case B are shown in Figure 5. Figure 5a shows the results
after range compression for TD and TE. Figure 5b shows three evident peaks, represented
by TD, TE, and TF, respectively. There are two auto term peaks and one cross term peak
among the three peaks. The results after SCIFT and phase compensation operations are
shown in Figure 5c. Two peaks with respect to TD and TE superposed together are shown in
Figure 5c. The well-focused results of TD and TE obtained using the auto term parameters
are shown in Figure 5d,e. Figure 5f shows the results of defocus, which verify the previous
judgment that TF is a spurious peak.
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Figure 5. Experimental results of Case B. (a) Results after range compression for TD and TE. (b) Results
after SCFT operation. (c) Results after SCIFT operation. (d) Focusing results using the auto term peak
TD parameter. (e) Focusing results using the auto term peak TE parameter. (f) Focusing results using
the cross term peak TF parameter.

3. Results
3.1. Simulated Results

Table 1 shows the main parameters of radar. Three moving targets are set in the
experiment, which are Target A, Target B, and Target C, respectively. The simulated
parameters of the three moving targets are shown in Table 2. According to the targets’
simulated parameters, Targets A and C are the targets with Doppler center blur, and Target
B is the target with Doppler spectrum ambiguity.

Table 1. Main radar parameters.

Parameters Value

Carrier frequency 10 GHz
Range bandwidth 200 MHz

Pulse repetition frequency 1200 Hz
Radar platform velocity 140 m/s

Nearest slant range 5000 m
Azimuth accumulation time 1 s
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The experimental results are shown in Figure 6. Figure 6a shows the three curve tracks
of Targets A, B, and C after range pulse compression. It can be seen from the figure that the
trajectory shows obvious RCM (including LRCM and QRCM). Figure 6b shows the Doppler
spectra of the three moving targets. Due to the effect of DFS, the energy of the targets is
distributed in several Doppler cells, resulting in the defocusing of targets’ energy in the
Doppler dimension. Furthermore, the Doppler spectrum of Targets A and C completely
occupy a PRF band, while the Doppler spectrum of Target B occupies two adjacent PRF
bands. These complex Doppler spectral distributions make it difficult to focus the moving
target. The results after using the SCFT operation are shown in Figure 6c, forming three
obvious peaks. Then, after phase compensation and SCIFT operation, the corresponding
results are shown in Figure 6d, where three obvious peaks can be observed. The first- and
second-order phase coefficients of the moving targets can be estimated from the peak values
shown in Figure 6c,d. Thus, the matched filter function (24) of the moving target can be
constructed. Finally, after matched filter function processing, the focusing results of Targets
A, B, and C are obtained, as shown in Figure 6e,g,i, respectively. The results of focusing on
Target B using the DKP method [20] are shown in Figure 6k,l. In this method, the influence
of the along-track velocity of the moving targets is ignored, the target energy shows obvious
defocusing, and the focusing performance is significantly reduced. Figure 6m shows the
result of using the keystone (KT)-based method [30] to compensate for the LRCM of Target
B. Since the target spectrum is distributed in two PRF bands, and the keystone is directly
applied to LRCM compensation, the target trajectory after compensation is split into two
parts. The compensation of target LRCM will be affected by trajectory splitting, resulting
in serious coherent integration loss. It can be seen from the figure that this method is
easily affected by the presence of Doppler spectrum splitting. Figure 6n shows the focusing
results for Target B using the 2-DFMF method [21]. It can be seen from the results that
the focusing effect of this method is affected when the azimuth velocity of the targets
cannot be ignored. It can be seen from the above comparative experiments that, when
there are Doppler ambiguity targets in the scene, defocused results are achieved for the KT-
based method, the DKP method, and the method shown in [21]. However, a well-focused
result can still be achieved for the method proposed in this paper. In order to compare
it with the MSOKT method, the output SNRs of the proposed method and the MSOKT
method are provided in Table 3. As shown in Table 3, the performance of the proposed
method is similar to that of the MSOKT method under the relatively high SNR circumstance.
However, in comparison with the MSOKT method, the proposed method can avoid the
complex parameter-searching steps and has a low computational complexity. Moreover,
the proposed method can also avoid the effect of BSSL. In addition, the performance of
the proposed method significantly decreases under the low SNR condition, given that the
nonlinear transform is used to reduce the computational complexity.
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Figure 6. The results of the experiment. (a) Range compression results. (b) Doppler spectrum of three
targets. (c) Results after SCFT operation. (d) Results of SCIFT. (e) Focusing result of TA using the
proposed method. (f) Stereogram of Figure 6e. (g) Focusing result of TB by the developed method. (h)
Stereogram of Figure 6g. (i) Focus result of TC by the developed method. (j) Stereogram of Figure 6i.
(k) Results after TB is processed by the method in [20]. (l) Stereogram of Figure 6k. (m) Compensation
result for LRCM using the keystone-based method for TB [30]. (n) Results after TB is processed by
the method in [21].

Table 2. Target motion parameters of simulation.

Along-Track Velocity (va) Cross-Track Velocity (vc)

Target A −20.6 m/s 11.5 m/s
Target B 10 m/s 27.5 m/s
Target C −12.5 m/s −16.7 m/s

Table 3. Output SNRs of the proposed and MSOKT methods.

Input SNR
(after Range Compression)

Output SNR
of Proposed Method

Output SNR
of MSOKT Method

13 dB 43.9724 dB 43.8633 dB
6 dB 37.0187 dB 36.9487 dB
0 dB 18.1273 dB 29.8408 dB

Overall, the experimental results show that the proposed algorithm can accurately
compensate RCM and DFS induced by the unknown motion of the moving target in
the presence of Doppler ambiguity and can obtain a well-focused result. The proposed
algorithm is robust to complex azimuth Doppler ambiguity (including spectrum blur and
Doppler center blur). Additionally, the developed method has a low computational burden
because of its implementation steps without the parameter-searching operations (including
the Doppler ambiguity number searching).
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3.2. Spaceborne Real Data Results

In this sub-section, two segments of C-band spaceborne data collected by the RADARSAT-
1 system are processed to verify the processing performance of the developed method. The
basis radar parameters are provided in Table 4. In addition, the detailed parameters of SAR
data are given in [1].

Table 4. Basis radar parameters of spaceborne real data.

Parameters Value

Carrier frequency 5.3 GHz
Range bandwidth 30.116 MHz

Pulse repetition frequency 1236.98 Hz

(1) Single moving target processing results: Figure 7a shows the range pulse compres-
sion results of the selected target, which show that the target trajectory spans multiple
range units, resulting in range migration, showing serious defocusing. Figure 7b shows the
Doppler spectrum distribution of the moving target in the range time domain of the az-
imuth Doppler domain. It can be seen in the image that the energy is distributed in multiple
azimuth Doppler units, which results in the severe defocusing of the moving target in the
azimuth Doppler dimension. A significant peak appears after the SCFT-based operations,
as shown in Figure 7c. Then, the result after the application of the SCIFT-based processing
is shown in Figure 7d, and an obvious peak appears. According to the peak values shown
in Figure 7c,d, the first- and second-order phase coefficients can be estimated, and then
the matched filter function can be constructed according to the obtained parameters to
focus the target. The corresponding focusing results are shown in Figure 7e,f. The result of
processing using the method detailed in [17] is shown in Figure 7g. Compared with the
algorithm shown in [17], the approach developed in this paper can avoid the influence of
BSSL. As shown in Figure 7h, the processing result obtained using the method detailed
in [14] has an obvious defocusing phenomenon along the azimuth dimension because of
the effect of the scaled spectrum aliasing. Therefore, the method proposed in this paper has
a better focusing performance than the methods in detailed [14,17]. Then, the estimated
relative radial velocity (ρ0) and acceleration (2ρ1) of the target are provided, as follows:
−204.0839 m/s and 50.2440 m/s2. The results of the parameter estimation are consistent
with the results found in [31]. Therefore, the above results of parameter estimation prove
the effectiveness and accuracy of the proposed method.

(2) Two moving targets’ processing results: The processing results of two moving
targets are shown in Figure 8. Figure 8a shows two curved tracks of T1 and T2 after range
compression, and obvious RCM (LRCM and QRCM) can be seen. The Doppler spectra
of the two moving targets are shown in Figure 8b. It can be seen that, due to the effect
of DFS, the target energy is distributed in multiple azimuth Doppler bins, which leads
to the defocusing of the target energy in the Doppler dimension. Figure 8c shows the
results of applying the SCFT operation. There are three distinct peaks in Figure 8c. After
the operation based on the phase compensation function and SCIFT, the corresponding
results are shown in Figure 8d, in which a target peak can be obtained. Through the peaks
shown in Figure 8c,d, the first-order and second-order phase coefficients of the moving
targets can be obtained, and the matched filtering function of the moving targets can be
constructed. Then, as shown in Figure 8e, the focus results of T1 and T2 are obtained by
using the constructed matched filter function. The processing results of the real spaceborne
data above prove the performance of the method used for imaging multiple moving targets
and the effectiveness of the spurious peak recognition operation proposed in this paper.
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3.3. Airborne Real Data Result

The validity of this method is verified by X-band, three-channel real airborne SAR
data. The parameters of X-band SAR are listed in Table 5.

Table 5. Basis radar parameters of airborne real data.

Parameters Value

Carrier frequency 8.85 GHz
Range bandwidth 40 MHz

Pulse repetition frequency 1000 Hz

The image of the selected airborne data in the range-Doppler domain is shown in
Figure 9a. It can be seen that there is strong ground clutter in the scene. Then, the extended
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factor method in [35] is used for suppressing the ground clutter, and the result is shown
in Figure 9b. Figure 9b shows that the target is severely defocused in the range-Doppler
domain. Figure 9c shows the result after SCFT processing, and the second-order phase
coefficient can be obtained from the peak position. After SCIFT and phase compensation
function processing, as shown in Figure 9d, the first-order phase coefficient can be estimated.
With the estimated first- and second-order phase coefficient, the matched filtering function
shown in (13) is constructed. Figure 9e shows the result of processing the target signal using
the constructed matched filter function, and the target is effectively focused. According to the
experiments, the Doppler parameters of the selected moving target are as follows: ρ0 = −2.5,
ρ1 = 0.7598. Figure 9g shows the processing result of the selected moving target using
the DKP method [20]. As can be seen from Figure 9g, the target energy shows an obvious
defocusing phenomenon, and the focusing performance is significantly reduced, because the
DKP method ignores the influence of the along-track velocity of the moving target. The above
results can confirm that the presented method is superior to the DKP method.
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4. Discussion

In this section, the computational complexity of the proposed algorithm is analyzed
and compared with the IAR-TRT [14], the KT-based method [30], the 2-DFMF-based
method [21], the MSOKT [17], and the DKP [20]. We assume that N, M are the numbers
of the azimuth pulses and range units, respectively. Na, Nb, and Nc are, respectively, the
searching numbers of the Doppler ambiguity number, the MSOKT, and the IAR-TRT meth-
ods. The proposed method mainly includes three steps. Firstly, the SCFT is used to realize
the second-order phase coefficient estimation. The computational complexity of the SCFT
operation implemented by a nonuniform fast Fourier transform is O(MN log2 N) [36–38];
therefore, the computational cost of this step is O(MN log2 N + NM log2 M). The second
step is the first-order phase coefficient estimation, and the computational cost of the SCIFT
operation is implemented by a chirp-z transform is O(3NM log2 M) [39]. Then, the com-
putational cost of the second step is O(3NM log2 M + MN log2 N). The third step is range
time domain azimuth-frequency domain focusing, and the computational cost of this step is
O(MN log2 N + NM log2 M). In summary, the computational complexity of the proposed
method is expressed as O(3MN log2 N + 5NM log2 M). According to the method descrip-
tion detailed in [14], the main computational complexity of the IAR-TRT method is denoted as
O((Nc + 4)MN log2 N). Furthermore, for the DKP method detailed in [20], its computational
complexity is expressed as O(MN2 + N(N− 1)M + (Na + 1)(MN log2 N + MN log2 M). The
main computational complexity of the 2-DFMF-based method [21] can be expressed as
O((Na + 2)(MN log2 N + MN log2 M) + MN). For the MSOKT method proposed in [17],
its computational complexity can be expressed as O((Nb + 1)MN log2 N). For the KT-
based method proposed in [30], the main computational complexity is expressed as
O(MN2 + MN(N − 1) + Na(MN + MN log2 N + MN log2 M)). The computational com-
plexity of the above six methods is shown in Table 6. Figure 10 shows the relationship
curve of the computational complexity of the six methods with the number of azimuth
pulses. In general, the computational complexity of the proposed algorithm is the lowest
among the six methods.

Table 6. Computational complexities of the six methods.

Methods Computational Complexity

Proposed method O(5MN log2 M + 3MN log2 N)
MSOKT-based method O((Nb + 1)MN log2 N)

DKP-based method O(MN2 + N(N − 1)M + (Na + 1)(MN log2 N + MN log2 M)
IAR-TRT method O((Nc + 4)MN log2 N)
KT-based method O(MN2 + MN(N − 1) + Na(MN + MN log2 N + MN log2 M))

2-DFMF-based method O((Na + 2)(MN log2 N + MN log2 M) + MN)
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5. Conclusions

Severe DFS and RCM caused by unknown relative motion of radar and moving targets
are the main reasons for the defocusing effect of a target. In addition, due to the limitation
of the repetition frequency of SAR, for the moving target signal, it is easy to show Doppler
ambiguity. Doppler ambiguity will make RCM and DFS compensation more difficult.
Therefore, in the case of Doppler ambiguity, the RCM and DFS can also be effectively
compensated, so that the target can be accurately focused. To solve these problems, this
article proposes a computational efficient SAR ground moving target imaging method based
on SCFT and SCIFT. The main properties of the proposed algorithm can be summarized
as follows: (1) the presented method can effectively correct RCM and DFS and obtain
a well-focused result; (2) the proposed method has strong Doppler ambiguity tolerance
(including Doppler spectrum splitting and Doppler center ambiguity); (3) the proposed
method has a low computational cost because the searching steps for ambiguity numbers
and unknown target parameters can be avoided; (4) the problem of BSSL is effectively
handled; and (5) the identification procedure of a spurious peak is given for the cross term
problem in case of multiple targets, according to the analysis of the features of the cross
terms in detail. Finally, the experimental results of real spaceborne and airborne data are
given in order to verify the effectiveness of the proposed method.

However, the proposed method is suitable for the imaging of uniform moving targets
with a second-order range model. In addition, the proposed moving target imaging method
and the operation of the spurious peak recognition both include the nonlinear transform.
The performance of moving target imaging and spurious peak recognition will degrade
under the low SNR situation. Therefore, the computationally efficient method for imaging
of non-uniform moving targets with a high order (more than second-order) range model
under the low SNR circumstance will become a research direction in the future.
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Appendix A

In this section, the selection criteria of zoom factor φ will be elaborated on in detail.
We assume that the value scope of the target along-track velocity is [−vamax, vamax], and
can obtain the following:

ρ1 =
(v− va)

2

2R0
≤ (v + vamax)

2

2R0
(A1)

According to the peak value in (7), we can obtain the following:

fψ = −4ρ1

φλ
(A2)

In order for the zoom factor φ to match, the following inequality should be satisfied:

fψmax ≥
∣∣∣∣4ρ1

φλ

∣∣∣∣
max

=
2(v + vamax)

2

φλR0
(A3)

where fψmax represents the maximum value of fψ.
Therefore, we can obtain the following:

φ ≥ 2(v + vamax)
2

λR0 fψmax

(A4)

According to the above analysis, as long as the zoom factor selected is as small as
possible under the condition of satisfying (A4), the error can be reduced, and the accuracy
of parameter estimation can be improved.
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