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Abstract: Vineyards and olive groves are two of the most important Mediterranean crops, not only for
their economic value but also for their cultural and environmental significance, playing a crucial role
in global agriculture. This systematic review, based on an adaptation of the 2020 PRISMA statement,
focuses on the use of satellite remote sensing tools for the detection of drought in vineyards and
olive groves. This methodology follows several key steps, such as defining the approach, selecting
keywords and databases, and applying exclusion criteria. The bibliometric analysis revealed that
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the most frequently used terms included “Google Earth Engine” “remote sensing” “leaf area index”
“Sentinel-2”, and “evapotranspiration”. The research included a total of 81 articles published. The
temporal distribution shows an increase in scientific production starting in 2018, with a peak in
2021. Geographically, the United States, Italy, Spain, France, Tunisia, Chile, and Portugal lead
research in this field. The studies were classified into four categories: aridity and drought monitoring
(ADM), agricultural water management (AWM), land use management (LUM), and water stress
(WST). Research trends were analysed in each category, highlighting the use of satellite platforms
and sensors. Several case studies illustrate applications in vineyards and olive groves, especially in
semi-arid regions, focusing on the estimation of evapotranspiration, crop coefficients, and water use
efficiency. This article provides a comprehensive overview of the current state of research on the use
of satellite remote sensing for drought assessment in grapevines and olive trees, identifying trends,
methodological approaches, and opportunities for future research in this field.

Keywords: aridity and drought monitoring; water management; land-use management; viticulture;
olive growing; vegetation indices; Sentinel; Landsat

1. Introduction

Vineyards (Vitis vinifera L.) and olive groves (Olea europaea L.) are quintessential crops
of the Mediterranean region, characterised by their adaptation to the Mediterranean-type
climate (i.e., hot dry summers and moderate wet winters, with marked seasonal variability
and irregularity and frequent drought episodes), as well as to its soils [1]. Both crops
have significant socio-economic, environmental, and cultural importance, serving as vital
sources of employment, income, and high-quality products, while also playing a role in
the landscape and identity of numerous regions [2]. However, in recent decades, they
have faced increasing challenges from the impacts of climate change, threatening their
productivity and quality [3-6].
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Vitis vinifera L., commonly known as the European grapevine or common grape, is
a crop of great global interest both in terms of production and distribution. According to
FAOSTAT data [7], in 2022, worldwide grape production was ~88 x 10° t, with a decrease of
4.6% compared with that in the previous year. Figure 1a shows the main grape-producing
countries in the world in 2018-2022. The total harvested area reached 7 x 10° ha, with a
mean yield of 12.6 t/ha. Europe (50.6%) is the continent with the largest grape growing
area, followed by Asia (28.3%), the Americas (13.7%), Africa (5.2%), and Oceania (2.2%)
(Figure 1c). Grape production increased with a subtle linear trend of 7.2 x 10° t/yr, whereas
the vineyard cultivation area has undergone a decrease of 3.1 x 10* ha/yr (Figure 1b).
Average production data for the last five years (2018-2022) show that China is the leading
fresh grape grower, followed by Italy, Spain, the United States of America (USA), and
France (Figure 1a). Regarding wine grapes, Italy, France, Spain, USA, and Australia are the
top wine producers worldwide.
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Figure 1. Average grape production (t) by country between 2018 and 2022 (a); worldwide grape
production evolution between 1961 and 2022 (b); and percentage of vineyard plantation area by
continent in 2022 (c). Adapted from FAOSTAT.

Olea europaea L., commonly known as the olive tree, also holds substantial global
significance in terms of both its production and distribution. FAOSTAT 2022 data [7]
on olive production, between 2018 and 2022 (Figure 2a), show that Spain is the largest
producer, followed by Greece, Italy, the Republic of Tiirkiye, and Morocco. In 2022, global
fresh olive production was approximately 21.4 x 10° t, with a decrease of 8.7% compared
with that in the previous year. The 2022 harvest area was 10.9 x 10° ha, with a mean yield
of 1.9 t/ha. Also here, Europe (46.0%) has the largest olive growing area, followed by Africa
(34.6%), Asia (17.1%), Americas (1.9%), and Oceania (0.4%) (Figure 2c), mainly in areas of
Mediterranean-type climates. Olive production increased from 1961 to 2022, with a linear
trend of 2.1 x 10° t/yr. In parallel, its cultivation area has experienced an average annual
increase of 1.3 x 10° ha/ yr (Figure 2b).
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Figure 2. Average olive production (t) by country between 2018 and 2022 (a); worldwide olive
production evolution between 1961 and 2022 (b); and percentage of olive plantation area by continent
in 2022 (c). Adapted from FAOSTAT.

Both crops reached their peak production levels in 2018, exceeding 94.0 x 10° t for
grapes and 24.5 x 10° t for olives. The difference in these values partially reflects the fact
that the distribution of vineyards is much more widespread than that of olive trees, as the
latter are more geographically confined to Mediterranean climates, mostly due to their low
cold tolerance [8]. As for 2022, vineyards demonstrate much higher productivity, yielding
12.6 t/ha, compared with 1.9 t/ha for olive groves.

Climate change is defined by long-term alterations in the Earth’s climate that are
influenced and influence both natural and anthropogenic systems [9]. It is one of the greatest
environmental, social, and economic threats in the 21st century [10]. Climate change has
various consequences, such as increasing global temperatures, shifting rainfall patterns
that can lead to droughts or floods, more frequent and severe extreme weather events
(e.g., hurricanes, cyclones, wildfires, and storms), shrinking glaciers and rising sea levels
threatening the survival of marine and terrestrial ecosystems, biodiversity losses, forced
migration, food insecurity, health hazards, heightened conflicts from resource competition,
and a wide range of socioeconomic costs [11]. According to the Sixth Assessment Report
from the Intergovernmental Panel on Climate Change (IPCC), the global warming threshold
has surpassed 1.1 °C compared with the pre-industrial period. The current climate change
projections highlight the urgent need for significant action to reduce greenhouse gas
emissions and atmospheric concentrations, thus limiting global warming to avoid the most
severe repercussions of climate change [9].

Agriculture is exposed to and particularly vulnerable to the adverse effects of climate
change [12-14], namely intense climate irregularity that disrupts agricultural planning.
Possible changes in phenological timings, such as flowering, harvest seasons [15], quality
and yield losses [16], soil degradation and erosion [17], and the proliferation of pests and
diseases, are among the biggest threats of climate change [18]. The decline in biological
diversity further weakens the resilience of ecosystems [19]. Rising sea levels pose a serious
risk to coastal agriculture, endangering vital food production zones [20]. Consequently,
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a chain of problems arises that can be interconnected and mutually reinforced, leading
to compound events. Thus, timely implementation of suitable adaptation and mitigation
strategies is critical to avoid an escalation of these problems into a more serious threat.

Drought is a natural phenomenon that arises when there is a prolonged period without
precipitation, which can be aggravated by anomalously high temperatures and evapotran-
spiration, causing soil water deficits, and consequently reducing the amount of available
water [21]. In regions characterised by a Mediterranean climate, agricultural productivity
can be seriously threatened by drought occurrences, particularly during the wet season.
Recent trends indicate an increasing frequency and severity of these drought events, with
growing concerns among scientists and farmers [13,22].

Precision agriculture presents solutions to mitigate the impacts of drought in agri-
culture. It encompasses the use of various methods, such as efficient irrigation systems,
crop rotation, and pest and disease control, along with specific technologies, such as global
navigation satellite systems (GNSS), sensors, remote sensing, and geographic information
systems (GIS) [23]. These strategies aim to optimise agricultural production by managing
crop production factors, both spatially and temporally [24]. The primary focus of precision
agriculture can be positioned in four areas: the implementation of management strategies,
decision-making support, mapping terrain variability, and data acquisition [23]. In this con-
text, remote sensing plays a crucial role in the latter three tasks, enabling data acquisition
to analyse spatial patterns to contribute to decision-making processes [24].

Remote sensing technologies serve as tools for observation and data collection on
drought conditions within a specific region [25]. It employs different platforms, equipped
with sensors designed to capture information from the Earth’s surface. These platforms
encompass satellites, unmanned aerial vehicles (UAVs), manned aircraft, and radars [26].
The data obtained vary depending on the type of sensor used and can include optical,
microwave, and thermal images, multi/hyperspectral data, and radar data [27]. The use of
remote sensing data by farmers can lead to the optimisation of their resources, a reduction
in their environmental impact, and an increase in their productivity and resilience [28].
In the context of drought events, remote sensing provides growers with near-real-time
monitoring capabilities, enabling them to assess the risks and the impacts of these events
on the crops.

The employment of satellite remote sensing data for monitoring environmental phe-
nomena, such as droughts, represents a significant advancement in remote sensing tech-
nology. Satellite imagery, with extensive coverage and observational capabilities, enables
an accurate assessment of the impact and evolution of droughts [29]. Data obtained from
satellite platforms, including Sentinel, Landsat, and the Moderate Resolution Imaging
Spectroradiometer (MODIS) [30], which are equipped with optical and thermal sensors [31],
provide a vast resource for the computation of drought-related indices. Together with
advanced models and indices, such as the Vegetation Condition Index (VCI) and the Nor-
malized Difference Vegetation Index (NDVI), these datasets allow for the monitoring and
analysis of drought dynamics [32]. This information is crucial for evaluating vegetation
health, soil moisture levels, and other relevant parameters, thereby enabling an accurate
characterisation of drought severity and its spatial extent [30].

The main objective of this article is to analyse the existing literature on satellite remote
sensing tools for drought assessment, focusing especially on vineyards and olive trees.
This systematic review intends to provide a perspective on the methodologies, indicators,
and applications of satellite remote sensing in the monitoring and evaluation of droughts
affecting these two crops. The ultimate goal is to identify knowledge gaps and potential
research opportunities for forthcoming studies aiming to quantify drought conditions using
satellite remote sensing data.
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2. Materials and Methods
2.1. Research Methods

The methodology employed in this systematic review is based on an adaptation of the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement
from 2020 [33], which was further refined from its 2009 version [34]. As suggested in this
type of methodology, an initial protocol was created to consolidate the guidelines and
workflows that would be carried out throughout this study and to obtain consistent and
rigorous results.

The protocol followed for this systematic review relied on several steps. The first
step consisted of the determination of the primary focus of this review, which led to the
definition of the title “Satellite Remote sensing tools for drought assessment in vineyard
and olive orchards: a systematic review”.

The second step was the identification of principal keywords, grouped into three
categories. The first category was related to platform type, remote sensing, satellite, and
sensor, and included keywords such as “remote sensing”, “satel*”, “sentinel”, “landsat”
and “modis”. The second category focused on crop types and included keywords like
“viti*”, “vineyard”, “*grape*”, “olive*”, and “olea”. The third category focused on the
climate—environment-agriculture nexus, with keywords such as “drought”, “dry*”, “arid*”,
“water”, and “irrigation”.

The third step involved the selection of datasets. Online platforms that offer access
to academic databases and search engines for scientific research were used. The chosen
databases were the Web of Science (WoS) and Scopus platforms. These platforms allow the
extraction of files in CSV format, which facilitates the performance of customised biblio-
metric analyses, the generation of graphs, and the execution of more detailed bibliographic
studies. Other platforms such as Google Scholar were also consulted, but studies from
these were categorised as other studies.

The fourth step, initial screening, involved applying exclusion criteria to articles based
on their title and abstract. This step is crucial as it helps to narrow down the number of
studies considered for in-depth review. By evaluating the relevance of the title and abstract,
articles that did not meet the study’s predefined criteria could be excluded, ensuring a
focused and relevant body of literature for further analysis.

The fifth and final step was the final screening. In this step, articles not excluded
based on either title or abstract underwent a detailed reading for further evaluation. This
approach ensures a thorough and systematic review of the literature on the use of satellite
remote sensing for drought assessment in vineyards and olive orchards.

2.2. Bibliographic Source Assay

The literature search involves a rigorous process to identify and select records in
accordance with the protocol described in Section 2.1. The search queries were last carried
out on 30 December 2023, using the Scopus and WoS databases (Table 1 and Figure 3). The
final dataset consisted of 1067 publications, with 662 obtained from Scopus and 405 from
WoS. Before the initial screening, 300 records that were not classified as articles (such as
reports or conference communications) or were not in English were excluded. Additionally,
299 duplicates were removed. A supplementary search conducted on Google Scholar
resulted in an additional article. This approach resulted in 468 records for screening.

Table 1. Databases and queries used to define the parameters of this systematic review.

Database Website Query
TITLE-ABS-KEY (((“remote sensing” OR “satel*” OR “sentinel” OR
https:/ / WWW.SCOpUS.com “Landsat” OR “modis”) AND (“viti*” OR “vineyard” OR “*grape*” OR
Scopus ps: -SCOpUs. “olive*” OR “olea”) AND (“drought” OR “dry*” OR “arid*” OR “water”

(accessed on 30 December 2023)

OR “irrigation”))) AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO
(LANGUAGE, “English”))
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Table 1. Cont.

Database

Website Query

Web of Science

https:/ /www.webofscience.com
(accessed on 30 December 2023)

(TI = (“remote sensing” OR “satel*” OR “sentinel” OR “landsat” OR
“modis”) AND TI = (“viti*” OR “vineyard” OR “grape*” OR “olive*” OR
“olea”) AND TI = (“drought” OR “dry*” OR “arid*” OR “water” OR
“irrigation”)) OR (AB = (“remote sensing” OR “satel*” OR “sentinel” OR
“landsat” OR “modis”) AND AB = (“viti*” OR “vineyard” OR “grape*”
OR “olive*” OR “olea”) AND AB = (“drought” OR “dry*” OR “arid*” OR
“water” OR “irrigation”)) OR (AK = (“remote sensing” OR “satel*” OR
“sentinel” OR “landsat” OR “modis”) AND AK = (“viti*” OR “vineyard”
OR “grape*” OR “olive*” OR “olea”) AND AK = (“drought” OR “dry*”
OR “arid*” OR “water” OR “irrigation”)) and English (Languages) and
Article (Document Types).

Identification of studies via databases and registers

c Records identified Records identified
] through Scopus (n = through Web of
3 662) science (n = 405)
=
2 v v
S Total Records identified
(n = 1067) Records removed before screening:
___________________ »|* Records removed for not being indexed
articles and English language (n = 300)
Records screened = Duplicate records removed (n = 299)
(n = 468)
F >
v ”| Records excluded by title (n = 290)
Records screened by
> title
'E: (n= #1 78) » | Records excluded by abstract (n = 82)
g Records screened by
u abstract Records excluded by:
(DI=96) | Notfocused on drougnt
= Not focused on remote sensing (n = 1)
Records screened by it . -
article Not focused on satellite imagery (n = 11)
(n=80) = Not focused on olive and/or vineyard (n = 1)
= Focused on aircraft, airborne, radar (n = 3)
3 g _ .
= Articles included in the review (n = 80)
E Reports of included studies (n = 1)

Figure 3. PRISMA flow diagram of the systematic literature review search adapted from Moher
et al. [34].

2.2.1. Group Article Classification

Based on the screening of the articles, these were classified into four groups with
distinct focuses: aridity and drought monitoring (ADM), agricultural water management
(AWM), land-use management (LUM), and water stress (WST).

Articles classified in ADM primarily focus on satellite remote sensing for monitoring
and tracking drought conditions, either in specific regions or on a global scale. This group
contains eight articles. AWM articles mainly focus on irrigation planning, development,
distribution, and the conservation of water resources for vineyards and/or olive grove
irrigation. This group contains 22 articles. The LUM group includes five articles with a focus
on drought risks associated with land use, including issues such as soil degradation, loss
of biodiversity, and soil and water pollution. The WS group is the largest with 46 articles.
These articles primarily focus on the use of satellite remote sensing data, as well as plant
or soil datasets, and other relevant data sources. They address the negative impacts of
insufficient water availability or excessive water demand on the growth, development, and
productivity of grapevines and olive trees.
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2.2.2. Bibliometric Analysis

A bibliometric analysis (keyword connections) was performed using NetworkX Python
Library (v3.2.1) to evaluate the most frequently used keywords in the selected studies. The
analysis presented in Figure 4 reveals the 20 most used keywords, with the red circles
representing the 5 most used keywords. These include “Google Earth Engine”, “Remote
Sensing”, “Leaf Area Index”, “Sentinel-2”, and “grapevine”. The circle size indicates the
frequency of a keyword, i.e., bigger circles indicate that the keyword is used more often.
The proximity between circles, indicated by line length, represents that the keywords are
more often combined or used together. It should be noted that this analysis is based only
on keywords selected by the authors of the studies.

Eddy Covariance

Leaf Area Index

Vineyards Crop Coefficient

5oil Moisture

Irrigation Management MODIS

Remote Sensing NDVI
Landsat

Evapotranspiration

Wine Water Status
Sentinel-2

Vegetation Indices Google Earth Engine

Irrigation
Vineyard

Satellite Remote Sensing

Water Status
Precision Viticulture

Figure 4. Network connection graph between the top 20 most frequently used keywords in the
selected studies. The size of each circle corresponds to the frequency of a keyword’s usage, with
larger circles indicating higher usage. The top 5 most used keywords are distinguished in red.
The proximity between circles, connected by lines, identifies the degree of connection between the
corresponding keywords.

The most used keyword in these studies is “Google Earth Engine”, which highlights
the widespread use of this platform for processing and analysing satellite data. This
keyword is closely associated with “Vine Water Status”, “Irrigation”, “Remote sensing”,
and “Soil moisture”. At the centre of this network connection graph is the critical role of
“Remote sensing”, which is linked to “Sentinel-2”, “Evapotranspiration”, and “Landsat”.
This connection underlines the importance of using data from Sentinel-2 to study vineyards,
suggesting a concentrated approach to analysing satellite data on vineyard crops. Lastly,
“Leaf Area Index” emerges as a significant term in this context, indicating the considerable
focus on studying the structure and state of vegetation. This is a key aspect for understand-
ing ecohydrological processes and the interaction between vegetation and climate. Overall,
this examination of the network relationship between the most popular terms highlights
the interdisciplinary nature and interdependence of various fields of study, indicating a
solid foundation for future research.
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3. Results
3.1. Analysis of Research Trends and Geographical Distribution

The articles analysed in this study cover a period from 2003 to 2023 (Figure 5a); for
this period, a significant variation is observed in the number of articles published per
year. Between 2004 and 2007, as well as in 2017, no articles were recorded for inclusion,
suggesting a possible lack of relevance or availability of research during those specific
years. From 2008 to 2011 and in 2013, a single study was included per year, indicating
relative stability in the production of relevant research in those periods. However, this
changed drastically in subsequent years, with an increase in the number of articles per year
considered in this review, especially starting in 2018. The most notable year in terms of the
scientific production of relevant articles was 2021, with a total of 21 publications considered
relevant to the study. This amount of research studies may indicate a growing interest in
the topic or a significant advance in the understanding of the area of study during this
specific period.

(a) 25
20
15

10

(b) Articles by country
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- Tunisia: 8
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\:| Lebanon: 1
\:| Moldova: 1
Figure 5. Temporal distribution of articles included in the systematic review by publication year (a)

and the spatial distribution by country (b).

The spatial distribution of articles by country, presented in Figure 5b, provides insights
into the geographical diversity of knowledge production and research. At the top of the
list is the United States of America, specifically the State of California, with a contribution
of 18 articles. This highlights the country’s significance regarding this subject. Following
closely are Italy with 11 articles, Spain with 8 articles, and France and Portugal with 6 and
5 articles, respectively. These numbers of articles from European countries underscore the
contribution of Europe to academic article production. Tunisia and Chile also stood out
with eight and seven articles, respectively. The remaining countries, although to a lesser
extent, also contribute to the research and knowledge landscape internationally.

Through the analysis of the distribution of articles according to the primary crop
(Figure 6), it is found that grapevine-related studies represent 46% of studies. This is
followed by olive growing studies, with 22% of the articles. The remaining articles integrate



Remote Sens. 2024, 16, 2040

9 of 27

Percentage of Studies (%)

25%

20%

15%

10%

&

4
2015 2 I
2016
Y ) 2017
2018
- -- .- = 2019 2 I
2
8
4

these species with other crops, all of which are cultivated in the same research area. It is
important to note that vineyards are addressed in over 60% of the studies. This observation
aligns with the broader global distribution of vineyard cultivation (Figure 1a) and its larger
plantation area (Figure 1b).

7%
Olive, vineyard
. & others
14 % species
Olive &
others
species
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46%
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N4
22%
Olive 11%
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Figure 6. Distribution of studies expressed as a percentage, categorised by crop type.

3.2. Analysis of Research Trends by Categorical Classification

The percentage of studies observed by categorical classification is presented in Figure 7a,
demonstrating a balanced distribution of research across all countries based on their total
publication count. The WST category broadly addressed across all countries, followed
closely by the AWM category. None of the countries included in this study conduct research
in all four categories simultaneously. Figure 7a illustrates, for example, that the USA holds
the largest share, representing 22% of the publications. This concentration spans three
categories: ADM at 1%, AWM at 9%, and WST at 12%. Italy, on the other hand, contributes
to three categories with 1% in LUM, 2% in AWM, and 10% in WST.

(b) ~ Year ADM AWM LUM WST
ADM [ AWM [ LuM [ WsT 2003
2004
2005
2006
2007
2008
2009
2010
2011 [N
2012
2013
2014

¢ & ¢° S & o 2020
é,‘ 2021 2
2022 A

Countries 2023 D)

3

Figure 7. Percentage of publications between 1 January 2003 and 30 December 2023, according to
categorical classification by country (a) and by year (b). ADM: aridity and drought monitoring;
AWM: agricultural water management; LUM: land use management; and WST: water stress. AF:
Afghanistan; AU: Australia; CL: Chile; CN: China; FR: France; GR: Greece; IT: Italy; LB: Lebanon;
MD: Moldova; MA: Morocco; PT: Portugal; KSA: Saudi Arabia (Kingdom of); ES: Spain; TN: Tunisia;
TR: Tiirkiye; USA: United States of America.
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Figure 7b provides a year-by-year comparison of publications by category. The distri-
bution of studies across the four categories is more uniform and balanced in the 2018-2023
period. However, the WST category, which has the highest number of studies, shows a
broader distribution throughout the entire study period from 2003 to 2023. The year 2022
accounted for 14% of WST publications, followed by 2021 with 10%. Additionally, the
AWM category reached its peak in 2021, with 10% of published studies.

3.3. Satellite Platforms and Sensors Used for Drought Monitoring

The studies analysed in this systematic review are partially or entirely based on data
obtained through satellite remote sensing (Table 2). Figure 8a presents the satellite platforms
most frequently used in the analysed articles. Data from Sentinel-2 are used in 37% of the
studies followed, by Landsat-8 in 35%. Landsat-7 data are used in 23% of the studies, while
Terra/Aqua and Landsat-5 satellites are each present in 21%. All these platforms, except
Landsat-7 and Terra/Aqua, were used across the four discussed categories.

(a)

40%

30%
20%
10%

Abm [l Awm [ um [l wsT

Percentage of Studies (%)

N
S A R A P S R S G
9 &' & @ @ 9 N & & 2 \ad
P & © & & & & & A 2 & & & &
<& & %4 %4 (g V Q\.b(‘ L < L <&

Satellite platform

aom [ AWM [ Lum [ wsT
40%

30%
20% l
10% I
A el I
-
Q.

Percentage of Studies (%)

Q- x 2 3 & S '3 @ N & Q& > o
5}@ é\e o@q- &&0 &F & R\ [ < é,,,Q \§5 \e‘;\ & N \f} & «\Q_o, Q
\a N o’ ¥ R & ) )

OQ/‘" °<>\ \o"\ <
© S
Sensors

Figure 8. Percentage distribution of studies by satellite platform (a) and by sensor (b) based on their
respective categorical classification. ADM: aridity and drought monitoring; AWM: agricultural water
management; LUM: land use management; and WST: water stress. Note that one study can appear
several times, as it may include more than one index.
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The choice of remote sensing satellite platform and/or sensor (Figure 8b) depends
on various factors such as the type of data needed, the data acquisition period in certain
areas, and the spatial resolution. The Sentinel-2 satellites (Sentinel-2A and Sentinel-2B) use
a Multispectral Instrument (MSI) sensor, which captures multiple Earth images of various
spectral bands, thus obtaining various wavelengths with different spatial resolutions. This
sensor is the most used (37%), across all four classified categories. The Landsat-8 satellite,
one of the most used, is equipped with two sensors: the Operational Land Imager (OLI),
used in 32% of the studies, and the Thermal Infrared Sensor (TIRS), less commonly used in
the analysed studies, which is present in only 9% of them. The Terra/Aqua satellite’s pri-
mary sensing instrument is the Moderate Resolution Imaging Spectroradiometer (MODIS),
which provides data on the Earth’s land surface, atmosphere, and oceans with a wide range
of spectral bands and resolutions. It was the third most used remote sensing satellite, being
present in 20% of the studies. The rest of the satellites and sensors were used for more
specific studies and areas. Two studies involved the use of synthetic aperture radar (SAR),
using European Remote Sensing satellite (ERS) [35] and Sentinel-1 [36].

Table 2. Satellite platforms and sensors used to acquire optical imagery in the research in the

systematic review.

Satellite Launch Sensor No. of Spectral Range Spatial No. of Study
Platform Year Bands (um) Resolution (m) Studies References
Landsat-5 1984 Thema(tT‘i/[I\)Aapper 7 0.45-12.5 30 and 120 17 [37-53]
Multispectral
imagery; 0.45-0.85; . -
Tkonos 1999 Panchromatic 5 053-0.93 4,1 2 [54,55]
imagery
Enhanced
Landsat-7 1999 Thematic Mapper 8 0.45-12.5 15, 30, 60 19 [37,40-46,51,56-65]
Plus (ETM+)
Moderate
Resolution
Terra/Aqua 1999 Imaging Spectro- 36 0.405-14.385 250, 500, 1000 17 [41,54,63,66-79]
radiometer
(MODIS)
Remote Sensing )
Formosat-2 2004 Instrument (RST) 5 0.45-0.90 2 and 8 1 [40]
Spinning
Enhanced Visible 0.4-1.6;
MSG-2 2005 and Infra-Red 12 3.9-13.4 0.63-13.3 1 [80]
Imager (SEVIRI)
GOES-15 2010 GOES Imager 20 0.55-13.35 1000, 4000 2 [75,78]
Operational Land 9 0.433-2.204 15,30
Tmager (OLI) [12,14,21,37,39,41,42,47,54,58,59,
Landsat-8 2013 28
61,63,67,69,73-75,78,81-89]
Thermal Infrared ’ 10.60-12.51 100
Sensor (TIRS) ’ :
New Astrosat
SPOT-7 2014 Optical Modular 5 0.455-0.890 15-6 2 [35,90]
Instrument
(NAOMI)
Sentinel-2 2015 MultiSpectral 13 0.443-2.202 10, 20, 60 30 [36,37,59,61,63,69,83-85,91-111]
Instrument (MSI)
PlanetScope 2016 Dove-C 8 0.431-0.885 3-4.1 3 [91,103,112]
Sea and Land
Surface .
Sentinel-3 2016 Temperature 11 0.55-2.25; 500; 1000 1 [109]
g 3.74-12
Radiometer
(SLSTR)
Landsat-9 2071 Fhermallnfrared 2 10.6-12.51 100 1 [67]

Sensor 2 (TIRS-2)




Remote Sens. 2024, 16, 2040

12 of 27

3.4. Models and Indices

Regarding the indices used in the studies included in this systematic review (Table 3
and Figure 9), different indices computed using satellite imagery were used. The Nor-
malized Difference Vegetation Index (NDVI) [91] appears as a key indicator in most of
the studies, with a usage rate of 69%. It is a primary metric for closely examining remote
sensing data and evaluating vegetation health and density. Following the NDVI, many
studies (31%) also estimate crop-related parameters such as the Leaf Area Index (LAI),
based on the NDVI (or other spectral bands), by implementing empirical approaches [55],
providing additional information into the structure of plant canopies.

Table 3. Indices that are more frequently used in research in the systematic review. Note: One study
can appear several times, as it may include more than one index. Cq, C,: atmospheric resistance
coefficients.

Index Formula No. of Studies References
Enhanced Vegetation Index (EVI) EVI = Green X yg (o IX\] IQISI;_RCEZIX Blue) 7L 8 [113,114]
Normalized Difference Vegetation Index (NDVI) NDVI = %fﬁ;ﬁ% 56 [115]
Normalized Difference Water Index (NDWI) NDWI = IR-—Red 11 [116]
Soil-Adjusted Vegetation Index (SAVI) SAVI = % (1+1L) 10 [117]
Thermal Condition Index (TCI) TCI = 100 x M 5 [118,119]
Vegetation Condition Index (VCI) VCI =100 x (mor—pits 5 [120,121]
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Figure 9. The distribution of studies by the use of indices according to their respective categorical
classifications. ADM: aridity and drought monitoring; AWM: agricultural water management; LUM:
land use management; and WST: water stress. Others correspond to the sum of vegetation indices
that have been used only once. Note that one study can appear several times, as it may include more
than one index.

Other indices, such as the Normalized Difference Water Index (NDWI) [66] and the
Soil-Adjusted Vegetation Index (SAVI) [57], are used less frequently, in 16% and 12% of
the studies, respectively. These indices are used for monitoring water content and to
compensate for ground reflectance. In addition, the Enhanced Vegetation Index (EVI), the
Thermal Condition Index (ICT), and the Vegetation Condition Index (VCI) were employed,
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but in a smaller proportion of studies. These indices highlight the diverse methodologies
used in the vegetation analysis. Each index offers unique insights into environmental
conditions, reflecting the inherent complexity and variability in ecosystem monitoring.

As for the models most frequently used in the analysed studies, the Disaggregated At-
mosphere Land Exchange Inverse (ALEXI/DisALEXI) model [63] was used in six studies—
one in the ADM category, two in the AWM category, and three in the WST category. This
model is a multi-sensor Thermal InfraRed (TIR) approach used for evapotranspiration (ET)
mapping, designed to provide insights into the exchange of energy and water between the
atmosphere and the land surface, particularly focusing on ET mapping. The Two-Source
Energy Balance (TSEB) model was used in five studies [109], one focused on AWM, and the
remaining four on WST. This is a widely used model in remote sensing and hydrology. It is
primarily employed to estimate evapotranspiration (ET) from satellite imagery. The model
operates on the principle of energy balance, accounting for the energy fluxes between the
land surface and the atmosphere. The FAO-56 model was used in nine studies, primarily
focusing on the AWM category. This model, developed by the Food and Agriculture Or-
ganization of the United Nations (FAO), is a widely used empirical model for estimating
reference evapotranspiration, based on meteorological data such as temperature, humidity,
wind speed, and solar radiation, based on the Penman-Monteith equation, which is a
comprehensive model that considers the energy balance at the land surface. Finally, the
Mapping Evapotranspiration at High Resolution with Internalized Calibration (METRIC)
model [45] was used in two studies in the AWM category and in three studies addressing
WHST. This model is a remote-sensing-based approach used to estimate evapotranspiration
(ET) at high spatial and temporal resolutions, and uses thermal infrared (TIR) imagery from
satellite sensors, such as Landsat, to estimate ET by analysing the surface temperature of
the Earth’s features.

4. Discussion

In this section, the different findings are categorised under ADM, AWM, LUM, and
WS and structured according to the main two main crops analysed. In each subsection, a
summary is presented highlighting several parameters from each study, namely the crop(s)
analysed, the satellite platform(s) used, and some of the processing tools used. Moreover,
the scale of each study is differentiated in terms of the following: local scale (small land
plots or farms); regional scale; national scale; and global scale.

4.1. Aridity and Drought Monitoring

This category includes an exploration of studies aiming to address drought monitoring,
assess production losses, and assess vegetation behaviour in different regions and crops
(Table 4). These studies commonly use remote sensed vegetation indices to estimate crop-
relevant parameters. Arab et al. [21], and Arab and Ahamed [81] highlight the importance
of real-time drought monitoring for winery production in South Asia, and how climate
change affects its economy. Arab et al. [21] focus on the yield loss assessment of table
grapes using a Composite Drought Index (CDI) derived from Landsat OLI and TIRS
sensors. The authors combined the VCI, TCI, NDVI DEV, Normalized Difference Moisture
Index (NDMI), and Precipitation Condition Index (PCI) and used a Bayesian algorithm
(BRANNS) to model the relationship between CDI and the Standardized Precipitation Index
(SPI), to estimate yield variation in vineyards. The results showed high spatial and temporal
correlations between the yield and CDI in 2016 and 2018 under severe drought conditions
(r=0.87 and r = 0.94, respectively) and under moderate drought conditions (r = 0.85 and
r = 0.80, respectively). In Arab and Ahamed [81], the SPI and Standard Vegetation Index
(SVI) were used, from Landsat and Climate Hazards Group InfraRed Precipitation with
Station data (CHIRPS) datasets, to identify drought-affected vineyards in specific years.
Yildirim et al. [60] also employed similar methodologies, monitoring drought impacts in
from the Seferihisar-Kavakdere region in western Turkey, underlining the need for different
vegetation indices to detect drought in various crops and climatic conditions, and showing
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that grapevines and olive trees were more severely impacted than citrus, due to insufficient
irrigation during dry years.

Table 4. Summary of crops studied, the scale, processing platforms/tools used, and the remote

sensing indices and products employed in aridity and drought monitoring studies.

. Processing .
Study Studied Crops Scale Platforms/Tools Indices and Products
NASA platforms:
Carrefio-Conde et al. [71] Olive and others Local EarthExplorer; GIS NDVI
software
Amri et al. [90] Olive and others Local SPOT-VEGETATION data NDVI; VAL VCI
Yildirim et al. [60] Olive, gs:‘}feizme and Regional GEE NDVL EVL LSWI
Arab et al. [21] Grapevine Regional GEE; NASA platforms NDVL NDMI; VCI; TCI
. SNAP; R software; Digital NDVI; RDVI; EVI; SAVI;
Cogato et al. [110] Grapevine Local Globe: QGIS GNDVI; TCARI
Arab and Ahamed [81] Grapevine and others Regional GEE; ArcGIS; MADCAT NDVI; CHIRPS; SVI; SPI
Knipper et al. [67] Grapevine and others Local NASA platforms LST
Bretreger et al. [42] Grapevine and others Local Digital Egl;’flOAustraha; NDVI; EVI; GVMI; RMI

Carrefio-Conde et al. [71] presented a forecasting model for crop dynamics using the
NDVI to enhance water management in olive orchards in Spain. Knipper et al. [67] focus on
the importance of accurate ET estimation in water management during the dry season, high-
lighting the significance of reduced latency in Landsat-derived Land Surface Temperature
(LST) products for near-real-time ET estimation in Californian vineyards. Cogato et al. [110]
assessed the impact of heat waves on irrigated vineyards using Sentinel-2 MSI imagery to
improve remotely sensed ET information for water management, using vegetation indices
like the NDVI and EVI to analyse plant health. Bretreger et al. [42] focused on monitoring
irrigation water use at the farm scale, using climate data and Landsat observations, focusing
on efficient water resource management. Amri et al. [90] analysed the vegetation behaviour
in olive orchards in a semi-arid region of North Africa, showcasing the utility of vegetation
indices, such as the NDVI, in understanding environmental conditions and plant health.

4.2. Agricultural Water Management

AWM is crucial for the sustainability of vineyards and olive groves, requiring a
balanced approach to irrigation (Table 5). By prioritisation efficient water use, farmers
can maintain the productivity of their crops, mitigate environmental impacts, and pre-
serve water resources. Within the context of AWM applications, 22 articles in total were
examined, with an emphasis on 7 studies carried out in California. Among these, five
studies [59,73-75,84] were affiliated with the GRAPEX (Grape Remote Sensing Atmo-
spheric Profile and Evapotranspiration eXperiment) project, which aimed at enhancing
water management practices in Californian vineyards through remote sensing technologies.
These studies explore various methodologies for estimating the LAI [84] and ET [59,73-75],
employing techniques such as vegetation indices, LST, and energy balance.
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Table 5. Summary of crops studied, the scale area, processing platforms/tools used, and remote sensing indices and products employed in agricultural water

management studies.

Study Studied Crops Scale Processing Platforms/Tools Indices and Products
Alshammari et al. [68] Olive Regional NASA platforms; FAO SOILS; ArcGIS NDVI
Moumen et al. [72] Olive Regional GEE MOD16A2
Ortega-Salazar et al. [62] Olive Local U.S. Geological Surveys (USGS) NDVI
Hafyani et al. [105] Olive and others Local GEE NDVI
Kharrou et al. [40] Olive and others Regional Cogsé?écg?sa?gfii;:; (gggs;%ﬁﬁfﬁzgs' NDVI; LAI
Pogas et al. [44] Olive and others Local — NDVI; SAVI
Kourgialas et al. [96] Olive, grapevine and others Regional Web-GIS irrigation platform NDVI; NDWI
Abubakar et al. [92] Grapevine Local Copernicus Services Data Hub LAI
Kang et al. [84] Grapevine Regional SNAP; GEE NDVI; NDWI; EVI; LAI GCI; REIP
Laroche-Pinel et al. [100] Grapevine Local THEIA platform Red, Red-Edge, NIR and SWIR bands
D’urso et al. [59] Grapevine Local Copernicus Services Data Hub NDVI; LAIL STR
Laroche-Pinel et al. [107] Grapevine Local — NDVI; NDWI; Dé\%’fg‘}\’ﬂc [; MCARL; PRE;
Wilson et al. [73] Grapevine Local Multiple satellite platforms LAL L AI\I{T]ODI;ET bands
Ohana-Levi et al. [74] Grapevine Local Geospatial Data Gateway ET
Knipper et al. [75] Grapevine Regional Multiple satellite platforms LST
Vanino et al. [88] Grapevine Local U.S. Geological Surveys (USGS) LAI; Kc
Consoli and Barbagallo [49] Grapevine Local — NDVI; SAVI; LAI; WDVI
Carrasco-Benavides et al. [51] Grapevine Local USGS Glovis NDVI; LAI
Bretreger et al. [37] Grapevine and others Local NASA platforms; Digital; Earth Australia; SLGA NDVI
Paul et al. [70] Grapevine and others Local U.S. Geological Surveys (USGS) LAI
Johnson and Trout [48] Grapevine and others Regional — NDVI
Sanchez et al. [50] Grapevine and others Local SIGPAC; HIDROMORE+ NDVI
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Abubakar et al. [92] used Sentinel-2 satellite data to monitor canopy development and
inter-row management in grapevine fields, using an analytical model to characterise the
grapevine canopy LAIL Vanino et al. [88] focused on estimating ET and crop coefficients,
for understanding water consumption in vineyards. They used multi-sensor remote sens-
ing data (from Landsat-8 OLI and RapidEye), providing a comprehensive view of water
dynamics in pergola vineyards, a traditional vine training system in Italy. Consoli and
Barbagallo [49] also underline the importance of remote sensing satellite-based methodolo-
gies for determining water requirements in Mediterranean vineyards. Sanchez et al. [50],
adopted a different approach by simulating soil water content using biogeochemical and
remote sensing models, with Sentinel-1 and Sentinel-2 data at the core of the analysis in
Spanish vineyards. The validation of these models with ground measurements confirms
the reliability of remote sensing in estimating soil moisture levels. Kourgialas et al. [96],
presented a web-based GIS platform in Crete (Greece), representing an innovative step in
irrigation management, using satellite data. This platform could cover vineyards and olive
trees (among other crops), aiming to improve agricultural sustainability by integrating
technology with traditional farming practices. Carrasco-Benavides et al. [51] focused on
the specific needs of a drip-irrigated Merlot vineyard in Chile, using multispectral images
from Landsat 5 (TM) and Landsat 7 (+ETM) to evaluate the METRIC model to estimate the
real evapotranspiration (ETa) and crop coefficient (Kc) during growing seasons. Bretreger
et al. [37] provided insights into the broader application of remote sensing, focusing on
quantifying irrigation water use through satellite multispectral data combined with soil
water deficit modelling.

Regarding olive trees, the studies by Hafyani et al. [105], Moumen et al. [72], and
Kharrou et al. [40] also offer valuable insights into the assessment of agricultural water
requirements, irrigation practices, and water use efficiency in semi-arid regions, particularly
in Morocco. Hafyani et al. [105] highlighted the importance of evaluating agricultural water
requirements for various crops (including olive trees) by considering reference ET, crop
coefficients, and crop ET, providing crucial insights into water management strategies.
Kharrou et al. [40] used remote-sensing-based soil-water balance in olive groves, which
enabled the monitoring and management of irrigation practices to optimise water use
efficiency. Similarly, Moumen et al. [72] evaluated the efficiency of deficit irrigation practices
in the Middle Sebou and Innaouene downstream regions, for assessing the impact of deficit
irrigation on water usage and olive productivity.

Alshammari et al. [68] used GIS software to model climatic variables, aiming to
identify new lands suitable for olive cultivation, by comparing soil and climate conditions
to those of existing farms in Aljouf, Saudi Arabia. Meanwhile, Ortega-Salazar et al. [62]
evaluated the performance of the METRIC model for its effectiveness in mapping actual
ET in super-intensive drip-irrigated olive orchards in Chile, contributing to enhance water
management practices. Pocas et al. [44] also focused on using remote sensing techniques to
estimate actual crop coefficients with the help of vegetation indices and soil-water balance
data in Portugal.

4.3. Land Use Management

LUM s a critical aspect of environmental sustainability, particularly mitigating drought
risks (Table 6). LUM refers to the planning, regulation, and control of land use to achieve
specific social, economic, and environmental objectives. The studies included in this cate-
gory present several similarities, including the use of remote sensing with high-resolution
satellite images (e.g., as Sentinel-2) [101,103,122] and remote sensing products such as the
operational ET product SEVIRI (Spinning Enhanced Visible and Infrared Imager), [80],
which provides information on ET rates over extensive land areas from the Meteosat 9
(MSG-2) satellite. Each study focuses on agriculture and land use, whether this the in-
tensification of olive trees in Morocco [122], spatial variability in vineyards [101], olive’s
dynamics in Turkey [39], or changes in land use over decades [39]. Navarro et al. [122]
addresses a decade-long view of the intensification of olive groves in Morocco’s Saiss Plain,
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using high-resolution satellite imagery from Planetscope, RapidEye, along with Sentinel-2.
They used machine learning algorithms to combine vegetation indices, such as the NDVI
or Modified Soil Adjustment Vegetation Index 2 (MSAVI-2) and Near-Infrared (NIR) bands,
enhancing the precision of land use classification, distinguishing between traditional, inten-
sive, and super-intensive olive orchards with high accuracy (>0.9). This study exemplifies
the methodologies that can be used to monitor and assess the ecological impacts of agricul-
tural practices, offering valuable insights for policymakers and stakeholders. Abdelmoula
et al. [103], using Sentinel-2 time series, developed a Bayesian model to estimate various
plant parameters like LAI, chlorophyll content, water content, and mesophyll structure,
aiming to anticipate drought risks in olive orchards.

Table 6. Summary of crops studied, the scale area, processing platforms/tools used, and remote
sensing indices and products employed in land-use management studies.

. Processing .
Study Studied Crops Scale Platforms/Tools Indices and Products
Abdelmoula et al. [103] Olive Local — Spectral bands
Navarro et al. [122] Olive and others Regional GEE; PlanetLabs NDVI; MSAVI-2; LAI
. Copernicus Services Data
Petropoulos et al. [80] Olive and others Global Hub; LSA-SAF FVC
. . . ERDAS Imagine 8.5; GIS Landsat TM and
Tunc et al. [39] Olive, grapevine and others Regional software TIRS/OLI bands
. Copernicus Services Data NDVI; NDWI; NDRE;
Darra et al. [101] Grapevine Local Hub MSAVI-2; FVC: FAPAR

Darra et al. [101] compared and evaluated data obtained from Sentinel-2 and an active
canopy sensor (Crop Circle ACS-470) at various grapevine phenological stages. Analysis
has been conducted using vegetation indices such as the NDVI, Normalized Difference
Red-Edge (NDRE), Modified Soil Adjustment Vegetation Index (MSAVI), and NDWI, along
with biophysical variables such as fractional vegetation cover (FVC) and the fraction of
absorbed photosynthetically active radiation (FAPAR) across different growth stages, to
understand photosynthetic efficiency and vegetation cover and potentially understand
grape productivity. Tunc et al. [39] analysed the spatial and temporal changes in agricultural
land use in the Araban District (Turkey), between 1984 and 2019, using Landsat-TM and
Landsat-TIRS/OLI data. The analysis revealed a significant decrease in dryland agriculture,
while irrigated agriculture increased. Petropoulos et al. [80] discuss the performance of
the operational ET product derived from the SEVIRI sensor in different Mediterranean
ecosystems, showing good agreement between satellite ET estimates and ground-based
measurements.

4.4. Water Stress

The exploration of water stress in agriculture and viticulture (Table 7), particularly in
California’s vineyards, has been advanced by several studies including those conducted by
Knipper et al. [63] and Safre et al. [99]. Knipper et al. [63] demonstrated the potential of
high-resolution satellite data and advanced modelling to improve water management in
vineyards. The authors integrated the ALEXI/DisALEXI model with a data fusion method
with the goal to provide precise daily ET estimates, which are crucial for sustainable
irrigation practices. Safre et al. [99] evaluated the Sentinel-2 Surface Energy Balance
Algorithm for Land (SAFER) model to estimate grapevine water consumption in the
Central Valley of California. The study focused on estimating actual daily and seasonal
evapotranspiration (ETa) using Sentinel-2 images. Following internal calibration, the
SAFER model demonstrated a root mean square error (RMSE) in daily ETa ranging between
0.64 and 0.75 mm/day. Spatial patterns of ETa revealed variability across sites and different
farmer management practices.
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Table 7. Summary of crops studied, the scale area, processing platforms/tools used, and remote sensing indices and products employed in water stress studies.

Study Studied Crops Scale Processing Platforms/Tools Indices and Products
Elfarkh et al. [94] Olive Local Copernicus Services Data Hub de ESA MSAVI-2; NDWI
Alkassem et al. [56] Olive Local NASA platforms; STICS NDVI
Sghaier et al. [97] Olive Local Us. Geol(ﬁfgiﬂg}fg s (USGS); NDVI
Makhloufi et al. [106] Olive Local THEIA platform Sentinel-2 bands
Aguirre-Garcia et al. [108] Olive Local TSEB LST; Sentinel-2 bands
Castelli et al. [64] Olive Local TRIME-FM NDWI; NDII
Hausler et al. [43] Olive Local STSEB NDVI
Fuentes-Penailillo et al. [65] Olive Local USGS GloVis Landsat bands
Battista et al. [54] Olive Local BIOME-BGC NDVI
Kefi et al. [14] Olive National — NDVI, LST;, VHI
Ortega-Farias et al. [45] Olive Local METRIC LAI
Pbgas et al. [46] Olive Local METRIC NDVI; LAI
Hoedjes et al. [77] Olive Regional SEB ET
Vanella et al. [111] Olive Local DisALEXI NDVI; LAI
Battista et al. [93] Olive and others Local GEE; Copernicus Data Hub NDVI
Pieri et al. [41] Olive and others Local EarthExplorer web system NDVI
Amri et al. [35] Olive and others Local — NDVI
Mateos et al. [47] Olive and others Local — SAVI
Reyes Rojas et al. [85] Olive, grapevine and others Regional NASA platforms NDVI; NDWI; NDMI; MSI; EVI; MSAVI-2; LST
Faraslis et al. [89] Olive, grapevine and others Global GEE NDVI; VHI; TCI
Bambach et al. [82] Grapevine Regional NASA platforms MCD15A3
Lopez-Fornieles et al. [95] Grapevine Regional GEE Sentinel-2 bands
Carrasco-Benavides et al. [57] Grapevine Regional GEE; NASA platforms; METRIC NDVI; SAVI; LAIL; LST

Doherty et al. [83] Grapevine Regional NASA platforms; SIMS NDVI
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Table 7. Cont.

Study Studied Crops Scale Processing Platforms/Tools Indices and Products
Kisekka et al. [58] Grapevine Local NASA platforms; pySEBAL S-SEBI; NDVI
Awada et al. [38] Grapevine Local U.S. Geological Surveys (USGS); SEBAL S-SEBI; NDVI
Ohana-Levi et al. [69] Grapevine Local NASA platforms; ALEXI NDVI; LAL LST
Bhattarai et al. [98] Grapevine Local U.S. Geological Surveys (USGS) NDVI; LAI
Safre et al. [99] Grapevine Local Copernicus Services Data Hub NDVIL LST
Mendes et al. [36] Grapevine Local Copernicus Services Data Hub Sentinel-1 and Sentinel-2 bands
Ramos et al. [102] Grapevine Local Copernicus Services Data Hub NDVI; LAI
Arab et al. [12] Grapevine Regional U.S. Geological Surveys (USGS) NDVI; NDWIL; LAL
Laroche-Pinel et al. [104] Grapevine Regional THEIA platform NDVI; NDRE; NDII; MSI; REP
Garcia-Gutiérrez et al. [61] Grapevine Local TSEB NDVI; LAL LST
Bellvert et al. [109] Grapevine Local TSEB LST
Knipper et al. [63] Grapevine Local ALEXI/DisALEXI MCD15A3H
Borgogno-Mondino et al. [86] Grapevine Local EarthExplorer web system NDVI; NDWI
Borgogno-Mondino et al. [87] Grapevine Local EarthExplorer web system NDVI; NDWI
Helman et al. [112] Grapevine Regional GEE NDVI; GNDVI; EVI; SAVI
Autovino et al. [76] Grapevine Regional ORNL DAAC LST; MOD16A2; MCD43A3
Campos et al. [52] Grapevine Local — NDVI; SAVI
Gentile et al. [53] Grapevine Local SEBAL NDVI; SAVI
Johnson et al. [55] Grapevine Local ArcGIS NDVI; LAI
Semmens et al. [78] Grapevine Local ALEXI/DISALEXI; STARFM; TSEB MCD15A3
Tao et al. [66] Grapevine and others Local Copernicus Services Data Hub; TSEB NDVI; NDWI; EVI; VCI; VSWI; TCI; CWSI; LST
Potopova et al. [79] Grapevine and others National R software EVI, SWI
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The integration of satellite imagery and advanced crop models is also revolutionisation
viticulture in France, offering a sophisticated approach to managing water stress and the
broader implications of climate change in vineyards. The research by Lopez-Fornieles
et al. [95] is particularly notable for its use of Sentinel-2 satellite imagery to assess the
impact of heatwaves on grapevines in the Languedoc-Roussillon region, a major concern
given the increasing frequency of extreme weather events [123]. Their methodology, which
employs partial least squares regression (N-PLS), provides predictive insight into potential
yield losses, which is invaluable for vineyard management and planning. Similarly, the
work by Alkassem et al. [56] underscores the potential of remote sensing to enhance soil
moisture assessments. They applied the STICS crop model [124], in conjunction with the
GLUE algorithm, to estimate Soil Available Water Capacity (SAWC) from Landsat 7 ETM+
imagery and ground measurements.

The concern regarding water stress in Italy, particularly in agricultural areas such
as olive groves and vineyards, is indeed significant. Studies such as those by Battista
et al. [54,93] and Pieri et al. [41], which utilise ground-based and remotely sensed weather
datasets play a crucial role in assessing water stress conditions, particularly in central
regions like Tuscany. Battista et al. [54] discuss the integration of ground and multi-
resolution satellite data for predicting the water balance of a Mediterranean two-layer
agroecosystem. On the other hand, Pieri et al. [41] focus on estimating actual ET in
fragmented Mediterranean areas; by employing a spatio-temporal fusion of NDVI data,
they evaluate the water consumption of vegetation and soil in these regions. Additionally,
Battista et al. [93] explore how the impact of water scarcity on olive trees can be estimated
through a combination of meteorological data and data from the Sentinel-2 satellite.

These collective studies advance our understanding of water stress and its man-
agement, which is vital for sustainable agriculture in regions like Tuscany, where such
challenges are particularly critical. Borgogno-Mondino et al. [87] investigated the spatial
and temporal variability of vines and soil in a Moscato Reale vineyard in Apulia, southern
Italy, utilisation the NDVI and NDWI from the Landsat 8 OLI, to explore vine and soil
vigour and water content. In Spain, Bellvert et al. [109] and Aguirre-Garcia et al. [108]
explored the integration of remote sensing data with the TSEB model to improve agricul-
tural water management. Bellvert et al. [109] focused on improving vineyard water status
assessment by using low-resolution thermal imagery and employing data enhancement
techniques to analyse ET components. The enhanced LST data used in this study allowed
the authors to understand the crop water stress index (CWSI) for grapevine water potential.
On the other hand, Aguirre-Garcia et al. [108] applied the TSEB model to olive groves to
estimate actual daily evapotranspiration (ETd) under varying ground cover conditions,
validating the model’s estimates against in-situ measurements for the improvement of
water management strategies. Similar work was conducted in a study area located in
Portugal by Héusler et al. [43], using remote sensing data fusion with the STSEB model
to estimate ETd and its partitioning into evaporation and transpiration in an intensive
olive grove. The results obtained showed accurate estimates of ETd and its partitioning,
demonstrating a better agreement for net radiation (Rn) and soil heat flux (G), and similar
results for sensible (H) and latent (AE) heat fluxes, as well as ETd. Furthermore, Mendes
et al. [36] applied a precision viticulture methodology for mapping soil moisture (SMC) in
Portuguese vineyards, using remote sensing data from Sentinel-1 and Sentinel-2 and incor-
porated field measurements of SMC, the Standardized Precipitation Evapotranspiration
Index (SPEI) as an agricultural drought index, supervised classification algorithms, and
feature selection techniques to classify SMC probabilities into high or low classes, crucial
for efficient irrigation management and soil salinisation prevention.

Potopovd et al. [79] performed a study in the Republic of Moldova, and used remote
sensing techniques, agricultural census, and agrometeorological observations to analyse
drought-related yield losses in vineyards. The enhanced vegetation index (EVI2), soil
water index (SWI), and SPEI were combined, and multiple linear regression (MLR) and
Bayesian neural network (BNN) models were applied for yield prediction. The study
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demonstrated a strong correlation between remote sensing indices and crop yield, with
BNN slightly outperforming MLR in yield prediction. Sghaier et al. [97] employed the
HidroMORE model to assess water balance in arid environments with a case study in olive
groves in Tunisia. The authors used ETO from FAO56 and NDVI from Sentinel-2. The
model showed a correlation coefficient (R?) of 0.72 and an Index of Agreement (IA) of 0.76
when compared with ground-truth measurements). Arab et al. [12] aimed to predict table
grape yield using satellite remote sensing and machine learning in the Shakardara District,
Kabul, Afghanistan. Landsat 8 images were used to calculate vegetation indices (the NDVI,
LAI, and NDWI) in vineyards from 2017 to 2019. Regression analysis and artificial neural
network (ANN) models were employed, showing that the NDVI had the highest accuracy
in predicting yields (* = 0.79), demonstrating the potential of satellite remote sensing and
machine learning models to enable grape yield prediction.

Helman et al. [112] monitored grapevine stem water potential (¥stem) using daily
high-resolution satellite imagery from Planet nano-satellites, and the Google Earth Engine
platform. The authors developed a remote sensing tool that used vegetation indices to
predict ¥Ystem’s spatial and temporal variability during the growth season, in Israel. The
creation of a ‘global scale’ model, which requires minimal vegetation indices variables,
offers a potential improvement in the efficiency of vineyard-level ¥stem monitoring, par-
ticularly beneficial for Mediterranean vineyards where precise water potential assessment
can lead to better irrigation management.

Finally, Tao et al. [66] focused on soil moisture recovery in grape growing areas using
a multi-feature and stacking-based ensemble learning model. The study integrates MODIS
remote sensing data with topographical information, deriving features related to ET, LST,
and spectral reflection (SR). In the context of vineyard irrigation management, this approach
could be used to obtain spatially distributed grapevine water stress indices, which may
complement irrigation scheduling to improve vineyard water and yield management. The
study demonstrates that TSEB can be of great utility to vineyard irrigation management,
especially to improve T/ET estimations and quantify the contribution of the cover crop to
ET. Improved knowledge of T/ET can enhance grapevine water stress detection to support
irrigation and water resource management. In addition to the mentioned studies, other
research articles and resources are available that discuss the application of remote sensing
satellite data for drought assessment in vineyard and olive orchards (Table 2).

5. Conclusions

The temporal distribution of the analysed studies reveals an increase in scientific
production since 2018, reaching its peak in 2021. This trend reflects a growing interest
in the use of satellite remote sensing for drought assessment/monitoring in vineyards
and olive plantations. In terms of geographical distribution, USA, Italy, Spain, France,
Chile, Tunisia, and Portugal are the main countries leading this research field. Sentinel
and Landsat emerge as the primary sources for satellite remote sensing information. Their
respective sensors, such as MSI, OLI, or TIRS, provide valuable and freely accessible data
for a variety of research purposes. These platforms are extensively utilised to monitor
drought conditions and evaluate water requirements in vineyards and olive groves across
diverse regions. The availability of multiple remote sensing satellite platforms enhances
data accessibility and improves temporal resolution, despite potential disparities in spatial
resolution. This allows for a greater volume of data covering periods unaffected by cloud
coverage. Simultaneously, the presence of various sensors and spectral bands in different
wavelengths provides an enhancement of studies on drought-prone areas. In fact, all these
recent technological advances in remote sensing promote continuous research, which is in
line with the global agricultural policies for the enhanced sustainability of the sector [124].

The integration of satellite data with advanced modelling tools, such as METRIC and
TSEB, enables more accurate estimation of actual evapotranspiration, crop coefficients, and
soil moisture levels, which are critical for optimisation agricultural water management.
Analysing the spatial and temporal variability of vegetation and soil in vineyards and olive
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groves using satellite spectral indices such as the NDVI and NDWI provides valuable in-
sights for sustainable management. Furthermore, these studies also address the importance
of innovative web-based GIS platforms that leverage satellite data to improve irrigation
management and enhance agricultural sustainability in regions like the Mediterranean,
where water scarcity is a significant challenge. These tools have demonstrated the potential
of remote sensing techniques to assess the impact of extreme weather events, such as heat-
waves, on grapevine productivity, providing valuable insights for vineyard management
and climate change adaptation. Overall, remote sensing and satellite imagery can be used
to improve drought monitoring and assessment, water use and ET estimation, irrigation
management, and sustainable agriculture in semi-arid and Mediterranean regions.
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