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Abstract: Weeds pose a significant threat to agricultural production, leading to substantial yield losses
and increased herbicide usage, with severe economic and environmental implications. This paper
uses deep learning to explore a novel approach via targeted segmentation mapping of crop plants
rather than weeds, focusing on canola (Brassica napus) as the target crop. Multiple deep learning
architectures (ResNet-18, ResNet-34, and VGG-16) were trained for the pixel-wise segmentation of
canola plants in the presence of other plant species, assuming all non-canola plants are weeds. Three
distinct datasets (T1_miling, T2_miling, and YC) containing 3799 images of canola plants in varying
field conditions alongside other plant species were collected with handheld devices at 1.5 m. The top
performing model, ResNet-34, achieved an average precision of 0.84, a recall of 0.87, a Jaccard index
(IoU) of 0.77, and a Macro F1 score of 0.85, with some variations between datasets. This approach
offers increased feature variety for model learning, making it applicable to the identification of a wide
range of weed species growing among canola plants, without the need for separate weed datasets.
Furthermore, it highlights the importance of accounting for the growth stage and positioning of plants
in field conditions when developing weed detection models. The study contributes to the growing
field of precision agriculture and offers a promising alternative strategy for weed detection in diverse
field environments, with implications for the development of innovative weed control techniques.

Keywords: canola; Brassica napus; image segmentation; deep learning; precision agriculture; herbicide;
weed detection

1. Introduction

Canola or oilseed rape (Brassica napus) is a dryland crop grown for its oil seeds, being
one of the largest sources of vegetable oil, alongside palm oil and soybean oil [1]. Despite the
scale of canola production, it faces significant challenges from weeds, pests, and diseases,
which can collectively lead to losses of up to 80% in crop production, by competing for
essential resources such as light, water, and nutrients [2–5]. In Australia, weeds alone
impose a substantial economic burden on growers, costing an estimated AUD 3.3 billion
annually, with AUD 2.5 billion spent on control methods and AUD 745 million in lost
revenue [6]. Weeds such as annual ryegrass (Lolium rigidum), wild oat (Avena fatua), and
wild radish (Raphanus raphanistrum) are responsible for the highest losses and expenses for
canola crops in Western Australia (WA) [7,8].

Herbicide-resistant canola varieties are grown in an attempt to manage weed infesta-
tion in the field [9,10]. However, the widespread cultivation of these varieties has led to an
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increase in herbicide use, resulting in herbicide resistance, which reduces the effectiveness
of herbicides over time [11,12]. As of 2017, glyphosate resistance has been reported in
38 weed species, with ryegrass and wild radish being notable resistant species for canola
production in Australia [13–15]. This prevalence of resistant species emphasises the need
for new practices and technologies to mitigate the impact of weeds.

Precision agriculture has been proposed as a solution to optimise resource usage in
agricultural production [16,17]. In broad acre farming, herbicides are uniformly applied to
prevent weed emergence during crop seedling emergence. While manual spot spraying and
removal can be effective for local infestations, the blanket application approach is costly,
can unintentionally harm the environment, and can lead to herbicide resistance through
off-target effects such as spray drift [18–20]. Precision agriculture considers the variability
within fields and employs technological or management strategies to provide tailored treat-
ments [21]. In terms of herbicide application, precision agriculture technologies allow for
precise herbicide application on target areas that considerably reduce herbicide use [22–24].
Precision agriculture studies have proposed strategies such as weed mapping [25–27] and
the real-time targeted spraying or mechanical removal of weeds [22,28,29]. Despite the
reported decrease in herbicide application using precision agriculture [24], few studies
have explored weed detection under field conditions. A systematic review has reported
that just 34 weed species have been targeted using weed detection models, frequently
focusing on a single weed–crop species association [30], which does not always reflect
the conditions observed at a commercial farm. Datasets enabling precision agriculture
technologies are typically collected using hand held devices [31], vehicle mounted camera
systems, or UAVs [25,26,32–34]. Red Green Blue (RGB) images are the most commonly
used data format for weed detection due to the low cost and ease of collection; however,
researchers are also using multispectral image datasets that can identify unique plant
spectral signatures to differentiate between crop and weed species [16,25,26,31,32,35–38].

Targeted weed management via mapping, direct herbicide application, or mechanical
removal are all precision agriculture techniques that are powered by weed maps generated
using deep learning and machine learning [25,26,39]. Machine learning models are trained
to build a representation of the feature interactions in the dataset to predict their outcome,
based on labelled datasets. Deep learning modelling systems make predictions based on
the layers of units assembled in a neural network that can measure and assign weights
to various features of data, such as edges, lines, shapes, and colours, with the detection
of specific objects being possible using combinations of these feature networks [40]. The
versatility of deep learning algorithms decreases the human bias associated with the use
of handcrafted feature extraction, as observed in previous weed-mapping studies [41].
Deep learning techniques, alongside precision agriculture, have been proposed to reduce
herbicide consumption by more than 90% via the mapping of weed hotspots to enable
targeted spray application [22–24].

The primary deep learning algorithms for weed mapping and recognition are con-
volutional neural networks (CNNs) that analyse images in pixel array format, effectively
capturing patterns and features [39,40,42,43]. Convolutional neural network models such
as VGG-16 and ResNet-50 have identified a variety of weed species in canola in greenhouse
studies, ranging in accuracy from 95 to 99.4% [44,45]. However, their performance in
field settings is lower due to the added complexity of morphological differences, canopy
interlocking, and background variations [46,47]. CNNs have also been trained on datasets
collected from fields for semantic segmentation tasks, in which each image pixel is classified
into a category (i.e., crop) to generate a detailed pixel-level representation of the objects in
the image. Semantic segmentation was performed using a custom deep learning architec-
ture (DeepVeg), which was used to assess beetle damage, with an IoU (intersection over
union) of 0.7434 [48]. A segmentation of canola plants and weeds was also conducted using
a ResNet-50 architecture, with a reported IoU of 0.8620 for mapping crop structures [49].

Field-trained models have the challenge of remaining robust under variable environ-
mental conditions, further exacerbated by the morphological variability of weed species.
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Many studies targeting single weed species necessitate additional training, ensemble learn-
ing, or model fusion, all of which escalate the complexity and computer power requirements
for broad-spectrum weed detection [50,51]. As the model performance is dependent on
multiple factors such as model architecture, training datasets, and evaluation methods,
it is difficult to assign a specific threshold for model performance to attain meaningful
herbicide use reduction. Previous studies attained variable results for single species weed
mapping. A high model performance is extremely desirable, with robust, consistently
performing models that are functional in environments with variable weed species, plant
density, spacing, tillage, and light conditions being required for consumer use [52].

In our study, we trained and assessed the performance of two U-net deep learning
models with pretrained ResNet18 and ResNet34 architectures [53], alongside VGG-16, an
image classification network [54], to perform semantic segmentation and map canola crop
structures. This model was trained on crop features that are more commonly present than
weed features in real-world environments. The aims of this study were (i) to develop
a model capable of locating and mapping canola plant structures correctly; (ii) while
simultaneously assigning all other plants present to a collective weed segmentation class;
(iii) and to appraise its applicability as a universal canola mapping tool under varied image
conditions. Via focusing the model in mapping canola, we can map all other plants present
in images, negating the need for more complex ensemble learning strategies based on the
recognition of specific weeds. In addition, we aimed to explore feature importance for
plant structure detection to better understand and visualise how CNNs assign importance
to specific plant features during the training process.

2. Materials and Methods

Three datasets (T1_miling, T2_miling, and YC) of images of canola plants in varying
field conditions and alongside various other plants were used for this study. The dataset
used for this study is available at: https://figshare.com/articles/dataset/canola_detection_
dataset_zip/24448516 (accessed on 27 October 2023). The scripts used are available at
GitHub: https://github.com/mikemcka/Canola_detection_dl/tree/main (accessed on 1
June 2024). A simplified overview of the workflow conducted during this study can be
seen in Figure 1.
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2.1. Miling Dataset Collection

T1_Miling and T2_Miling datasets were kindly provided by Dr Mike Ashworth and
Roberto Lujan Rocha at the Australian Herbicide Resistance Initiative (AHRI). The images in
these two datasets were collected with a smartphone in 2018 and 2019 from two successive
canola trials (T1 and T2) near Miling, WA, located at 32◦00′36.4′′S 116◦44′11.4′′E. T1 had
72 RGB images, whilst T2 had 71. Both trials at Miling were sown in May 2018 and 2019
with two varieties of canola at a seeding rate of between 1.1 and 3.7 kg/ha at a depth of
1 cm. Crops were allocated spacings between 25 cm and 50 cm and were treated with a
variety of pre- and post-emergent herbicides. Images were collected on a bright, sunny
day at approx. 15 cm plant height at a variety of angles and heights, ranging from 0.5 m
to 1.5 m [55]. The Miling site had an established ryegrass seedbank that was of a similar
height to that of canola plants and crop stubble littering the area.

2.2. York Dataset Collection

For the York canola (YC) dataset, 167 images were collected on 2nd June 2023 from a
privately owned farm south of York township, WA, located at 32◦00′36.4′′S 116◦44′11.4′′E.
Pictures were from approximately 1.5 m high at a variety of angles and encompassing
variable fields of view with an RGB Canon 600D DSLR camera under overcast, rainy
conditions. The York site was largely weed free, with some regions of blue lupin regrowth
and varying amounts of crop stubble.

2.3. Bounding-Box Image Labelling

The ground truth labelling of the canola plants was performed across all image
datasets by manually labelling images using the open-source tool makesense.ai (Skalski,
P. Make Sense. Available online: https://github.com/SkalskiP/make-sense/, (accessed
on 2 November 2022). Bounding boxes were manually drawn around the outline of all
canola plants present using the polygon tool. The objective of labelling was to encompass
all canola plant structures within the bounding box and to minimise the inclusion of all
other plants present. Labels were exported in COCO JSON format.

2.4. Segmentation Mask Generation

Images were processed following the protocol employed in Danilevicz et al. 2023
using the script improcessing.ipynb [24]. Using the NumPy python package, images were
converted to NumPy arrays with pixel values normalised to fit between 0 and 1 [56].
Differentiating between plants and soil pixels in soil masks was established using the
Colour index of Vegetation (CIVE) found in Equation (1), in combination with the Otsu
Threshold function to separate pixels into two classes—plants and not plants [5,57,58].
The Open Computer Vision Library (CV2) was used to visualise masks [59]. The Pillow
(PIL) Python imaging library was utilised to overlay bounding box coordinates in COCO
JSON format onto plant pixel arrays. Functions were employed to convert labels to arrays,
facilitating the generation of soil/crop segmentation masks. These masks were then utilised
in the training of the deep learning models presented in this study, as depicted in Figure 2.
The pixel-wise segmentation masks were visually assessed to identify any discrepancies
between the RGB images and the generated masks.

CIVE = 0.441 × Red Band − 0.881 × Green Band + 0.385 × Blue Band + 18.78745 (1)

2.5. Mask Cutting

After conversion to full sized segmentation masks, the masks were cut into smaller
500 × 500 pixel images using custom functions, alongside the PIL and cv2 packages. Scripts
for this purpose can be located in the resize_images.ipynb notebook. Due to the variable
size of images contained in all datasets, each full-size mask yielded approximately 12
smaller 500 × 500 pixel images, which were used to train models. Due to memory con-
straints, another set of 224 × 224 pixel images was generated using the cv2 package, the

https://github.com/SkalskiP/make-sense/
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interpolation, and the resize functions to preserve all features and account for memory
constraints from the VGG-16 architecture.
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2.6. Partition of Dataset into Training, Validation, and Holdout

Segmentation masks and corresponding labels from all datasets were divided into
holdout (10%) and training sets (90%) via random allocation and the shutil package, using
the script in the notebook holdout_training_split.ipynb. The files in each set were then
saved to their own directories. After the files were saved, a custom Kfold function from
the sklearn package was used to split the file into five equally sized subsets or folds, saved
as a list [60]. These folds were then concatenated into a single .pkl file containing all five
lists using the Python object serialization package pickle. A codes.txt file was generated
containing an array with titles assigned to each class of pixel present in masks, with ‘Soil’
assigned to 0, ‘Canola’ assigned to 1, and ‘Weeds’ assigned to 2. During training, the
Training/Validation set size was set to 80/20%, with the validation set being used to assess
model performance while training.

2.7. Building the Dataloader and Hyperparameters

The FastAi library was used to train models alongside the Pytorch library [61,62].
Images were loaded into datablocks, which loads and preprocesses segmentation masks.
Data augmentation in the form of flipping, rotation, zooming, lighting changes, and
warping was introduced at this step using the fastai.vision.transforms package. The batch
size, the number of images passed to the model at any one time, was set at 4 for ResNet-18
and ResNet-34 and set at 3 for VGG-16. A learner object was generated, which contained
the model architecture and specified hyperparameters including loss and optimisation
function, batch normalisation, self-attention, and metrics to assess performance.
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2.8. U-Net Model Architecture

Three architectures were selected for training. The first two architectures chosen were
two pretrained U-Net CNN architectures, using ResNet-18 and ResNet-34 backbones from
the pytorch.vision library (Figure 3). The use of residual connections in ResNet architectures
allows the network to bypass certain layers during training, which increases computational
efficiency and might allow the model to run on a Raspberry Pi device, if successfully
trained [63]. The final architecture selected was VGG-16, an image classification architec-
ture with a deeper network and use of smaller convolutional filters for feature extraction,
modified to function with the FastAI library (Figure 4) [54,64]. The VGG architecture has
been reported to achieve a better segmentation performance than ResNet in alternative seg-
mentation and classification applications [65–67], and might be able to accurately capture
canola morphology. In addition, ResNet and VGG-16 architectures were selected due to
their demonstrated high segmentation performance for weed segmentation [24,35,44,45,68].
All models were pretrained using weights from the Imagenet dataset [69]. For the best per-
forming parameters, self-attention, normalisation, and pretraining were set to true, while
loss function was set to DiceLoss and the optimisation function was set to Adam [70–74].
All models were trained at a learning rate of 1 × 10−3.
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2.9. Evaluation Metrics

The metrics used for model performance assessment during training were DiceMulti
and Jaccard coefficient. DiceMulti or Dice coefficient loss is a measure of the overlap of
pixels between ground truth and predicted segmentation maps for multiple classes and
can be calculated as shown in Equation (2) [76]. DiceMulti ranges from 0 (no overlap)to 1
(perfect overlap).

DiceMulti = 1 − (2 ×Intersection)/(Prediction + Ground Truth) (2)
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Intersection represents the number of overlapping pixels between prediction and
ground truth. Prediction represents the number of pixels in the predicted segmentation,
while ground truth represents the number of pixels in the true segmentation mask.

The Jaccard coefficient, or intersection over union (IoU), measures the extent of overlap
between the predicted and ground truth segmentation masks; it is shown in Equation (3).
The IoU score ranges from 0 (no overlap) to 1 (perfect overlap).

IoU = Intersection/(Prediction Union Ground Truth) (3)

Intersection is the number of overlapping pixels between the prediction and the
ground truth. Prediction Union Ground Truth is the total number of pixels in both the
predicted and ground truth segmentation masks.

After training, the scikit-learn library was used to perform a 5-fold cross validation
(n_splits = 5) to compute the Precision, Recall, Intersection over Union (IoU), and macro
F1 metrics to assess the pixel-wise segmentation performance of each model architecture
on the predictions made on the holdout set, testing the model’s capacity to make blind
predictions [60]. IOU and Macro-F1 are the same as specified above in Equations (2) and (3).
The Precision and Recall equations are presented in Equations (4) and (5). Precision
measures the accuracy of positive predictions made using the segmentation model. In other
words, it quantifies the model’s ability to correctly identify and segment objects of interest,
while minimising false positives.

Precision = True positive/(True positive + False positive) (4)

True Positives is the number of correctly identified positive instances (correctly seg-
mented objects). False Positives is the number of instances incorrectly identified as positive
(i.e., misclassified as objects when they are not).

A high precision score indicates that the model is good at identifying and segmenting
objects, while making few errors in classifying non-objects as objects. Recall or the True
Positive Rate measures the model’s ability to identify and segment all relevant objects of
interest in the image. It quantifies the model’s ability to avoid missing true positives.

Recall = True positive/(True positive + False negative) (5)

True Negatives is the number of correctly identified negative instances (correctly
identified non-objects). False negatives are the number of instances incorrectly identified as
negative (i.e., objects missed by the model).

A high recall indicates that the model is effective at identifying and capturing most,
if not all, relevant objects in the image. The script used to compute metrics for all three
datasets is located in github under the name ‘Metrics_plots.ipynb’.

2.10. Training

All models were trained for 24 h using the fine_tune method from the FastAI library
on dual NVIDIA Tesla V100 16 GB GPUs. The fine_tune function provides an effective tool

https://commons.wikimedia.org/wiki/File:VGG16.pn
https://commons.wikimedia.org/wiki/File:VGG16.pn
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for training as it automatically freezes and unfreezes layers and adjusts learning rates and
hyperparameters to best train models [61,77].

Each of the five folds used to train each model was specified whilst queuing jobs by
the argparse library, enabling the specification of each fold for training from the command
line. The number of epochs of training that each model received was controlled by the
‘EarlyStoppingCallback’ and ‘SaveModelCallback’ arguments in the fine_tune command.
These callbacks are set to stop training and save the model after metrics have not improved
after three epochs. Trained models for each fold were exported as .pkl files and the
raw model weights were saved as .pth files. The segmentation masks of the predictions
made by each model on the images in the holdout set were exported after the conclusion
of model training. Scripts used to train ResNet-18, ResNet-34, and VGG-16 are called
‘unet18_topaz.py’, ‘unet34_topaz.py’, and ‘unetvgg_topaz.py’.

2.11. Feature Extraction Analysis

The FastAi, Torchvision, and Seaborn packages were used for feature extraction anal-
ysis following the guide available at: https://github.com/alexander-soare/torchvision_
feature_extraction_walkthrough (accessed on 4 October 2023) [61,62,78–80]. A learner object
was generated with pretrained PyTorch ResNet-18, ResNet-34, and VGG-16 architectures
loaded. The models loaded had not previously seen any of the training datasets. The images
for analysis were loaded and converted to NumPy arrays. The ‘create_feature_extractor’
function from torchvision.models.feature_extraction was used to generate a feature extrac-
tor from the pre trained CNN model. The specified layers of the model architecture to
return are ‘layer1’, ‘layer2’, ‘layer3’, and ‘layer4’. An image from the list of loaded images
is selected and loaded using the PIL library. The image was converted to the RGB format,
resized to a higher resolution, and was normalised [36]. The image was then converted to
a PyTorch tensor via a custom function, permuted to the required format (channels first),
and was unsqueezed to add a batch dimension. The code extracts features from the input
image using the ‘feat_ext’ feature extractor, with no gradient computation. The extracted
features were then stored in a variable.

2.12. Displaying Results

The feature extractor function extracted a random subset of feature maps encoding
learned features from the input data passed in between each layer of the deep learning
model. From this subset, a total of three images from the first layer of each model archi-
tecture were elected to be displayed, due to feature maps becoming less interpretable to
humans on deeper layers. Each feature map is reshaped to 2D and visualised in subplots
using the seaborn library. Each subplot was labelled with the layer name and the dimen-
sions of the feature map. The feature maps displayed are of a continuously lower quality,
representing the down sampling process occurring between each layer of the U-Net model.
Pixel colour values range from 0 to 255, with 0 (dark blue) representing no model attention
and 255 (yellow) representing high model attention.

3. Results
3.1. Segmentation Performance across Datasets

The optimal segmentation performance occurred between 30 and 40 epochs, taking
around 18 h of training, with no further improvements observed. Table 1 summarises the
collective precision, recall, Jaccard index (IoU), and Macro F1 results for all models and
datasets. The datasets exhibited similar model prediction performances, with an average
precision of 0.83 across all datasets. The York canola dataset stood out with the highest
recall (0.87), IoU (0.76), and Macro F1 (0.84). The metrics showed a mean variance of
±5.89% between datasets, with the T1 and T2 Miling datasets displaying nearly identical
performances. The York canola dataset, characterised by flat light conditions and higher
resolution, showcased superior results.

https://github.com/alexander-soare/torchvision_feature_extraction_walkthrough
https://github.com/alexander-soare/torchvision_feature_extraction_walkthrough
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Table 1. Segmentation results comparison for five-fold cross-validation for predictions made on the
holdout dataset across all deep learning model architectures and datasets. Precision (Prec), recall
(Rec), Jaccard index (IoU), and Macro F1 (F1) metrics for the canola class. The average performance
of all models on each dataset is recorded in the four rightmost columns. The average metrics of all
architectures for all datasets is shown in the bottom row.

Dataset
Resnet-18 Resnet-34 VGG-16 Models’ Average

Prec Rec IoU F1 Prec Rec IoU F1 Prec Rec IoU F1 Prec Rec IoU F1

York
Canola 0.83 0.89 0.77 0.85 0.84 0.89 0.78 0.85 0.81 0.83 0.73 0.82 0.83 0.87 0.76 0.84

T1 Miling
ARG 0.84 0.85 0.75 0.84 0.84 0.86 0.76 0.85 0.80 0.81 0.70 0.79 0.83 0.84 0.74 0.83

T2 Miling
ARG 0.84 0.86 0.75 0.84 0.84 0.87 0.76 0.85 0.80 0.81 0.70 0.80 0.83 0.85 0.74 0.83

Metrics
Average 0.84 0.87 0.76 0.84 0.84 0.87 0.77 0.85 0.80 0.82 0.71 0.80 0.83 0.85 0.75 0.83

The high precision metrics signify models that correctly identified a substantial number
of canola pixels with a low false positive rate. The average IoU value of 0.75 suggests that
the models identified 75% of ground truth-labelled canola pixels. A high average Macro
F1 score of 0.83 across all datasets reflects a strong overall model performance, which is
essential for detecting plants and predicting their precise positions. Refer to Figure 5 for
representative RGB images, labelled ground truth, and model predictions.

3.2. Variation in Architecture Prediction Performance

ResNet-34 had a higher average performance than the other architectures, with an
average precision of 0.84, a recall of 0.87, an IoU of 0.77, and a Macro F1 of 0.85. A
near-identical performance was observed with Resnet-18, which was outperformed by
ResNet-34 by 1.2% in IoU and Macro F1. VGG-16 had a notably lower performance than
both ResNet-18 and ResNet-34, with a precision of 0.80, a recall of 0.82, an IoU of 0.71,
and a Macro F1 of 0.80. The performance metrics of the VGG-16 architecture were, on
average, 6% lower than those of the U-net ResNet-34 architecture across all datasets. Due to
exceeding the 16 gb gpu memory constraints, VGG-16 notably had 224 × 224 pixel images
in its training set that had been modified from the original training set using interpolation
and resizing.VGG-16 also had a lower batch size of three compared to ResNet-18’s and
ResNet-34’s four. With the modifications to batch size and image resolution, the training
time for the ResNet and VGG-16 models ranged between 24 and 30 min per epoch, with
the highest metrics being obtained after 30–40 epochs or approx. 18–20 h. Very small crop
structures that are blurred or in image backgrounds were more commonly found in T1 and
T2 Miling and were sometimes incorrectly segmented due to information loss in deep layer
feature extraction.
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Figure 5. Random subset of predicted segmentation masks from the Resnet-34 model from each
dataset. Each column shows an RGB image (row 1), ground truth (row 2), and predicted mask (row 3)
from each dataset—T1 Miling, T2 Miling, and York canola. Canola structures are shown in orange,
all other plant structures are shown in green. ResNet34 displayed the capacity for the model to
accurately detect plant structures, whilst being obscured by crop stubble (York Canola panel 1, B),
as well as correctly identifying mislabelled plant structures (T2 Miling, C). Predicted segmentation
masks from Resnet-34 model on York canola dataset. Blue lupin regrowth is shown in images A and
B. Examples of light reflectance reducing segmentation performance can be observed in image C.

3.3. Feature Analysis

The results of the feature analysis can be seen in Figures 6–8, with the base image being
displayed next to a random subsample of feature maps passed to layer 1 of the ResNet-34
and VGG-16 models. The lighter pixel regions in the image represent more attention shown
by the self-attention algorithm, which selectively weighs the importance of various pixels
present in the feature map and assigns more importance to specific features. This feature
importance is then used to assist in computing feature weights for the final model. VGG-16
does not have an encoder/decoder system, as is found in U-net models, and instead has
different sized inputs passed in between layers, so feature maps are at full input image size
in the first layer. While some structures may be recognisable, the nature of unsupervised
deep learning means that many feature maps in Figures 6 and 7 may encode features or
patterns than are non-human interpretable.
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VGG-16. The model appears to show greater attention to unique shapes and structures along leaf
edges and stem structures.

4. Discussion

This study compared the performance of CNN models ResNet-18, ResNet-34, and
VGG-16 for an alternative weed management approach via targeting crop recognition,
rather than weeds, via pixel-wise segmentation. In addition, we identified which features
were deemed most important to training CNNs for differentiating the canola plants from
weed species under varied field conditions, as the accuracy and applicability of models for
crop/weed detection are dependent on feature extraction, which is an important step in
training deep learning models [81].

ResNet-34 was the best performing model, with an average precision of 0.84, a recall
of 0.87, an IoU of 0.77, and a Macro F1 of 0.85; there was a variance of ±5.89% between the
three datasets. These metrics indicate that the model can map most canola plants and plant
structures, although it might not recognise the entire crop canopy. The canola segmentation
performance of the models in this study was similar to the metrics of the deep learning
studies listed previously, with both previous examples trained on field datasets [48,49]. A
previous study focused on canola and weed segmentation achieved an IoU of 0.8620 for
mapping canola canopy structures using high-resolution, close-range images [49]. Despite
reporting a higher segmentation performance, our training datasets encompassed a broader
range of imaging scenarios, including distant structures at various angles, potentially
leading to blurred and indistinct plant structures. Using a representative dataset showing
diverse environmental and technical conditions increases the model’s robustness, allowing
it to detect more discriminatory features for canola plants. In this study, ResNet models
outperformed VGG models in several image classification studies [82–85]. The primary



Remote Sens. 2024, 16, 2041 13 of 19

differences leading to performance variations between ResNet-18 and ResNet-34 are due to
the number of layers of residual blocks present, or the depth of the model, with ResNet-34
having a depth double that of ResNet-18 [64]. Deeper models are more capable of capturing
complex features and, therefore, have a greater performance than shallower models [64].
This is also with the trade-off that deeper models have higher computation requirements
for training and deployment; therefore, in the case of crop segmentation, ResNet-18 may
be preferrable for practical deployment due to having a near-identical performance to
ResNet-34 [64]. ResNet models are also much more lightweight than VGG-16, being able
to accommodate less memory with larger images (500 × 500 pixels) and larger batch
sizes due to skip connections and downscaling not being present in VGG-16; VGG-16
requires the manual downscaling of images prior to training, resulting in a possible loss of
feature information due to a lower image resolution [54,67]. The best-performing model
for weed recognition and segmentation in a field setting is variable between targets and
datasets, showing the need to test multiple architectures whilst training weed detection
models [24,41,45,86].

The high performance of all models on the YC dataset can be attributed to factors
such as higher base image resolution and the overcast scattered lighting conditions that
reduces the formation of sharp shadows observed in the T1 and T2 datasets, as shown in
Figure 5. The functionality of the model in varied lighting conditions is essential for the
versatility of model applicability, so datasets including diverse light conditions must be
included. Light reflectance and variable light conditions impact RGB weed segmentation by
partially obscuring plant structures and changing plant spectral signatures in multispectral
studies [49,87–91]. Whilst measures can be taken to normalise plant spectral reflectance
in multispectral studies, the extensive obstruction of leaf structures due to specular and
diffuse reflection, as witnessed in this study, cannot be addressed, except through the
selective exclusion of certain images from the training and testing datasets The variations
in camera angle, position, and sensor settings across datasets might also have an affected
segmentation performance, leading to the occlusion of important plant features. While
reducing the variation in image conditions in the datasets would improve the overall model
metrics, this approach contradicts our overarching goal of producing a versatile and robust
model that functions under a wide range of lighting conditions [92].

The strategy used in this study of employing features of crops rather than weeds
has the advantage of increasing the amount and variety of features available for extrac-
tion and learning by deep learning models, compared to the reduced number of target
features available for specific weed species [93]. The approach used here also has the
benefit of functioning for a wide variety of weed species, negating the need to collect
and label multiple species datasets used in traditional weed detection deep learning stud-
ies [24,35,41,47,81,93]. While functioning for a variety of weed species, this strategy may
have other benefits. Hasan and Bais 2020 generated multiple deep learning models to per-
form semantic segmentation on weeds in canola fields, with a reported IoU score of 66.48%
for weeds. Whilst segmentation was effective in mapping weeds that are further from
crop canopy margins, the researchers found multiple occurrences of incorrect predictions
between crop stems and grass weeds when weeds overlay canopy structures [35]. As there
is a large class imbalance between crop/background and weeds in the study, the increased
feature availability of the crop labelling technique may negate feature scarcity and class
balancing issues in low weed count scenarios.

The annotation of datasets such as those used in this study continuously proves to
be a complication for all deep learning weed detection studies, as it is a time-consuming
and laborious process [52,93]. Accurately labelling all leaf boundaries with certain species
in field settings can be challenging and can lead to a lower performance of deep learn-
ing models, the example in this study being crop stubble breaking up leaf outlines and
introducing unnatural, straight-lined features into an otherwise irregularly shaped plant
structure [41,93]. The datasets collected for this study account for the appropriate growth
stage for optimal spray times, early after emergence, as it is necessary to kill weeds prior
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to flowering and reproduction and prevent competition with the crop [26,88,94,95]. As
well as the changes in plant morphology during growth, this need is compounded with
additional complexity that is introduced as weeds becoming partially obscured in crop
canopies in later growth stages, a particular problem with morphologically similar crop
and weed combinations [24,26,31,96]. Ullah et al. 2021 proposed a custom dilated U Net
model that had a reportedly improved performance in segmenting edge structures over
standard U Net models, whilst requiring a lower computing power. They achieved an IoU
of crop and weeds of 86.11% and 82.99%, respectively, at a compromise of 1% to U Nets
such as ResNet-50 and Deeplabv 3+ [49], while all images collected during the study had
the same close field of view at the same angle. The dilated U Net architecture may be a
strategy to further optimise canopy segmentation using the labelling method outlined in
our study.

In our study, the feature attention analysis initially highlighted leaf shapes and edges
alongside stem structures; however, as data progressed through residual blocks during
downscaling, features became increasingly abstract and less interpretable to humans [97].
These findings underscore the dynamic nature of feature focus, dependent on the con-
text [98,99]. Notably, feature attention was more discernible in the VGG-16 architecture
without a U-Net down sampling step. Previous studies have also used gradient-weighted
class activation maps (Grad-CAM) for weed detection with deep learning models [100].
De Carmargo et al. observed that models primarily attended to unique features of each
weed species, such as distinctive leaf lobe shapes and regions with overlap from other
structures or the crop canopy [101]. Our study similarly noted the models’ ability to identify
and isolate overlapping leaf structures, suggesting heightened attention and tolerance to
disruptions in feature shape and structure.

All images in this study were collected on handheld devices with relatively low
camera resolution, reflecting the potential application of integrated commercial vehicle-
based sprayers, but potentially leading to the loss of important features for extraction.
Alternatively, incorporating an aerial dataset collected using an UAV may introduce features
unavailable through ground-based collection. Improving the resolution of images in the
dataset is also important and may lead to improved detection, though at a greater cost.
In addition, including a multispectral component in each dataset may support the better
differentiation of plant species. Generating a representative dataset is a pivotal step for
training a high-performance weed detection model. In this study, both the Milling and YC
datasets depicted plants at an early growth stage with a small overlap between crop and
weed features, supporting weed management interventions that give the crop better access
to resources at this crucial growth stage.

Precision agriculture is a multi-faceted approach, employing strategies such as weed
mapping [25–27], real-time targeted spraying, or mechanical weed removal [22,28,29,102],
as well as the utilisation of robotics [103,104]. The pixel-wise segmentation, as demonstrated
in this study, offers an effective means of mapping weed infestations in fields by generating
orthomosaics that can be used for management strategies [24,26,93]. Accurate crop/weed
mapping opens up new possibilities for precision weed control techniques, such as the
precise application of pre-emergent herbicides to specific areas of infestation, which requires
application prior to weed germination [105]. Pre-emergent herbicides are becoming popular
as the resistance to post-emergent herbicides is increasing, emphasising the need to develop
strategies to best employ chemical compounds to maximise efficacy and minimise resistance
development [106,107]. Pre-emergent herbicides can also be used in combination with post-
emergent herbicides via sequential application and tank mixing strategies, with studies
showing up to an 80% increased efficacy when used on resistant weed infestations [108,109].

The real-time detection and control of weeds have both been longstanding areas
of development. The ResNet model architecture demonstrates a high performance for
real-time weed detection, with multiple studies achieving high rates of inference in weed
detection and segmentation using a variety of ResNet backbones that enable strategies such
as spray nozzle control [101,110,111]. With the advent of broad-spectrum deep learning
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models, as exemplified in the findings of this study, a pivotal component may have been
identified to develop spraying systems that can function across diverse environments
and adapt to varying targets. Whilst making predictions to detect weeds in agricultural
settings may not be deemed as a high-stake task, the potential harm from poor prediction
accuracy can still be harmful in the long term. For example, the detection of only 80% of
weed infestations implies that the remaining 20% of weeds go undetected, and if herbicide
resistance is present, these resistant seeds can persist in the seed bank, perpetuating
resistance traits in subsequent generations [11,13,52,112,113]. The enduring presence of
weeds, such as wild radish in seed banks, that can last for up to 5 years worsens this
problem by necessitating ongoing control efforts and expenses because of their prolonged
viability [114].

Whilst complete weed eradication may be impossible, models like those generated
in this study and other studies optimising a facet of precision agriculture via potential
herbicide reduction offer a positive step in the right direction [93,115,116].

5. Conclusions

In conclusion, this study compared ResNet-18, ResNet-34, and VGG-16 architectures
to perform pixel-wise semantic segmentation to map canola crop structures in three RGB
image datasets depicting varied environmental, lighting, and camera conditions. The
ResNet-34 U-net was the best performing model, being capable of segmenting the majority
of canola structures, showing its potential as a weed-independent mapping tool for canola
fields. The innovative approach of focusing the segmentation model on the crop rather
than a single weed species advances the development of weed mapping tools for diverse
scenarios, where the target weed differs morphologically from the crop. In addition, the
study reinforces the importance of considering plant growth stages, field conditions, and
technical variations to design a robust weed mapping model. The model presented here
forms a basis for developing more efficient precision agriculture technologies using weed
mapping for defining weed management strategies and real-time targeted spraying.
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