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Abstract: Drought stress is a significant factor affecting soybean growth and yield. A lack of suitable
high-throughput phenotyping techniques hinders the drought tolerance evaluation of multi-genotype
samples. A method for evaluating drought tolerance in soybeans is proposed based on multimodal
remote sensing data from an unmanned aerial vehicle (UAV) and machine learning. Hundreds of
soybean genotypes were repeatedly planted under well water (WW) and drought stress (DS) in
different years and locations (Jiyang and Yazhou, Sanya, China), and UAV multimodal data were
obtained in multiple fertility stages. Notably, data from Yazhou were repeatedly obtained during
five significant fertility stages, which were selected based on days after sowing. The geometric mean
productivity (GMP) index was selected to evaluate the drought tolerance of soybeans. Compared
with the results of manual measurement after harvesting, support vector regression (SVR) provided
better results (N = 356, R2 = 0.75, RMSE = 29.84 g/m2). The model was also migrated to the Jiyang
dataset (N = 427, R2 = 0.68, RMSE = 15.36 g/m2). Soybean varieties were categorized into five
Drought Injury Scores (DISs) based on the manually measured GMP. Compared with the results of
the manual DIS, the accuracy of the predicted DIS gradually increased with the soybean growth
period, reaching a maximum of 77.12% at maturity. This study proposes a UAV-based method for the
rapid high-throughput evaluation of drought tolerance in multi-genotype soybean at multiple fertility
stages, which provides a new method for the early judgment of drought tolerance in individual
varieties, improving the efficiency of soybean breeding, and has the potential to be extended to
other crops.

Keywords: UAV; imaging spectroscopy; soybean; drought tolerance; machine learning

1. Introduction

Drought is the most complex global abiotic stress [1]. Reduced plant water content
following drought stress severely affects plant growth and development, leading to a
significant reduction in yield [2,3]. The average yield loss of cereals due to drought is up
to 17%, and according to statistics, China loses 7–8 billion kilograms of grain production
annually due to drought [4]. Plant root systems have difficulties absorbing enough water
from the soil under drought conditions, causing various changes in the metabolism of the
tissues and cells and leading to differences in the phenotypic traits of plants to a certain
extent [5]. Water-sensitive soybean is more susceptible to drought stress.
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Soybeans are an important legume grown worldwide [6]. Soybeans are rich in nutri-
tional value, and soy protein is considered an essential source of protein for the human
body [7]. Soybeans are also an important cash crop with significant pharmaceutical, food,
and feed-processing value [8]. China is one of the world’s leading producers of soybeans.
However, its domestic production is unable to meet the growing demand, and China
remains the world’s largest soybeans consumer [9,10]. Soybeans have an underdeveloped
root system and require adequate water throughout their growth, making them highly
susceptible to increasing natural droughts [8,11]. In traditional soybean breeding, many
soybean genotypes are evaluated under drought-stress environments, and experienced
breeders often combine their experience and post-harvest yields at maturity to acquire
drought-tolerant and high-yielding soybean varieties, which is subjective, time-consuming,
and financially expensive [12]. There is an urgent need for a method to evaluate drought
tolerance in multi-genotyped soybeans early, non-destructively, accurately, economically,
and in a high-throughput manner.

Recently, plant phenomics technologies based on various sensors have been devel-
oped [13–15]. Researchers can use different sensors to acquire various data form plants and
then combine them with machine learning to reflect multiple physiological parameters and
phenotypic traits of plants [16,17]. Among these, unmanned aerial vehicle (UAV)-based
aerial phenotyping platforms have been widely used for the precise phenotyping of field
crops owing to their nondestructive detection, low cost, and high throughput [18,19], includ-
ing the accurate and rapid estimation of plant height [20], leaf area index [21], biomass [22],
plant density [23], relative maturity [24], flowering time [25], and other traits. Crops under
different stress environments produce several morphological responses (e.g., reduced plant
height, leaf area, and biomass) and physiological responses (e.g., reduced chlorophyll and
relative water content) at various fertility stages [26]. These responses can potentially be
detected and quantified by UAV remote sensing methods. Li et al. [27] identified previously
unexpressed loci through UAV time-series data for a soybean canopy. Qiao et al. [28]
improved the accuracy of leaf area index dynamic estimation by using morphological and
spectral information over multiple fertility stages in maize. Zhou et al. [29] estimated
flood-induced damage by monitoring soybeans after flooding stress with a UAV system.
Jiang et al. [30] quantified the dynamic drought response of rice populations in a rice field
environment by analyzing manual leaf roll scoring and plant content via a consumer-grade
UAV platform. Liu et al. [31] differentiated the drought severity of maize by classifying pre-
dictions of maize drought stress through the visual assessment of drought stress from UAV
system visible-light imagery. Zhou, Zhou, Ye, Ali, Nguyen, and Chen [29] demonstrated
that UAV imagery can evaluate fast- and slow-wilt traits in soybean genotypes for drought
tolerance. Soybeans under drought stress also produce several stress responses at various
fertility stages, which makes it possible to accurately extract changes in multiple genotypes
of soybeans under drought stress and analyze the differences between genotypes using
UAV remote sensing methods.

Until now, most of the reference standards in drought research based on UAV remote
sensing are the results of visual evaluations at maturity [29–31]. UAV data are analyzed
and visual evaluations are conducted using characteristics based on canopy growth, which
can lead to idealized results. However, yield is considered the primary criterion for
selecting high-yielding genotypes under different environmental conditions in practical
research [32]. Yield performance of all the genotypes under different environments was
inconsistent, and the performance of the same genotype under drought stress and full
irrigation was uncertain [33]. Therefore, breeding experts have proposed the drought
tolerance index (DTI), which is based on the mathematical relationship between yield
under normal and stress conditions, for a more accurate and intuitive evaluation of drought
tolerance in crops [33]. Common DTIs include mean productivity (MPI) [34], geometric
mean productivity (GMP) [35], stress tolerance (STI) [35], stress sensitivity (SSI) [36], yield
(YI) [37], tolerance (TOL) [34], and yield stability indices (YSIs) [38]. Some researchers
have used UAV remote sensing methods to predict yield [39–41]. Still, the results showed
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that they are highly influenced by genotype, environment, geographic location, irrigation
conditions, and mostly at maturity. This approach limits the timeliness and robustness of
drought tolerance evaluation. However, the relationship between UAV traits and DTIs has
not been analyzed in soybean drought tolerance studies, and there have been no attempts
to evaluate drought tolerance at multiple fertility stages. This study aimed to explore
the potential of UAV phenotypes for drought tolerance evaluation in multi-genotyped
soybeans at multiple fertility stages. The specific objectives of this study were as follows:

(1) Evaluating the differences between the UAV-based canopy trait data of different
soybean genotypes under well water (WW) and drought stress (DS).

(2) Evaluating the correlation between DTIs and UAV-based canopy trait data during
maturity and yield.

(3) Evaluating the ability of UAV-based canopy trait data and machine learning to
regress the GMP and categorize the DISs.

2. Materials and Methods
2.1. Field Experiments and Experimental Equipment

As shown in Figure 1 the experiment was conducted at the Yazhou and Jiyang trial sites
in Sanya City, Hainan Province, China, using uniform soil throughout the field. Hainan,
which receives low rainfall in winter, sowed 215 and 510 soybean varieties in Jiyang and
Yazhou, respectively, in the winters of 2021 and 2022. Owing to a force majeure, 427 and
509 soybean data points were eventually retained, respectively. Four blocks were set up in
each field, including two WW and two DS replicates. In 2021, planting was performed in
double rows with plant spacing of 10 cm and ridge spacing of 60 cm, and in 2022, double
rows with plant spacing of 15 cm and ridge spacing of 80 cm. Each cultivar was sown
using 16 seedlings. All blocks were irrigated before seedling emergence. WW continued
to maintain irrigation after seedling emergence for moisture in the soil layer from 0 to
50 cm to reach 85 ± 5% of the field water holding capacity to ensure that the soybean
was in a moisture-suitable condition during its whole life cycle. The DS group was not
irrigated after seedling emergence, and further management was consistent with that
of WW. Harvesting began 75 days after sowing (DAS) and was completed at DAS105.
Breeders selected three consecutive plants of each soybean variety to determine the yields
through a digital seed examiner.

Remote Sens. 2024, 16, 2043 3 of 18 
 

 

they are highly influenced by genotype, environment, geographic location, irrigation con-
ditions, and mostly at maturity. This approach limits the timeliness and robustness of 
drought tolerance evaluation. However, the relationship between UAV traits and DTIs has 
not been analyzed in soybean drought tolerance studies, and there have been no attempts 
to evaluate drought tolerance at multiple fertility stages. This study aimed to explore the 
potential of UAV phenotypes for drought tolerance evaluation in multi-genotyped soy-
beans at multiple fertility stages. The specific objectives of this study were as follows: 

(1) Evaluating the differences between the UAV-based canopy trait data of different 
soybean genotypes under well water (WW) and drought stress (DS). 

(2) Evaluating the correlation between DTIs and UAV-based canopy trait data during 
maturity and yield. 

(3) Evaluating the ability of UAV-based canopy trait data and machine learning to 
regress the GMP and categorize the DISs. 

2. Materials and Methods 
2.1. Field Experiments and Experimental Equipment 

As shown in Figure 1 the experiment was conducted at the Yazhou and Jiyang trial 
sites in Sanya City, Hainan Province, China, using uniform soil throughout the field. Hai-
nan, which receives low rainfall in winter, sowed 215 and 510 soybean varieties in Jiyang 
and Yazhou, respectively, in the winters of 2021 and 2022. Owing to a force majeure, 427 
and 509 soybean data points were eventually retained, respectively. Four blocks were set 
up in each field, including two WW and two DS replicates. In 2021, planting was per-
formed in double rows with plant spacing of 10 cm and ridge spacing of 60 cm, and in 
2022, double rows with plant spacing of 15 cm and ridge spacing of 80 cm. Each cultivar 
was sown using 16 seedlings. All blocks were irrigated before seedling emergence. WW 
continued to maintain irrigation after seedling emergence for moisture in the soil layer 
from 0 to 50 cm to reach 85 ± 5% of the field water holding capacity to ensure that the 
soybean was in a moisture-suitable condition during its whole life cycle. The DS group 
was not irrigated after seedling emergence, and further management was consistent with 
that of WW. Harvesting began 75 days after sowing (DAS) and was completed at DAS105. 
Breeders selected three consecutive plants of each soybean variety to determine the yields 
through a digital seed examiner. 

 
Figure 1. Experimental study design and workflow. (a) Location of the experimental site. (b) DJI 
Matrice 300 RTK UAV platform equipped with visible and multispectral sensors for soybean image 
Figure 1. Experimental study design and workflow. (a) Location of the experimental site. (b) DJI
Matrice 300 RTK UAV platform equipped with visible and multispectral sensors for soybean image



Remote Sens. 2024, 16, 2043 4 of 17

acquisition. (c) Multimodal data for soybeans over multiple fertility stages. (d) WW and DS soybean
plots and DISs. (e) Machine learning modeling. (f) GMP regression and DIS classification for multiple
fertility stages.

2.2. UAV Image Data Collection

A UAV (Matrice 300 RTK, DJI, Shenzhen, Guangdong, China) equipped with visible
and multispectral sensors was used to simultaneously collect both types of remote sensing
images. The visual sensor (P1, DJI, Shenzhen, Guangdong, China) had a resolution of
8192 × 5460 pixels. The multispectral sensor (Rededge-MX; MicaSense, Seattle, WA, USA)
consisted of five bands with a wavelength range of 400–900 nm and resolution of 1280 × 960.
The flight path was planned using a DJI plot; the altitude of each flight was 30 m, the speed
was 1 m/s, and the imaging interval was one frame/s. The heading and side overlap
rates were 90% and 80%, respectively, for the visible images and 80% and 70% for the
multispectral images. Two reflector plates with reflectance values of 5% and 15% were used
to calibrate the multispectral camera, and 12 GCPs evenly distributed around and in the
middle of the field were used for calibration during the UAV image reconstruction. The
GCP geographic coordinates were acquired using hemispherical real-time kinematic (RTK)
differential global navigation satellite system (GNSS) measurements. Jiyang UAV data
were acquired at 71 days after sowing (DAS) when more than 90% of the varieties were at
maturity. Yazhou UAV data were first acquired at 21DAS during the nutrient growth stage,
and then at 10-day intervals after entering fertility growth. To ensure that the weather
conditions at the time of acquisition fulfilled the requirements, image data were acquired
on five separate dates: 35DAS, 46DAS, 56DAS, and 64DAS. The final data collection was
conducted when more than 90% of the species were in the maturity stage. The data were
collected between 11:00 and 14:00, and the weather was sunny, breezy, and cloudless.

2.3. Image Processing and Canopy Trait Extraction

The RGB and multispectral (MS) images captured by the UAV were reconstructed by
Structure in Motion Recovery (SFM) using Agisoft photoscan 1.4.3 (Agisoft LLC, St. Peters-
burg, Russia) software to obtain dense point clouds and visible orthophotographs from
the RGB images and multispectral orthophotographs from the MS images [42]. The sensor
size, focal length, and pixel size were used to improve the accuracy of stitching. After
importing the UAV images, the photographs were first aligned based on the feature points
between the images, and the positions of the 12 GCPs were manually adjusted to improve
the horizontal and vertical accuracies of the output orthophotos and dense point clouds.
The image pixel values of the MS orthophotos were converted into reflectance values using
a calibration board. In Figure 2a,b shows the process of extracting canopy length, width,
and cover, Figure 2c shows the process of extracting plant height and canopy volume, and
Figure 2d shows the process of extracting vegetation index.

2.3.1. Canopy Coverage, Length, and Width

A fixed-size rectangular box was used to intercept the RGB orthophotos based on
the species to acquire a soybean plot, and each plot was divided into three bands: blue,
green, and red. Exg is often used to segment green plants from shadows and soil [43]. The
acquired Exg image was first subjected to Otsu segmentation and then binarized to acquire
a mask, from which the soybean region of interest (ROI) was extracted [44]. Three canopy
traits were extracted from the processed RGB images: canopy coverage, length, and width.
Canopy coverage was defined as the ratio of soybean pixels to total pixels in the ROI, and
the numbers of rows and columns of non-0-pixel rows and non-0-pixel columns of the ROI
after removing the background were used as the canopy length and canopy width [45]. To
better segment soybeans from backgrounds, such as shadows and soil, Exgh was defined
based on Exg. In testing, it was found that the segmentation of soybeans was best when
λ = 3, µ = 2.1, and ω = 1.

Exg = 2 × G − R − B (1)
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Exgh = λ× G − µ× R −ω× B (2)

In the above equations, G, R, and B are the reflectance values of the green, red, and
blue spectral bands, respectively.
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2.3.2. Plant Height and Canopy Volume

A 3D point-cloud model of plants can directly and effectively reflect their morpholog-
ical characteristics. The random sample consensus (RANSAC) algorithm has been used
to segment plant point clouds and has shown better results [46]. The RANSAC algorithm
has a wide range of applications in plant point-cloud segmentation. In this experiment,
the RANSAC algorithm was used to separate the soybean point cloud from the soil, and
all operations were performed using the open-source 3D data-processing library Open3D.
First, the planting area of the soybean was cut out from the dense point cloud acquired
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by reconstruction, and then, the point cloud was filtered to remove noise and reduce the
point-cloud density. The filtering used uniform downsampling filtering, uniform down-
sampling reduced the number of points under the premise of retaining the point-cloud
traits, and Open3d provided the function of uniform downsampling to the point cloud. The
RANSAC algorithm was applied to the filtered point-cloud data to segment the soybean
into two parts, the above-plane and the below-plane parts, through a plane. The above-
plane part was the soybean, and finally, it was segmented into a single ROI region. Two
canopy traits were acquired from the processed soybean point-cloud data: plant height and
canopy volume. Plant height was defined as the average height between the maximum and
70th percentiles of the point-cloud heights in the ROI plots, and the canopy volume was
generated by calculating the surface difference score of the volume between the highest
and lowest points of the canopy [47].

2.3.3. Vegetation Index

A grayscale map of Exgh was acquired from the red, green, and blue bands of the MS
orthophoto. A mask of the entire soybean region was acquired after the Otsu threshold
segmentation and binarization. Soybean images in the red, green, blue, near-infrared,
and red-edge bands were extracted separately using a mask, and each soybean image
was segmented into several ROIs based on the species. The grayscale mean values were
calculated for each ROI and converted into reflectance values using a reflectance plate.
Three vegetation indices, the normalized difference vegetation (NDVI), atmospherically
resistant vegetation (ARVI), and red-edge chlorophyll (RECI) indices, were calculated from
five multispectral bands [48–50]. These indices have been widely used and reported to be
effective indicators for assessing crop drought stress [51,52].

NDVI = (NIR − RED)/(NIR + RED) (3)

ARVI = (NIR − (2 × R − B))/(NIR + (2 × R − B)) (4)

RECI = (NIR/R) − 1 (5)

In the above equations, R, B, NIR, and RED are the reflectance values of the red, blue,
near-infrared, and red-edge spectral bands, respectively.

2.4. Data Analysis

All statistical analyses were performed using Python 3.8. The differences between
canopy traits under WW and DS and their correlations with yield were analyzed, and the
dynamics between canopy traits at different fertility stages of soybeans under WW and DS
and their relationship with yield were evaluated. Using the extracted canopy traits, two
algorithms of ensemble learning, extreme gradient boosting (XGBoost) and random forest
(RF), as well as the classical linear-kernel support vector machine (linear-SVM) algorithm,
were used to estimate the DTI and DIS [53–55]. Ensemble learning combines multiple
weak learners to acquire better-performing learners. XGBoost is an iterative algorithm
based on boosting that implements a gradient-boosting decision-tree architecture, which
leads to higher accuracy in regression and classification. The core innovations of XGBoost
include optimized gradient-boosting algorithm, support for multiple loss functions, feature
importance assessment, support for parallelization, and the prevention of overfitting.
The optimized gradient-boosting algorithm improves the efficiency and accuracy of the
gradient-boosting algorithm through a series of optimisation strategies, including the
second-order Taylor expansion of the objective function, the introduction of regularization
terms, and the use of approximate greedy algorithms. RF is an ensemble learning algorithm
based on bagging, which improves overfitting tolerance after averaging the decision trees.
Different training sets are constructed by randomly putting back multiple samples from
the original dataset, and then, multiple decision trees are trained on each of these training
sets. The random selection of features is also introduced when training each decision tree,
and this randomness increases the variability between each tree and reduces the possibility
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of overfitting. SVM is a classical supervised machine learning algorithm. SVM has better
results in both linear and nonlinear problems, in dealing with nonlinear problems by
choosing a suitable kernel function, and in mapping the data into a higher dimensional
space, thus achieving linear differentiability, SVM has strong robustness and generalization
ability in high-dimensional space, and it performs well for small sample datasets. In this
study, a linear kernel was chosen in SVR because it was found to be the most efficient
among many kernel functions, while the Gaussian kernel was the most efficient in SVC [56].

When modeling through machine learning, real data are still required for training. To
minimize the time spent manually checking the seeds, a model with excellent generalization
and accuracy should ideally be able to excel when trained with a small number of datasets
and generalize to a large number of datasets. To verify the accuracy of the model on
different data, we kept the number of data from Yazhou and Jiyang as close as possible,
which gives a stronger indication that our model has a better ability to migrate to data
from different times and locations. In the regression training process of DTIs, the data from
Yazhou 64DAS were divided into training and test sets at a ratio of 3:7, and the model was
then migrated to the data from Jiyang. The model hyperparameters were optimized using
a nested 5-fold cross-validated grid search. In the classification training process of DISs, the
data of Yazhou 64DAS were divided into training and test sets in a ratio of 7:3, and then, all
the data of 21DAS, 35DAS, 46DAS, 56DAS, and 64DAS were used to test the performance
of the model. The classification accuracy of the test set was calculated to evaluate the
performance of the proposed model. All modeling processes in this experiment were
performed on a PC equipped with an NVIDIA RTX 3060 GPU and a 3.60 GHz Intel Core
i7-11700k CPU with 32 GB of RAM. The R2, RMSE, and relative RMSE (RRMSE) between
the measured and predicted GMP were calculated, and these three metrics were used to
evaluate the model’s accuracy and robustness.

R2 = 1 − ∑n
i (yi − ŷi)

2/∑n
i (yi − y)2 (6)

RMSE =
√

∑n
i (yi − ŷi)

2/n (7)

RRMSE = RMSE/y × 100 (8)

Accuracy =
Number of samples classified correctly in a test set

Total Number of samples in a test set
× 100% (9)

In the above equations, yi and ŷi are the actual and predicted values for the ith sample,
respectively, and y is the mean value of the total number of samples.

In Table 1, YWW and YDS are the grain yields of soybean germplasm grown under WW
and DS, respectively. YWW and YDS are the mean grain yields of all soybean germplasms
under WW and DS, respectively. Table 2 shows the process of calculating DIS based on GMP.

Table 1. Descriptions of DTIs based on grain yield used in this study.

DTI Formula Reference

YI YDS/YDS [38]
SSI (1 − YWW/YDS)/(1 − YWW/YDS) [37]
STI (Y WW × YDS)/(YWW)

2 [36]
TOL YWW − YDS [35]
MPI (YWW + YDS)/2 [35]
GMP (YWW × YDS)0.5 [36]
YSI YDS/YWW [39]
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Table 2. Classification of DISs based on GMP.

GMP DIS

[13, 80] 1
(80, 147] 2

(147, 214] 3
(214, 256] 4
(256, ∞) 5

3. Results and Discussion
3.1. Differences between Soybean Canopy Traits under WW and DS
3.1.1. Differences between Canopy Traits at Maturity in Soybeans under WW and DS

As shown in Figure 3, significant differences in canopy coverage, plant height, length,
width, canopy volume, NDVI, ARVI, and RECI at maturity between soybeans grown under
WW and DS were observed. For most varieties, the absolute values of each soybean trait
were significantly higher in the WW than in the DS group [57]. To reflect the differences in
the same canopy trait of soybeans under the two moisture conditions, the mean absolute
percentage error (MAPE) was calculated for the same canopy trait under DS relative to
WW. The MAPE values for canopy coverage and plant height were 39.49% and 48.73%,
respectively, and the trends were similar. Generally, a plant grows, expands upward, and
is synchronized in all directions. Length showed no significant difference between WW
and DS, with a MAPE of only 12.32%. This is related to the planting method and its
calculations. The MAPE value of 26.86% for width showed a more significant difference
than that for length. As it was noted that canopy volume characterizes plant morphology
in the horizontal and vertical directions, it makes the differences in traits under WW and
DS even greater [47]. Thus, the MAPE value for volume was the largest of all the traits
related to biomass (78.71%). The RECI showed more significant differences among the
three vegetation indices, but the differences in NDVI were minor under WW and DS. The
trends of the three vegetation indices tended to be similar because they were all derived
from multispectral bands.

Remote Sens. 2024, 16, 2043 9 of 18 
 

 

The trends of the three vegetation indices tended to be similar because they were all de-
rived from multispectral bands. 

The above data analysis showed that DS caused a smaller canopy, a shorter height, 
and a smaller vegetation index in soybean plants, reflecting the fact that drought stress 
leads to a reduction in the physiological activity of soybean plants, which, in turn, affects 
the morphological characteristics and physiological parameters of soybeans and ulti-
mately leads to a decrease in yield. This has been confirmed in previous studies [26,58]. 
However, some varieties that showed opposite trends under WW and DS were observed; 
that is, DS was superior to WW in some traits, which may be related to the adaptive ability 
of varieties from different latitudes in the tropics or possible differences in material com-
position among separate compartments in the experimental area [59]. In addition, the 
level of each trait under WW conditions was not the same among varieties; therefore, ac-
quiring accurate traits under WW and DS conditions and conducting correlation analyses 
to accurately characterize each variety’s drought tolerance are necessary. The analysis of 
soybean canopy traits at maturity under WW and DS conditions revealed the final perfor-
mance of each trait. This provided the most direct basis for evaluating drought tolerance. 
The drought tolerance of soybean plants is also reflected in the dynamics of each stage, 
and assessing drought tolerance through early plant performance during the breeding 
process is essential. 

 
Figure 3. Comparison of canopy traits under WW and DS at maturity (Yazhou, DAS64). (a–h) Com-
parison plots of canopy coverage, plant height, length, width, volume, NDVI, ARVI, and RECI un-
der WW and DS, and the x-axis labels are the pseudo-ID numbers of each genotype. 

3.1.2. Dynamic Changes in Canopy Traits at Different Fertility Stages of Soybean under 
WW and DS 

Drought stress continuously affects soybeans at all fertility stages, and the drought 
tolerance of different soybean genotypes varies. This resulted in an additional growth 
state for each genotype at each fertility stage, which manifested in various distribution 
ranges and specific values of canopy traits. Breeders recorded the fertility stages of all 
experimental samples, and UAV data were acquired during several major stages of soy-
bean fertility. Soybeans gradually increased in canopy size after seed germination and 
were clearly distinguishable from weeds (21DAS). Soybeans entered the flowering stage 
when flowers opened at any node of the main stem (35DAS), and then entered the pod-
ding stage when young pods gradually formed (46DAS). The flowering and podding 
stages represented the most vigorous soybean growth and development stages. Subse-
quently, the soybean entered the bulging stage, the seed began to expand gradually, and 
the bulging stage was the stage in which the dry matter of the soybean accumulated the 

Figure 3. Comparison of canopy traits under WW and DS at maturity (Yazhou, DAS64).
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The above data analysis showed that DS caused a smaller canopy, a shorter height,
and a smaller vegetation index in soybean plants, reflecting the fact that drought stress
leads to a reduction in the physiological activity of soybean plants, which, in turn, affects
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the morphological characteristics and physiological parameters of soybeans and ultimately
leads to a decrease in yield. This has been confirmed in previous studies [26,58]. However,
some varieties that showed opposite trends under WW and DS were observed; that is, DS
was superior to WW in some traits, which may be related to the adaptive ability of varieties
from different latitudes in the tropics or possible differences in material composition among
separate compartments in the experimental area [59]. In addition, the level of each trait
under WW conditions was not the same among varieties; therefore, acquiring accurate
traits under WW and DS conditions and conducting correlation analyses to accurately
characterize each variety’s drought tolerance are necessary. The analysis of soybean canopy
traits at maturity under WW and DS conditions revealed the final performance of each trait.
This provided the most direct basis for evaluating drought tolerance. The drought tolerance
of soybean plants is also reflected in the dynamics of each stage, and assessing drought
tolerance through early plant performance during the breeding process is essential.

3.1.2. Dynamic Changes in Canopy Traits at Different Fertility Stages of Soybean under
WW and DS

Drought stress continuously affects soybeans at all fertility stages, and the drought
tolerance of different soybean genotypes varies. This resulted in an additional growth
state for each genotype at each fertility stage, which manifested in various distribution
ranges and specific values of canopy traits. Breeders recorded the fertility stages of all
experimental samples, and UAV data were acquired during several major stages of soybean
fertility. Soybeans gradually increased in canopy size after seed germination and were
clearly distinguishable from weeds (21DAS). Soybeans entered the flowering stage when
flowers opened at any node of the main stem (35DAS), and then entered the podding
stage when young pods gradually formed (46DAS). The flowering and podding stages
represented the most vigorous soybean growth and development stages. Subsequently, the
soybean entered the bulging stage, the seed began to expand gradually, and the bulging
stage was the stage in which the dry matter of the soybean accumulated the most (56DAS).
After entering the maturity, the soybean leaves began to turn yellow and fell off, and the
seeds were dehydrated (64DAS) [60].

Figure 4 shows boxplots of the Yazhou canopy traits under WW and DS. As the
soybeans grew and developed, biomass-related traits (canopy coverage, plant height,
length, width, and volume) increased under WW and DS conditions, with little change
at 56 and 64DAS, which is consistent with the result of Roth et al. [61]. The length and
width exhibited a wider distribution range during the early stages. The distribution range
of length slowly narrowed as the soybean grew. The width distribution range initially
narrowed and then increased. The distribution ranges of canopy coverage, plant height,
and volume were narrow in the early stages, and continued to widen as the soybeans grew.
Similar results can be found in the study of Zhou, Zhou, Ye, Ali, Chen, and Nguyen [41],
whereby the differences between the sample populations in the field consistently became
more significant with increasing drought stress. Biomass-related traits under WW increased
rapidly before 46DAS but changed insignificantly afterwards. The vegetation indices
(NDVI, ARVI, and RECI) reached their highest values at 46DAS. The vegetation indices
were slightly higher under DS than under WW in the early stage and were significantly
lower after 46DAS. The general trends in soybean canopy traits were similar across the
fertility stages. However, the distribution ranges of the population samples changed over
time during different fertility stages and in different environments. This provides data
support for subsequent DTI and DIS studies using canopy traits.

Changes in Pearson’s correlation between Yazhou soybean yield and canopy coverage,
plant height, length, width, volume, NDVI, AVRI, and RECI during different fertility stages
are shown in Figure 5. Under WW, the Pearson correlation of the biomass-related traits
gradually increased, reaching a maximum at 56DAS and fluctuating with a minimal magni-
tude at 64DAS. The three vegetation indices showed some correlation in the early stages,
and all three correlations with yield decreased at 35DAS. As growth and development
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proceeded, the correlation increased to a certain level beyond 0.6 and reached its highest
value close to 0.8 at 64DAS. Under DS, both biomass-related traits and vegetation indices
showed some correlation and gradually increased; however, biomass-related traits reached
their highest values at 46DAS. The correlations between canopy coverage and plant height,
width, and volume showed a pronounced decline after 46DAS. Consistent with the research
of Zhou, Zhou, Ye, Ali, Chen, and Nguyen [41], the correlations for the vegetation index
consistently increased and reached a maximum at the final time point.
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When WW and DS were combined, the strongest correlations for biomass-related
traits tended to occur at 64DAS under WW and at 46DAS under DS. The vegetation indices
showed similar characteristics under WW and DS, both of which gradually increased,
which is consistent with the observation of da Silva et al. [62]. Notably, at 21DAS and
35ADS, all trait and yield correlations were stronger under DS than under WW conditions.
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However, all canopy traits and yield correlations were significantly better under WW than
under DS during the later stages. The changing relationships among traits during different
stages provide theoretical evidence for the inversion of DTIs using UAV data and the
evaluation of drought tolerance levels during different stages.

3.2. Correlation between Canopy Traits at Maturity and DTIs of Soybean Yield

Various DTIs have been proposed for agriculture based on the application require-
ments in different scenarios. Pearson’s correlations between canopy traits, yield, and DTIs
were calculated under WW and DS conditions based on data collected within two years for
each trait. As illustrated in Figure 6, the canopy trait Pearson’s correlations under YI and
DS ranged from 0.35 to 0.56 with high correlations, and the correlations under WW were
significantly lower at only 0.13 to 0.23. The opposite was true for SSI, YSI, and TOL, with all
three DTIs showing high correlations under WW and low correlations under DS. STI, MPI,
and GMP showed high correlations under both conditions. The strong correlation between
YI and yield under DS implies that YI is more suitable for screening high-yielding varieties
under adverse environmental conditions. Similarly, the higher correlation between SSI,
TOL, YSI, and yield under WW indicates that they are more suitable for screening high-
yielding varieties in a typical environment. STI, MPI, and GMP, with higher correlations
under both DS and WW conditions, can be used for screening high-yielding tolerant vari-
eties in both adverse and typical environments, with GMP showing a better balance. This
is consistent with the results of drought tolerance research on chickpeas and wheat [32,63].
The drought tolerance judgment of multi-genotype soybeans over multiple fertility stages
requires the comparison of data under WW and DS; therefore, a more balanced metric,
GMP, would be the optimal choice.

Remote Sens. 2024, 16, 2043 12 of 18 
 

 

 
Figure 6. Correlation matrix of DTIs with the eight canopy traits at maturity, and yield under WW 
and DS, all with p = 0.001 significance level. 

3.3. GMP Regression of Soybean at Maturity Based on Machine Learning 
UAVs can quickly acquire crop traits over a large area and differentially reflect 

growth changes in each area. However, when modeling using machine learning, actual 
measurement data are required for training. To minimize the time spent on manual meas-
urements, a model with excellent generalization ability and accuracy should ideally ac-
quire extraordinary results in small-dataset training and be generalized to many datasets. 
From the previous analysis, it was found that GMP performs well in screening drought-
tolerant soybean varieties under WW and DS, and the accurate prediction of GMP is vital 
for selecting drought-tolerant and high-yielding soybean varieties. Figure 7 shows the 
GMP regression prediction results using the canopy traits of Yazhou 64DAS achieved by 
the ensemble learning models, XGBoost, RF, and support vector regression (SVR). Thirty 
percent of the Yazhou data was used to train the model, and the remaining seventy percent 
was used to test the model’s generalization over large areas. All data from Jiyang 71DAS 
were used to test the model’s generalizability over different years and geographic regions. 
SVR exhibited the best performance on both the Yazhou and Jiyang datasets. For R2, the 
Yazhou dataset showed a higher R2 than the Jiyang dataset, with values of 0.74–0.75 and 
0.63–0.68, respectively. For the RMSE and RRMSE, the Jiyang dataset was better than the 
Yazhou dataset, and the average values of the RMSE and RRMSE for the three models 
decreased by 14.01 g/m2 and 10.30%, respectively. The main reason for this result is that 
the total amount of data in Jiyang was small, and the distribution was narrower than that 
of Yazhou. Another reason was that the intercropping pattern in Jiyang was slightly more 
intensive, which led to the accuracy of the extracted data being slightly lower than that of 
the Yazhou data. The prediction results at the ripening stage showed that machine learn-
ing and UAV methods have high accuracy for evaluating the drought tolerance of 

Figure 6. Correlation matrix of DTIs with the eight canopy traits at maturity, and yield under WW
and DS, all with p = 0.001 significance level.



Remote Sens. 2024, 16, 2043 12 of 17

3.3. GMP Regression of Soybean at Maturity Based on Machine Learning

UAVs can quickly acquire crop traits over a large area and differentially reflect growth
changes in each area. However, when modeling using machine learning, actual measure-
ment data are required for training. To minimize the time spent on manual measurements,
a model with excellent generalization ability and accuracy should ideally acquire extraor-
dinary results in small-dataset training and be generalized to many datasets. From the
previous analysis, it was found that GMP performs well in screening drought-tolerant
soybean varieties under WW and DS, and the accurate prediction of GMP is vital for
selecting drought-tolerant and high-yielding soybean varieties. Figure 7 shows the GMP
regression prediction results using the canopy traits of Yazhou 64DAS achieved by the en-
semble learning models, XGBoost, RF, and support vector regression (SVR). Thirty percent
of the Yazhou data was used to train the model, and the remaining seventy percent was
used to test the model’s generalization over large areas. All data from Jiyang 71DAS were
used to test the model’s generalizability over different years and geographic regions. SVR
exhibited the best performance on both the Yazhou and Jiyang datasets. For R2, the Yazhou
dataset showed a higher R2 than the Jiyang dataset, with values of 0.74–0.75 and 0.63–0.68,
respectively. For the RMSE and RRMSE, the Jiyang dataset was better than the Yazhou
dataset, and the average values of the RMSE and RRMSE for the three models decreased
by 14.01 g/m2 and 10.30%, respectively. The main reason for this result is that the total
amount of data in Jiyang was small, and the distribution was narrower than that of Yazhou.
Another reason was that the intercropping pattern in Jiyang was slightly more intensive,
which led to the accuracy of the extracted data being slightly lower than that of the Yazhou
data. The prediction results at the ripening stage showed that machine learning and UAV
methods have high accuracy for evaluating the drought tolerance of soybeans. However,
maturity is reached close to harvest time, and breeders like to roughly evaluate drought
tolerance in soybeans at an early stage.
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3.4. Drought Injury Score (DIS) Classification of Soybean at Multiple Fertility Stages Based on
Machine Learning

In practice, drought tolerance grades are more intuitive and widely used than DTIs.
Previous studies have been conducted on UAV-based waterlogging grades for soybeans and
drought tolerance grades for rice, while there are still fewer studies on drought tolerance
grades for soybeans [30,45]. A DIS with five grades was assigned to soybean varieties
according to the GMP. Most of the samples in the five grades were distributed in grades “2”
and “3”, accounting for 71.9% of the total number of samples. The canopy traits of Yazhou
64DAS were used to classify the DIS using XGBoost, RF, and support vector classification
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(SVC), and the results are shown in Figure 8a–c. The model results on 153 test sets showed
that XGBoost had the highest accuracy of 77.12%, which was better than those of RF
(75.16%) and SVC (72.55%). The DIS was predicted using the trained XGBoost model for
Yazhou at 64DAS, and the results are shown in Figure 8d. The accuracy of the classification
was 80.55%; only eight samples were misclassified as non-adjacent grades, and more than
98% of the samples were correctly classified or classified as adjacent grades.
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Figure 8. DIS classification of soybean at multiple fertility stages based on machine learning.
(a–c) Results of XGBoost, RF, and SVC models on the test set (Yazhou, N = 153). (d) DIS classi-
fication prediction from 64DAS (Yazhou, N = 509). (e–h) DIS classification prediction from 21DAS,
35DAS, 46DAS, and 56DAS (Yazhou, N = 509). (i–l) Comparison between predicted DIS and DAS64
predicted DIS at 21DAS, 35DAS, 46DAS, 56DAS (Yazhou, N = 509).

The DIS was predicted for 21DAS, 35DAS, 46DAS, and 56DAS data by the estab-
lished XGBoost model and the results are in Table 3. The prediction results are shown in
Figure 8e–h. The prediction accuracy significantly increased with a change in the fertility
stage. At 21DAS, the accuracy was only 27.90%, and most plants were assigned incorrect
grades, with a large number of grade “2” plants even assigned to grade “1”. Soybeans
were in the seedling stage at DAS21; the impact of drought stress was limited, and a slight
difference was observed between soybean varieties under WW and DS, which could only
classify categories with minor differences. After the seedling stage, 35DAS and 46DAS
were at the flowering and podding stages, when plant growth and development were the
most rapid, and classification accuracy appeared to have significantly improved (42.44%
and 63.26%, respectively). Especially at 46DAS, more than 70% of grade “2” plants were
correctly classified, while 94.89% of the samples were correctly classified or classified as an
adjacent grade. At 56DAS, most grade “2” plants were correctly classified, with a further
reduction in the number of grades classified as non-adjacent compared to 46DAS, where
95.48% of the samples were correctly classified or classified as an adjacent grade.

Table 3. DIS classification accuracy from 21DAS, 35DAS, 46DAS, and 56DAS.

Comparison Accuracy 21DAS 35DAS 46DAS 56DAS

Manual result
Correct DIS 27.90% 42.44% 63.26% 62.48%

Correct and adjacent DIS 73.48% 89.00% 94.89% 95.48%
Predicted result

at 64DAS
Correct DIS 26.72% 47.15% 68.57% 69.94%

Correct and adjacent DIS 76.62% 90.37% 96.27% 97.05%

The predicted DIS was compared to the 64DAS predicted DIS for the 21DAS, 35DAS,
46DAS, and 56DAS data by the established XGBoost model. The comparison results are
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shown in Figure 8i–l. The overall trend changes are similar to those in Figure 8e–h; however,
a more noticeable improvement in the prediction accuracy was observed. At 21DAS, the
accuracy was only 26.72%, and more than 76% of the grade “2” plants were classified into
grade “1”, and none of the grade “4” and grade “5” plants were correctly classified. Faster
growth and development of 35DAS and 46DAS soybeans resulted in a rapid increase in
prediction accuracy to 47.15% and 68.57%, respectively. It is noteworthy that at 35DAS,
some grade “5” plants could be correctly classified. At 46 DAS, some grade “4” plants
could be correctly classified, and the accuracy of being classified correctly or classified as an
adjacent grade reached 96.27%. The accuracy further improved at 56 DAS, reaching 69.94%.

4. Conclusions

This study investigated the potential of using multimodal UAV data and machine-
learning models to assess the drought tolerance of multi-genotype soybeans over multiple
fertility stages. Hundreds of soybean canopy trait data were acquired in Jiyang (N = 427)
and Yazhou (N = 509) under WW and DS conditions, respectively. Differences in the
canopy traits of soybeans at maturity were analyzed under WW and DS. All canopy traits
showed some correlation with yield. For biomass-related traits, the highest correlation
under WW tended to occur at the maturity stage (64DAS), and under DS, at the podding
stage (46 DAS). The vegetation index showed similar trends under WW and DS, both of
which gradually increased.

The GMP was calculated to evaluate drought tolerance in soybeans and select drought-
tolerant varieties. Thirty percent of the Yazhou data were selected for modeling to predict
the GMP, and SVR showed the best performance on both the Jiyang and Yazhou test sets.
The soybean DISs were classified based on GMP. Seventy percent of the Yazhou data
were used for modeling to predict the DIS, and XGBoost had the highest accuracy. The
predictions of the DIS and 64DAS predicted DIS were compared for the 21DAS, 35DAS,
46DAS, and 56DAS data, and the two datasets showed similar variations. It is worth
mentioning the validation of the model’s advantages for extending the model to large areas
and sites in different years, with a more visual representation of the drought tolerance
of each soybean variety based on the grade classification. The studied UAV system will
be an essential tool for screening drought-tolerant plants; it eliminated the need for the
destructive sampling of the biomass or yield of all plants in the experimental plots and
allows for the determination of whether plants are drought-tolerant and high-yielding
early in life, which significantly reduces costs and saves time. In the future, we will
conduct genetic analyses such as genome-wide association studies (GWAS) to identify
functional gene loci for drought tolerance in soybeans and better explain the physiological
mechanisms of drought in soybeans. In addition, we will continue to conduct UAV testing
on various crops under various biotic and abiotic stresses to extend this research to more
application scenarios.
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