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Abstract: High-alumina (HA) mare basalts play a critical role in lunar mantle differentiation. Al-
though remote sensing methods have speculated their potential presence regions based on sample
FeO and TiO2 compositions, the location and distribution characteristics of HA basalts have not been
provided. In this study, the compositions of exposed rocks in Mare Imbrium were determined using
Lunar Reconnaissance Orbiter (LRO) Diviner oxides and Lunar Prospector Gamma-Ray Spectrometer
(LP-GRS) Thorium (Th) products. The exposed HA basalts were identified based on laboratory
lithology classification criteria and Al2O3 abundance. The HA basalt units were mapped based on
lunar topographic data, and their morphological geological characteristics were calculated based on
elevation data. The results show that there are 8406 HA basalt pixels and 17 original units formed
by volcanic eruptions in Mare Imbrium. The statistics of their morphology characteristics show that
the HA basalts are widely distributed in the northern part of Mare Imbrium, and their compositions
have a large range of variation. These units have different area and volume, and the layers formed
were discontinuous. The characteristic analysis shows that the aluminum-bearing volcanic activities
in Mare Imbrium were irregular. The eruptions of four different source regions occurred in three
phases, and the scale and extent of the eruptions were different. The results in this study provide
reliable evidence for the heterogeneity of the lunar mantle and contribute valuable information to the
formation process of early lunar mantle materials.

Keywords: high-alumina (HA) basalts; remote sensing methods; Mare Imbrium; LRO diviner;
morphological geological characteristics

1. Introduction

Mare basalt is an important part of the lunar surface and a hot topic in lunar origin and
evolution research [1,2]. Mare basalts overlay approximately 17% of the lunar surface [3–5],
and they are products of partial melting of the lunar mantle. The study of mare basalts with
special compositions can reveal the chemical composition of lunar mantle sources [6,7],
which is indicative of regional magmatism and volcanism [8], and provide important clues
for understanding the thermal evolution of the moon [9].

High alumina (HA) basalt is defined as mare basalt with more than 11 wt% Al2O3 [6,10–12].
Its main compositions include plagioclase and pyroxene [13–15]. Compared with other
types of basalts, its Al-rich character is derived from plagioclase retained in the eruptive
source [11,16–18]. The unique Al2O3 abundance reflects the high proportion of plagioclase
in magmatic ocean accumulation rocks [17], suggesting low efficiency differentiation of
plagioclase in the upper lunar mantle [19]. After the Apollo 14 mission, HA basalts were
divided into two types according to their petrogenesis: igneous rocks formed by thermal
activity within volcanoes and melts produced by impact [20–22]. Both types of HA basalts
were collected in the Apollo 14 mission [23,24]. The large radioactive age revealed that
early aluminum volcanic activity may have originated from lunar crustal plagioclase
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differentiation or older events [5,25–28], recorded events such as plagioclase lunar crust
formation (4.5–4.3 Ga), basin impact (3.9–3.8 Ga), and magma formation (4.3–3.85 Ga). In
addition, distant sampling regions suggest that HA basalts may be widely distributed on
the lunar surface, mostly buried beneath regolith or impact ejecta [11,12,29].

Compared with the basin formed by other impact events, the Imbrium basin is a
multiring basin on the lunar nearside [30–33]. For many years, it has been widely studied
by lunar geologists, and approximately 3.85 Ga was formed by the impact of Fe-rich
objects [34–37]. Mare Imbrium contains ancient and young basalts [38], where the last lunar
volcanic activity occurred [39]. Therefore, Mare Imbrium is an ideal region for studying
basaltic volcanism [40].

According to the composition range of HA basalt samples (12–18 wt% FeO, 1–5 wt%
TiO2, and 0–4 ppm Th), the Kramer team used Clementine Ultraviolet-Visible (UV-VIS)
FeO and TiO2 and LP-GRS Th data, with FeO used as a proxy for Al2O3, and achieved the
remote sensing identification of HA basalts in Mare Moscoviense, Nectaris, Fecunditatis,
and Northern Imbrium. Their study used optical maturity parameter (OMAT [41]); this
parameter is used to reflect the degree of influence of space weathering such as solar wind
and galactic cosmic rays on the lunar regolith [42]. Different composition and age units are
divided by the composition of adjacent immature craters. Their study concluded that most
of the ancient HA basalts were buried by basin ejecta and basalt flow and were excavated
to the regolith by small impacts as ejecta at different periods. They used small impact
projectile analysis to identify 34 regions of interest (ROI) for possibly having HA basalts on
the lunar surface [11,12,29]. Among them, the ROI in northern Imbrium is most likely to be
the source of Apollo 14 samples [11,12]. However, there are four problems in their research:
(1) The correlation between FeO and Al2O3 of HA basalt samples is low (R2 = 0.4923), and
the method of using FeO to replace Al2O3 may not reflect the accurate abundance of Al2O3
in some regions. (2) The mixing of regolith material and HA basalts underestimates the area
of the HA basalt units, and the mixing of highland material and HA basalts overestimates
the amount of HA basalts. (3) The locations of the HA basalts were not provided. (4) The
morphological and geological characteristics (layer thickness, unit area, and volume) of the
HA basalt units formed by the original volcanic eruption were not calculated or analyzed.
In addition, three challenges exist in HA basalt remote sensing identification based on
Al2O3 abundance. (1) Due to the lack of correlation between the main oxide abundances
of HA basalt samples, it is difficult to establish constraints on HA basalt remote sensing
identification based on composition [43]. (2) Distinguishing distant ejecta or mixtures
with more than 11 wt% Al2O3 from local HA basalts is difficult [11,44–48]. (3) The space
resolution and coverage of existing composition data are inconsistent, the coverage of the
high-resolution product CE-1 IIM (200 m/pixel, 75.4% coverage) is low, and the resolution
of the high-coverage product LP-GRS (0.5 ppd, 100% coverage) is low.

To solve the above problems and current challenges, this paper uses the five main
oxide products (Al2O3, TiO2, FeO, CaO, and MgO [43]) estimated from the Lunar Recon-
naissance Orbiter (LRO) Diviner CF product, combined with the LP-GRS Th data and
following the laboratory lithology classification criteria [49], and established the lunar
lithology classification image. According to the composition relationship of adjacent pixels,
the interference of the mare–highland mixture is excluded, and the HA basalt pixels are
identified. Their distribution and the map of HA basalt units formed by the early volcanic
eruption of Mare Imbrium are provided. The morphological and geological characteris-
tics of these units are calculated, and the patterns and eruption characteristics of early
aluminiferous volcanic activity on the moon are analyzed.

2. Materials and Methods
2.1. LRO Diviner Products

The Diviner oxide data used in this study were calculated by Ma et al. [43] based
on the latest Christiansen Feature (CF) product [50]. LRO Diviner is a 9-channel push-
broom radiometer that can obtain solar reflection and thermal infrared emission data
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over the moon [51]. The peak value at 8 µm wavelength calculated by the three channels
has a sensitive feature to the lunar silicate mineral spectrum, named Christiansen Fea-
ture (CF, [50,52–54]). There is a correlation between the CF and oxide abundance [55,56];
thus, the CF can be used as a basis for the quantitative inversion of lunar element oxide
abundance [57].

The original standard CF image (32 ppd, 52.4% coverage, 60◦ N/S) was calculated
by Greenhagen et al. [52]. Their study estimated the location of Christiansen Feature by a
three-point parabolic fit to the emissivity of three bands (7.55–8.05, 8.10–8.40, and 8.38–8.68)
around 8 µm, and equally distributed channels in each 8 µm region between 60◦ N/S at
low spatial resolution (32 ppd). They found that the CF value in the image was affected by
three factors: geometry, space weathering, and compositions. Greenhagen et al. [52] used a
polynomial fit across latitudes to smooth the CF values of the highlands and calculated the
Normalize Equatorial Noon (NEN) CF image based on the offset of the smoothed values
from the highlands, and the coverage of the image increased to 82.5%. With the continuous
measurement of Diviner, its scientific team provided a standard CF image with 128 ppd and
99.86% coverage according to the calculation method of Greenhagen et al. [52]. These three
images are preserved in the Planetary Data System (PDS) at the University of Washington.
However, the CF values of the above three images did not fully reflect the compositional
differences among different topographies, and some CF values are affected by unequal
thermal changes and space weathering. Greenhagen et al. [53] completed topographic
correction and provided an NEN CX3 CF image using the effect of topographical features
with different albedos on CF values. Subsequently, based on the relationship between
optical maturity parameters (OMAT) and the CF values of different lunar samples [56,58],
Lucey et al. [50] used Kaguya OMAT and FeO abundance and related scale factors to
correct the space weathering of NEN CX3 CF images, and the abnormal values in some
regions caused by space weathering were basically eliminated. In the latest OMAT CX3 CF
image [50], the CF value accurately reflects the lunar surface composition information and
not affected by topography or space weathering [59].

Based on the relationship between OMAT CF values and the true composition values
of 48 lunar sampling sites, Ma et al. [43] established a Back Propagation Neural Network
(BPNN) training model, calculated six major elemental oxide(SiO2, Al2O3, MgO, CaO,
TiO2, FeO) image products (32 ppd, 70◦ N/S). Among them, Diviner Al2O3 has the highest
prediction accuracy among the six composition products, and the results exhibit a clear
dichotomous distribution between mare and highlands (Figure 1). Notably, most of the
mare with more than 11 wt% Al2O3 are near the highlands, indicating that HA basalts
may be widely distributed in these regions and provide the preliminary candidate regions
for remote sensing identification of HA basalts [60]. In addition, the rock abundance
product provided by the Diviner team (128 ppd, 80◦ N/S) was used in this study to obtain
the exposed rock pixels. The product was calculated by Bandfield et al. [61] using lunar
surface thermal physical parameters and diurnal temperature difference data measured
by LRO Diviner. After that, the lunar surface was divided into six units based on the rock
abundance and regolith temperature data, and a threshold (rock abundance > 0.5 wt%) was
established to distinguish the exposed rocks from surface regolith.
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Figure 1. LRO Diviner Al2O3 map (70◦ N/S, 32 ppd [43]); the base image is LROC WAC map
(100 m/pixel [62]).

2.2. Remote Sensing Identification of HA Basalts

Distinguishing different rock types is the key to lunar lithology identification [49].
Lunar primitive rock suites mainly include the magnesian suite (MS), alkaline suite (AS),
KREEP basalt suite, and mare basalt (MB) suite [63–65]. In this study, the Diviner oxide
and LP-GRS Th data [66] are used as the composition criteria to distinguish rock types
(Figure 2). Employing spatial transformation (64 × 64 oxides corresponding to 1 Th pixel)
to unify their resolution, four rock types are identified according to laboratory lithology
classification criteria (Table 1, [49]), and the lunar regolith lithology is obtained.

HA basalts were usually buried beneath weathering layers or mare basalts [60], and
the exposed HA basalts were usually excavated by impact events. The rock abundance
of typical mare and highland regolith were less than 0.5 wt% [61]. A rock abundance of
more than 0.5 wt% was used as a threshold to distinguish the exposed rocks by impact
excavation and regolith material, and the locations of Mare Imbrium exposed rock were
identified (Figure 3). The lithology of these exposed rocks was identified by using spatial
transformation (4 × 4 rock image corresponding to 1 lithology image) and unifying the
coverage (70◦ N/S). The constraints of Al2O3 exceeding 11 wt% were applied to the pixels
that have been determined as basalts to identify HA basalts.

Table 1. Laboratory lithology classification criteria [49].

Lithology Classification Criteria

Magnesian Suite Th/MgO ≤ 0.4495 and TiO2/MgO ≤ 0.03132

Alkali Suite
(1) Th/MgO ≤ 0.4495 and TiO2/MgO > 0.03132 and FeO/CaO ≤ 1.2967 and Th/CaO > 0.09372

(2) Th/MgO > 0.4495 and TiO2/Al2O3 ≤ 0.68435 and Th/Al2O3 ≤ 1.32803 and MgO/CaO ≤ 0.575
(3) Th/MgO > 0.4495 and TiO2/Al2O3 ≤ 0.68435 and Th/Al2O3 > 1.32803

KREEP basalt Th/MgO > 0.4495 and TiO2/Al2O3 ≤ 0.68435 and
Th/Al2O3 ≤ 1.32803 and MgO/CaO > 0.575

Mare Basalt (1) Th/MgO > 0.4495 and TiO2/Al2O3 > 0.68435
(2) Th/MgO ≤ 0.4495 and TiO2/MgO > 0.03132 and FeO/CaO > 1.2967



Remote Sens. 2024, 16, 2045 5 of 18Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 19 
 

 

 
Figure 2. Remote sensing identification and morphological geological characteristics analysis of HA 
basalt flow chart. The red text in the figure introduces the research methodology of this paper. 

HA basalts were usually buried beneath weathering layers or mare basalts [60], and 
the exposed HA basalts were usually excavated by impact events. The rock abundance of 
typical mare and highland regolith were less than 0.5 wt% [61]. A rock abundance of more 
than 0.5 wt% was used as a threshold to distinguish the exposed rocks by impact excava-
tion and regolith material, and the locations of Mare Imbrium exposed rock were identi-
fied (Figure 3). The lithology of these exposed rocks was identified by using spatial trans-
formation (4 × 4 rock image corresponding to 1 lithology image) and unifying the coverage 
(70° N/S). The constraints of Al2O3 exceeding 11 wt% were applied to the pixels that have 
been determined as basalts to identify HA basalts. 

 
Figure 3. Exposed rock pixels formed by impact in Mare Imbrium. (a) Map of Mare Imbrium. (b) 
Map of Mare basalt unit I18 in Hiesinger et al [31]. 

Figure 2. Remote sensing identification and morphological geological characteristics analysis of HA
basalt flow chart. The red text in the figure introduces the research methodology of this paper.

Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 19 
 

 

 
Figure 2. Remote sensing identification and morphological geological characteristics analysis of HA 
basalt flow chart. The red text in the figure introduces the research methodology of this paper. 

HA basalts were usually buried beneath weathering layers or mare basalts [60], and 
the exposed HA basalts were usually excavated by impact events. The rock abundance of 
typical mare and highland regolith were less than 0.5 wt% [61]. A rock abundance of more 
than 0.5 wt% was used as a threshold to distinguish the exposed rocks by impact excava-
tion and regolith material, and the locations of Mare Imbrium exposed rock were identi-
fied (Figure 3). The lithology of these exposed rocks was identified by using spatial trans-
formation (4 × 4 rock image corresponding to 1 lithology image) and unifying the coverage 
(70° N/S). The constraints of Al2O3 exceeding 11 wt% were applied to the pixels that have 
been determined as basalts to identify HA basalts. 

 
Figure 3. Exposed rock pixels formed by impact in Mare Imbrium. (a) Map of Mare Imbrium. (b) 
Map of Mare basalt unit I18 in Hiesinger et al [31]. 

Figure 3. Exposed rock pixels formed by impact in Mare Imbrium. (a) Map of Mare Imbrium. (b) Map
of Mare basalt unit I18 in Hiesinger et al. [31].

However, mixtures of low-alumina mare basalt and high-alumina highland material
also have more than 11 wt% Al2O3, only use compositional constraints, and cannot exclude
the influence of the mixture. Fortunately, the special composition and mixing process
of two materials may solve this problem [60]. There was a strong positive correlation
between Al2O3 and Mg# abundance (K = 0.6698, R2 = 0.7689, [49]) in the lunar soil samples,
and the two compositions showed a weak negative correlation in the HA basalt samples
(K = −0.1671, R2 = 0.4676). In addition, the mixing processes caused by impact were
directional. For example, in the four directions (horizontal, vertical, and two 45◦directions)
adjacent the mare–highland mixture pixels, the Al2O3 abundance of several pixels in at least
one direction was positively correlated with Mg#, or in the adjacent eight pixels directions,
the Al2O3 and Mg# abundance in the two directions was positively correlated. Therefore,
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Diviner Al2O3 and Mg# data were used for linear fitting (95% confidence limit, K > 0.5608
and K < 0.7788) to determine the composition adjacent to the unknown pixel and exclude
the influence of the mare–highland mixture.

2.3. HA Basalt Pixels and Unit Characteristic Calculation

Most of the exposed HA basalt pixels adjacent to the crater originated from units
formed by volcanic eruptions and flow crystallization, and the distribution of pixels pro-
vides the location of HA basalt units. The LROC Wide Angle Camera (WAC; 100 ppd)
map was used to observe the distribution characteristics of HA basalt pixels at different
topographies. The map has radiometric calibration based on the solar incidence angle,
and it can be used as a basis for geological feature analysis [62,67,68]. Using LROC WAC
as the base map, the aggregation areas were drawn according to the distribution of HA
basalt pixels, and the HA basalt units were identified in the aggregation region by visual
interpretation. However, HA basalts produced by material migration and distance ejecta
were usually exposed at the bottom of rugged topography, flat regolith, and away from
craters. They were not local and introduced interference information for HA basalt units
remote sensing identification. On the WAC map, the minimum radius identified as a crater
is 1 km (10 pixels, [69]). Therefore, the few exposed HA basalt pixels regions or away the
crater (centered on the crater, beyond a radius) regions were excluded from the units.

Basaltic flow events and spatial weathering caused most of the HA basalt layers
formed by the original volcanic eruption to be buried by the regolith and basalt layers.
Fortunately, the position of the HA basalts excavated by impact on the crater wall is able
to reflect the position of original HA basalts layer in the vertical direction. Meanwhile,
elevation data and boundaries of HA basalt units can be combined to calculate their
morphological and geological characteristics. Currently, the widely used lunar elevation
datasets include LRO/Lunar Orbiter Laser Altimeter (LOLA) digital elevation model [70]
and the digital elevation model provided by SELENE topographic camera [69]. Considering
the advantages of the high accuracy of the former and the high resolution of the latter,
Barker et al. [71] co-registered the two datasets and provided the SLDEM product. The
product has three usable resolutions (128 ppd, 256 ppd, and 512 ppd). Considering the
consistency of the product resolution, the 128 ppd images were used.

Depth(i, j) = Max(Max(SLDEM(i − f : i + f , j − f : j + f )))− SLDEM(i, j), (1)

Thickness(i, j) = Max(Max(Depth(i − f : i + f , j − f : j + f )))− Depth(i, j), (2)

Volume = ThicknessMax × Area, (3)

Notably, when calculating the buried depth and thickness of the HA basalt layer,
different degrees of ejecta from the adjacent crater will affect the calculation. For example,
from the vertical profile of the crater (Figure 4), when calculating the depth and thickness
of HA basalts a and b on the crater wall as examples, the HA basalts at other locations
represent the interference factors in the calculation. Among them, c represents the HA
basalt that slips from the crater wall to the bottom, e represents the HA basalt in the distal
ejecta, g represents the HA basalt in proximal ejecta on the edge of crater, and d at the top
of the opposite side of a and b. They may irregularly distribute on both sides of the crater
edge (d, e, g), wall (a, b), and bottom (c). This distribution may lead to inaccurate calculation
of the maximum and minimum elevation difference of the pixels and may overestimate the
depth and thickness of HA basalt layer. For example, the burial depth of pixel a should be
calculated from the top of its side rather than the position of the top d on the other side.
The thickness of the HA basalt layer depends on the depth of a and b, but not the depth of
other pixels. To improve the accuracy of the morphological geological feature calculation,
we introduce a distance threshold f to eliminate the influence of the distal ejecta e and then
eliminate on the other side top d in the calculation. When observing craters in Imbrium, we
noticed that most craters containing HA basalts have a radius R of no more than 2.5 km.
Therefore, we use Formula (1) and set the threshold f to 10 (f is equal to 2.37 km, the
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distance of 10 pixels in the rock abundance image) to calculate the thickness and burial
depth of the HA basalt layer. The i and j represent the latitude and longitude of the HA
basalt pixel. The burial depth of an HA basalt pixel is equal to the maximum elevation
of the adjacent 10 pixels minus the elevation of the pixel. The thickness is equal to the
maximum burial depth of the adjacent 10 pixels minus the burial depth of the pixel. The
maximum and minimum burial depths of the HA basalt unit are equal to the maximum
and minimum burial depths of HA basalt pixels on the crater wall inside the unit, and the
thickness of the unit is equal to the average thickness of the HA basalt layer inside the unit.
In addition, this calculation process may be affected by several error sources: (1) The HA
basalt may be broken, worn, and scoured when moving to the crater bottom, resulting in
mass wasting. (2) The possible proximal ejecta adjacent to the crater may cause the HA
basalt layer’s estimated thickness to be overestimated during the calculation. (3) Different
crater forms may affect the internal rock layer due to geological factors such as collapse,
fragmentation, and rock accumulation.
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In addition, the regolith composition does not reflect the true composition of HA
basalt units. The HA basalt pixels’ average oxide abundance in units should represent the
entire unit composition. Therefore, the average compositions of HA basalt pixels were
more representative of the whole unit. According to the location of exposed HA basalt
pixels, combined with the Diviner main oxide image, their main oxide abundances (Al2O3,
TiO2, and FeO) were calculated, and the unit average oxide abundance was calculated in
combination with the area of units. At the same time, considering the influence of other
special composition basalts (such as high-Ti basalt and low-Al basalt), the abundance of
three oxides in non-HA basalt pixels were assigned the value of 0.

3. Results
3.1. Lithology Classification

In Mare Imbrium, a total of 80,700 rock pixels with an abundance of >0.5 wt% were
excavated to the regolith surface. Their total area is approximately 4842 km2, covering
approximately 0.5% of the Mare Imbrium area. The classification of these rocks is shown in
Figure 5. It can be seen that most of the Mare Basalt (MB) pixels are concentrated in northern
Mare Imbrium, with a few scattered in the southern region. They are distant from highlands
and irregularly distributed, with a total area of approximately 1563 km2, accounting
for 32.3% of the rock pixel area. KREEP Basalt pixels have the opposite distribution
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characteristics as MB; they are less in the north where MB accumulates and more in the
south, with a total area of about 1551 km2, accounting for 32.0% of the rock pixel area. The
Magnesian suite (MS) and Alkali suite (AS) have similar distribution patterns; they are
concentrated on the edge of the impact crater, covering areas of approximately 1261 km2

and 467 km2, respectively.
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Figure 5. Map of Mare Imbrium lithology classification results. Including mare basalt (MB), magne-
sian suite (MS), alkali suite (AS), and KREEP basalt. The mountains in Mare Imbrium are marked in
yellow bold text, and the large impact craters are marked in yellow text.

In addition, the amount of each type of rock was counted according to the lithology
classification results (Figure 6). The amount of MB is the largest (26,042), accounting for
32.3% of the rock pixels. The amount of KREEP basalts is similar but less than mare basalts
(25,855). In addition, 21,017 MS and 7786 AS were identified, accounting for 25.8% and
9.6%, respectively. After 26,042 basalts were identified, 10,609 high-aluminum mixture
pixels with more than 11wt% Al2O3 were identified. Among them, 2203 mare–highland
mixtures were excluded, and 8406 HA basalts were identified, accounting for 32.3% of the
basalts. There are approximately 10.4% HA basalt and 2.8% mare–highland mixture in
Imbrium exposed rocks. The distribution characteristics of a large amount of exposed rock
but a small amount of HA basalts indicates that a large amount of Mare Imbrium basalt
was covered by highland material (e.g., plagioclase and magnesian suite, etc.), and 26% of
HA basalt was polluted by mare–highland mixtures. Therefore, the actual amount of HA
basalt in Imbrium may be more than we identified, and the influence of the mare–highland
mixture on the identification of HA basalts should be taken seriously.



Remote Sens. 2024, 16, 2045 9 of 18

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 19 
 

 

pixels with more than 11wt% Al2O3 were identified. Among them, 2203 mare–highland 
mixtures were excluded, and 8406 HA basalts were identified, accounting for 32.3% of the 
basalts. There are approximately 10.4% HA basalt and 2.8% mare–highland mixture in 
Imbrium exposed rocks. The distribution characteristics of a large amount of exposed rock 
but a small amount of HA basalts indicates that a large amount of Mare Imbrium basalt 
was covered by highland material (e.g., plagioclase and magnesian suite, etc.), and 26% 
of HA basalt was polluted by mare–highland mixtures. Therefore, the actual amount of 
HA basalt in Imbrium may be more than we identified, and the influence of the mare–
highland mixture on the identification of HA basalts should be taken seriously. 

 
Figure 6. The amount of Mare Imbrium lithological classifications and the amount of MB classifica-
tions. 

According to the locations of exposed HA basalt pixels, combined with Diviner main 
oxide data, the abundances of three compositions were calculated (Figure 7). The results 
show that the oxide abundance range of Mare Imbrium HA basalts (Al2O3: 11.1–17.6 wt%, 
TiO2: 0–9 wt%, FeO: 10–22 wt%) is wider than the Apollo 14 samples (Al2O3: 11–16 wt%, 
TiO2: 1.5–3 wt%, FeO: 13–19 wt%) and Luna 16 samples (Al2O3: 12–19 wt%, TiO2: 2–5 wt%, 
FeO: 13–19 wt%). Specifically, there are 1247 pixels with more than 16 wt% Al2O3 and 2268 
pixels with more than 19 wt% FeO. Notably, only eight pixels have the TiO2 abundances 
of 1.5–3 wt%. Five of them are located in central Imbrium, two in the east, and one in the 
north. A total of 66% of HA basalt pixels have TiO2 abundances of 3–5 wt%, and 2855 
pixels have TiO2 abundances of more than 5 wt%. In general, the differences in the 
amounts of HA basalts with different compositions are obvious. This indicates that they 
may originate from different periods or different locations of the eruption source. 

Figure 6. The amount of Mare Imbrium lithological classifications and the amount of MB classifications.

According to the locations of exposed HA basalt pixels, combined with Diviner main
oxide data, the abundances of three compositions were calculated (Figure 7). The results
show that the oxide abundance range of Mare Imbrium HA basalts (Al2O3: 11.1–17.6 wt%,
TiO2: 0–9 wt%, FeO: 10–22 wt%) is wider than the Apollo 14 samples (Al2O3: 11–16 wt%,
TiO2: 1.5–3 wt%, FeO: 13–19 wt%) and Luna 16 samples (Al2O3: 12–19 wt%, TiO2: 2–5 wt%,
FeO: 13–19 wt%). Specifically, there are 1247 pixels with more than 16 wt% Al2O3 and
2268 pixels with more than 19 wt% FeO. Notably, only eight pixels have the TiO2 abun-
dances of 1.5–3 wt%. Five of them are located in central Imbrium, two in the east, and one
in the north. A total of 66% of HA basalt pixels have TiO2 abundances of 3–5 wt%, and
2855 pixels have TiO2 abundances of more than 5 wt%. In general, the differences in the
amounts of HA basalts with different compositions are obvious. This indicates that they
may originate from different periods or different locations of the eruption source.
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3.2. Mare Imbrium HA Basalt Units

There are 17 HA basalt units (Figure 8) in Imbrium, and the area of these units and
the number of HA basalt pixels are different. Three units were identified in Sinus Iridum,
though they were heavily polluted by ejecta and highland materials. The distributions of
HA basalts in the three units are different. HA basalts in F1 and F3 were concentrated on the
crater wall and bottom, and in F2 they were mostly distributed in proximal ejecta. Five large
units (F6, F7, F8, F9, and F10) were identified in northern Imbrium center, with more HA
basalts pixels than other units. Among them, Helicon and Le Verrier and their secondary
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impact craters excavated large amounts of HA basalts in F6 and F7. Large amounts of HA
basalts were located adjacent to the mountains in F8 and F9. Four units (F11, F12, F13, and
F14) were identified in the east, and they were located in southwest of the Alpes Mountain.
In addition, five units (F4, F5, F15, F16, and F17) are located in Mare Imbrium center. F16
and F10 were not identified as the same unit although they were adjacent. The reason is
that F16 was identified by the excavation of four impact craters. Most HA pixels in F16
were distributed on the proximal ejecta surface, while in F10 they were distributed on the
crater wall or bottom. The adjacent but different distribution characteristics indicate that
they may originate from different eruption periods.
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3.3. HA Basalt Unit Distribution Characteristics

Based on the HA basalt pixels and unit locations, the morphological and geological
characteristics of 17 units were statistically calculated (Table 2). The results show that the
area of Imbrium HA basalt units is 116,366 km2, accounting for approximately 6.3% of
Mare Imbrium area. Among them, there are 13,020 km2 HA basalt units in Sinus Iridum,
a total of 600 HA basalt pixels. F1 and F3 have similar thicknesses and similar maximum
burial depths but different volumes. F2 has the largest burial depth, and its volume is
the smallest among 17 units. The five north-central units have large areas (>10,000 km2)
and volumes, except for F10, and the four units have similar thicknesses but different
volumes. F9 and F10 have similar volumes but different thicknesses. The unit with the
largest area is F7 (17,072 km2) and the smallest is F12 (1425 km2). The northeastern and
central units are small in area and volume (<500 km2), and they have different thicknesses
and burial depths.
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Table 2. Statistical results for the compositional and morphological geological characteristics of HA
basalt units.

Designation HA Al2O3 TiO2 FeO Area
(km2)

Max Depth
(m)

Min
Depth (m)

Thick
Ness (m)

Volume
(km3)

F1 253 13.8 5.3 17.2 6900 582 1.6 67 462
F2 63 13.1 4.8 17.1 1339 896 64.6 51 68
F3 284 14.4 6.1 17.6 4781 576 6.5 66 313
F4 177 13.2 5.9 18.2 5678 504 8.1 52 287
F5 62 14.9 5.4 16.9 5651 588 58.6 35 200
F6 315 14.3 5.9 17.4 12,193 716 1.7 68 799
F7 1580 13.8 5.7 17.4 17,072 737 0.5 70 1219
F8 1287 13.9 5.6 17.5 14,906 793 1.4 70 1048
F9 982 13.7 5.1 16.9 12,939 708 0.9 69 888

F10 1643 13.7 5.4 17.2 16,096 820 1.1 54 864
F11 86 13.8 5.2 17.4 1842 482 41.8 53 97
F12 111 13.6 4.9 16.5 1425 410 38.9 61 87
F13 480 13.7 5.2 17.0 5256 767 2.0 66 300
F14 125 13.7 6.8 19.3 2972 385 3.3 34 101
F15 63 14.8 5.3 16.8 2498 615 31.9 66 166
F16 29 13.7 4.7 16.8 2067 465 23.5 66 136
F17 76 13.5 4.7 16.9 2751 291 6.1 38 105

Some units in the four regions (north central, northwest, northeast, and central) have
similar thicknesses. The maximum thickness does not exceed 70 m. The thicknesses of
17 units can be divided into three different levels: 30–40 m (F5 in the center and F14 in the
northeast), 50–60 m (F2 in the northwest; F4 in the middle; F10 in the north central; F11
in the northeast) and 60–70 m (F1 and F3 in the northwest; F6, F7, F8, and F9 in the north
central; F12 and F13 in the northeast; F15 and F16 in the central). These characteristics
indicate that they erupted irregularly in four different source regions.

The mean values of the three oxide abundances were calculated (Table 2). From the
results, the HA basalts in F5 are obviously affected by the plagioclase composition at the
crater bottom, resulting in abnormal values of high aluminum and low iron and titanium in
unit. The oxide abundances of the five units in north-central Imbrium are similar. The oxide
abundance was similar in the four northeastern units except for F14. F14 may have been
affected by ecdemic ejecta, as its Al2O3 abundance is similar to the other three units, but
the FeO and TiO2 abundances are abnormally high. In general, Imbrium HA basalt units
are affected by compositional differences caused by different locations and topographies.

4. Discussion
4.1. Comparison with the Results of Previous Studies

Kramer et al. [11,12] summarized the volcanism and petrogenesis of HA basalts, using
the negative correlation between FeO and Al2O3, combined with compositional constraints
(12–18 wt% FeO, 1–5 wt% TiO2, 0–4 ppm Th), and the ejecta composition adjacent to the
immature (OMAT < −0.8) small impact crater (0.4–4 km) was statistically analyzed. Using
5 wt% TiO2 as the composition threshold, the influence of the mare–highland mixture was
eliminated, and basalt units of different ages and compositions were identified. In Imbrium,
the three units with different TiO2 and FeO abundances are Im (low Fe, very low Ti), Iltm
(very low Fe, low Ti), and Imtm (high Fe, low Ti). The TiO2 abundance of Iltm in northern
Imbrium is determined by Apollo 14 and Luna 16 sample compositions. Since the ejecta
composition is similar to the Apollo 14 samples, it is considered that HA basalts and the
source of the Apollo 14 sample may exist.

The similarity between the two methods is that both methods use composition con-
straints to identify HA basalts in craters and ejecta. Both studies identified HA basalt units
adjacent to the Sinus Iridum and Recti Peak Helicon in northern Imbrium. However, the
results of the two studies are different. The HA basalt candidate unit Iltm [12] was located



Remote Sens. 2024, 16, 2045 12 of 18

in northwestern Imbrium, and most parts of Iltm were found in southern Sinus Iridum and
Recti. In this study, three units and 600 HA basalt pixels were found in Sinus Iridum. Com-
pared with Iltm, they show scattered distribution characteristics and are located away from
highlands. No HA basalts were identified adjacent to Laplace and Recti, but two large units
(F7 and F9) were identified in the southeast of two mountains. F7 is the largest and thickest
unit in Imbrium, although Kramer et al. [12] identified it as a high-iron, high-titanium unit
Imtm. There are two main reasons for this difference. First, the average TiO2 abundance of
HA basalt pixels in F7 exceeded the threshold (>5 wt%) of Mare and Highland, and all these
pixels were excluded from calculations by Kramer et al. [12]. Second, the young high-Ti
basalt overlies most of the F7 surface. Although <5 wt% TiO2 HA basalts exist in ejecta,
it is difficult to find them by calculating the average. In addition to the above five units,
more units were identified in northern and central Imbrium. In general, compared with
the methods used by Kramer et al. [12], our method can identify more HA basalt pixels
and more units with larger areas, which are more widely distributed and discontinuous.
In addition, this study provides the HA basalt locations used to calculate the distribution
characteristics of HA basalt units and the morphological geological characteristics of HA
basalt layers.

There are two reasons for the difference between the two results. (1) Apollo 14 and
Luna 16 samples are limited, their compositions (1–5 wt% TiO2, 12–18 wt% FeO) limit
the identification of a large part of HA basalts, and more than 5 wt% medium-Ti (high-Ti)
and high-Al basalts may be excluded as highland materials [11,12]. Since these basalts
may have erupted during different periods [72–75], the FeO and TiO2 compositions may
be more extensive. The HA basalt composition (Table 2) proves this, and some 5–9 wt%
TiO2 HA basalts are also identified in Imbrium. (2) Most HA basalts were buried by
young basalts or regolith. The compositions of the buried materials were not identified
only by using the regolith composition conditions. In addition, this study has some
limitations. Firstly, our remote sensing identification method for HA basalts is applied to
rock pixels with an abundance of >0.5 wt%, the HA basalts pixels buried by regolith or
basalt flows may cause our method to fail. Secondly, HA basalt units adjacent to highlands
or with less excavated rocks may be considered as ecdemic ejecta, and they cannot be
identified. Third, the proximal ejecta at the crater edge and the HA basalt that slipped to
the bottom of the crater make the thickness calculation inaccurate in this study. In future
research, we will comprehensively consider the gravity and anti-gravity factor, explore
the distribution patterns and morphological geological characteristics of the HA basalts
beneath regolith, basalt layers, and deeper layers, and extend the research scope to the
whole mare and cryptomare.

4.2. Mare Imbrium HA Basalt Layers

The young mare basalt (MB) magma (3.6~2.6 Ga, [31]) filled Mare Imbrium and
overlaid the rock layers, possibly constituting the underlying unit of the HA basalts. The
overlay of MB layers and special topography (such as fold ridges, ground uplift, and
impact craters) cause the pixels identified in HA basalt units to be scattered rather than
aggregated. These pixels have different burial depths. Therefore, the formed HA basalt
layers were discontinuous and their thicknesses were not consistent. To understand the
vertical distribution of HA basalt layers, the exposed MB pixel locations in 17 units and
Formulas (1) and (2) were used to calculate their vertical distribution characteristics in
vertical (thickness and maximum, minimum burial depths). Figure 9a shows the average
thickness and proportion of HA basalts and MB. Figure 9b calculates the minimum burial
depth difference and the maximum burial depth difference between two layers.
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According to the results, compared with the basalt layer formed by ancient volcanism,
the layer formed by young basalt flow is thinner and discontinuous. Except for F5 and F14,
the other units only formed a thin layer of less than 30 m, overlying the HA basalt layers.
The thickness of most HA basalt layers exceeded 50% of MB layers. At the same time,
the maximum burial depth difference between the two layers is 0 (F5, F9, F11, F13, and
F15), indicating that the earliest volcanic eruptions in these regions and these HA basalt
layers overlie the original basin surface. Interestingly, these units are distributed in various
regions of Mare Imbrium HA basalt units map (Figure 8). They may have originated from
different eruption sources, but the similar TiO2 abundances in units except F5, which are
seriously affected by plagioclase material, indicate that they may have erupted at the same
phase. In addition, some units with similar maximum burial depth differences also have
similar compositions (F3, F6, F7, F8, F10, F12), they may have formed in the second phase
of the HA basalts eruption.

In a previous study by Dickson et al. [28], the Apollo 14 HA basalts were divided
into three categories based on their age: the oldest basalt (approximately 4.3 Ga), the
middle-aged basalt (approximately 4.1 Ga), and the youngest basalt (approximately 3.9 Ga).
This study verifies this speculation. They may have derived from volcanic events that
erupted during three different periods and from four different source regions. Firstly, the
thickness of the 17 high-alumina basalt units can be divided into three grades (30–40 m,
50–60 m, 60–70 m), and the units of the same grade originate from different source regions.
Secondly, according to the maximum burial depth difference between two layers in these
units, the eruption of Mare Imbrium HA basalts may be divided into three phases. The first
phase occurred before the formation of Imbrium basin, the oldest HA basalts erupted to the
basin surface and formed the irregular HA basalt layers. The second phase erupted and
overlaid some ancient basalts that erupted in the middle period. Notably, the eruption time
of the third phase is uncertain. The depth differences between two layers and the earliest
erupted basalt in some units (F4, F14, F16, and F17) are more than 200 m, indicating that
they may have scatter erupted after the Imbrium impact event or at the same time as Mare
Imbrium basalt magma. According to the HA basalts map (Figure 8), the source area and
scales of the HA basalts eruption in the three phases were random. The HA basalt units
that formed in the first phase have a small area and a large span of the eruption position.
The second eruption is large, but mainly concentrated in northwestern Sinus Iridum and
northern central Mare Imbrium. The third eruption was relatively small, with only a few
eruptions in Mare Imbrium western center.
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4.3. Morphological and Geological Characteristics of Imbrium HA Basalts

Most of the HA basalt units were located in northern Imbrium and were distant from
the highlands. In Sinus Iridum, there are two main reasons for the difference between the
thicknesses of F2 and the other two units: (1) Contrast from WAC imagery indicates that
F2 is influenced by highland ejecta (Figure 10a). Its minimum burial depth (64.6 m) and
maximum burial depth (896 m) suggest that since the formation of Sinus Iridum, this area
has been affected by highland ejecta multiple times, leading to deeper burial of the HA
basalts. (2) Basalt units generated at different times (Figure 10a, [31]) have flowed and
overlaid F1 and F3. The HA basalt units may have inconsistent thickness due to being
overlaid by basalts of varying ages and thicknesses.
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Figure 10. Sinus Iridum basalt units [31] and HA basalt units (a); five units in central Imbrium (b,c)
and two large impact craters (d). (d) shows the white box area in (c). The color of the pixels in the
figure is the Al2O3 abundance of HA basalts.

The north-central units were adjacent with a large area, and they have similar thickness
but different burial depths. This indicates that after a massive eruption of ancient HA
basalts, they may have flowed and overlaid the uneven Imbrium Basin. The flat region
adjacent to the mountain of F8, F9 has a large amount of HA basalts (Figure 10b), they
are derived from the mountain. Impact events have excavated them into the regolith
and bottom of craters, they usually stayed on flat regions rather than rugged regions. In
addition, there were no HA basalt pixels at the crater bottom or surroundings in some
units, they were at the edge of the crater wall (e.g., Helicon and Le Verrier; Figure 10d).
The reason may be that HA basalts from the original basin were excavated by Helicon at
the crater bottom, wall, and proximal ejecta. The young basalt flows overlaid the proximal
ejecta and the bottom of the crater. Therefore, the amount, thickness, and volume of HA
basalts may be underestimated.
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5. Conclusions

In this paper, Diviner and LP-GRS composition data are used to identify Mare Imbrium
exposed HA basalts. LROC WAC and SLDEM topographic data are used to map Imbrium
HA basalt units and calculate their geological characteristics. The main conclusions are as
follows: (1) Remote sensing identification based on Al2O3 abundance can distinguish HA
basalts from different types of basalts, which account for 32.3% of Imbrium total basalts.
(2) Mare Imbrium basalts are overlain by large areas of adjacent highland material, and the
HA basalts pollution rate from the mare–highland mixture is 26%. Therefore, the pollution
of highland materials should be taken seriously, and the effect of mare–highland mixtures
on HA basalts identification should be investigated. (3) The oxide abundances of Mare
Imbrium HA basalts show a wider range than Apollo 14 and Luna 16 samples. Obviously,
the number of HA basalts with different oxide abundances are different. (4) Imbrium HA
basalts have erupted widely in the north, and the eruption was irregular. The northern
center has the largest scale, and five large HA basalt units were formed. In northwestern,
northeastern, and central Imbrium, there are scattered small-scale eruptions. (5) In the
northern central part of Mare Imbrium, four units except F10 have similar maximum
thickness. F2, located in Sinus Iridum, has the largest burial depth and the smallest
volume. (6) The thickness of the HA basalt layers in different units is inconsistent, and
the distribution is discontinuous. There are three grades for the thickness of the 17 units,
and the eruption source region of each grade is different and their composition is different.
They may have originated during different periods and from different eruption sources.
(7) There may be three phases of HA basalts eruption in four regions and their eruption
scales are different.
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