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Abstract: In recent years, the utilization of machine learning algorithms and advancements in un-
manned aerial vehicle (UAV) technology have caused significant shifts in remote sensing practices.
In particular, the integration of machine learning with physical models and their application in UAV–
satellite data fusion have emerged as two prominent approaches for the estimation of vegetation
biochemistry. This study evaluates the performance of five machine learning regression algorithms
(MLRAs) for the mapping of crop canopy chlorophyll at the Kellogg Biological Station (KBS) in
Michigan, USA, across three scenarios: (1) application to Landsat 7, RapidEye, and PlanetScope
satellite images; (2) application to UAV–satellite data fusion; and (3) integration with the PROSAIL
radiative transfer model (hybrid methods PROSAIL + MLRAs). The results indicate that the majority
of the five MLRAs utilized in UAV–satellite data fusion perform better than the five PROSAIL + ML-
RAs. The general trend suggests that the integration of satellite data with UAV-derived information,
including the normalized difference red-edge index (NDRE), canopy height model, and leaf area
index (LAI), significantly enhances the performance of MLRAs. The UAV–RapidEye dataset exhibits
the highest coefficient of determination (R2) and the lowest root mean square errors (RMSE) when
employing kernel ridge regression (KRR) and Gaussian process regression (GPR) (R2 = 0.89 and
0.89 and RMSE = 8.99 µg/cm2 and 9.65 µg/cm2, respectively). Similar performance is observed for
the UAV–Landsat and UAV–PlanetScope datasets (R2 = 0.86 and 0.87 for KRR, respectively). For
the hybrid models, the maximum performance is attained with the Landsat data using KRR and
GPR (R2 = 0.77 and 0.51 and RMSE = 33.10 µg/cm2 and 42.91 µg/cm2, respectively), followed by
R2 = 0.75 and RMSE = 39.78 µg/cm2 for the PlanetScope data upon integrating partial least squares
regression (PLSR) into the hybrid model. Across all hybrid models, the RapidEye data yield the most
stable performance, with the R2 ranging from 0.45 to 0.71 and RMSE ranging from 19.16 µg/cm2 to
33.07 µg/cm2. The study highlights the importance of synergizing UAV and satellite data, which
enables the effective monitoring of canopy chlorophyll in small agricultural lands.

Keywords: hybrid model; radiative transfer model; machine learning; data fusion; multispectral
sensors; unmanned aerial vehicle

1. Introduction

Leaf chlorophyll, an essential element of the photosynthetic system in crops, has long
been recognized as one of the leaf pigments most responsive to external conditions. It serves
as a primary indicator of plant health and productivity, influencing photosynthesis, nutrient
uptake, and stress responses [1]. Two instrumental approaches facilitate the estimation of
canopy chlorophyll derived from remote sensing data: (1) the integration and inversion of
radiative transfer models (RTMs) and (2) statistical (machine learning) regression methods.
In recent years, the integration of RTMs and machine learning statistical methods has
emerged as a promising pathway in capturing the complexities of canopy chlorophyll
estimation while leveraging both physical principles and model flexibility [2,3].

Remote Sens. 2024, 16, 2058. https://doi.org/10.3390/rs16122058 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16122058
https://doi.org/10.3390/rs16122058
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0009-0003-3619-6367
https://orcid.org/0000-0003-1573-1925
https://orcid.org/0000-0003-2345-7882
https://doi.org/10.3390/rs16122058
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16122058?type=check_update&version=1


Remote Sens. 2024, 16, 2058 2 of 22

The integration of leaf and canopy RTMs has been prevalent for several decades [4–8].
While the leaf RTMs simulate the optical properties of leaves based on their biochemical
constituents, such as chlorophyll, carotenoids, and leaf structure parameters [9,10], the
canopy RTMs simulate the interactions between electromagnetic radiation and vegetation
canopies, considering canopy architecture factors like the leaf angle distribution, leaf area
index, and soil background [11,12]. This integration allows for the more comprehensive
representation of vegetation reflectance by accounting for both the biochemical composi-
tions of individual leaves and the structural characteristics of the canopy. The PROSAIL
model is one of the most widely used integrated RTMs; it combines the leaf-level optical
properties simulated by the PROSPECT model [13–15] with the canopy-level interactions
modeled by the Scattering by Arbitrarily Inclined Leaves (SAIL) model [16–18]. By com-
bining these two models, the PROSAIL model can simulate the spectral reflectance of
vegetation canopies with greater accuracy and realism. Over the years, advancements in
understanding the optical properties of leaves and canopies have led to refinements in the
model’s algorithms and parameterizations. These improvements include incorporating
more realistic representations of the canopy architecture, leaf angle distribution, and soil
background characteristics for SAIL [4,16,19–21] and enhancements in handling pigments
and incorporating additional biochemical components for PROSPECT [22,23]. Developed
by Verhoef and Bach in the early 2000s [21], the 4SAIL (4-scale SAIL) model introduced
additional complexity by incorporating the horizontal and vertical heterogeneities of the
canopy into the simulation. The latest leaf model version, the PROSPECT-PRO model, was
developed by Feret et al. [24]; it can separate the nitrogen-based constituents (proteins)
from the carbon-based constituents and estimate the leaf mass per area as the sum of the
proteins and carbon-based constituents. This increased complexity allows for the more
detailed and realistic representation of the canopy structure and improves the accuracy of
forward (reflectance) simulations, particularly in dense and heterogeneous canopies [25,26].

The inversion of RTMs plays a crucial role in extracting meaningful information from
remote sensing data and deriving the canopy and leaf chlorophyll content [27,28]. The
inversion techniques of RTMs commonly utilize look-up table (LUT) approaches [7,29–32]
and machine learning methods such as artificial neural networks [33,34]. The efficacy of
LUT and neural network methods hinges on the training process and a database containing
canopy biophysical properties and corresponding canopy reflectance spectra, including pa-
rameters like the leaf chlorophyll content and leaf area index [35]. In contrast, the iterative
optimization approach allows for the direct retrieval of biophysical parameters from the
observed reflectance, bypassing the need for training data, albeit with the drawback of high
computational requirements [36]. The ill-posed nature of problems within RTMs under-
scores the importance of carefully selecting the initial parameter values and incorporating
regularization techniques in the inverse process [37,38].

The statistical modeling of the chlorophyll content can involve simple techniques such
as a linear regression equation or more sophisticated approaches utilizing machine learning
regression algorithms (MLRAs), which excel in identifying patterns in remote sensing data
and are particularly effective when dealing with complex, non-linear relationships. MLRAs
such as decision trees, support vector machines, or neural networks are trained on the
extracted features from remote sensing data and corresponding chlorophyll measurements.
In recent times, data fusion techniques have gained popularity in improving the accuracy
of estimating the chlorophyll content. By merging data from multiple sources, data fusion
techniques help to overcome the limitations of individual data sources and provide a more
comprehensive and accurate estimation of the chlorophyll content [39,40]. By integrating
data from multiple sources and leveraging the power of machine learning, regression mod-
els applied to data fusion offer a robust and efficient approach to retrieving the chlorophyll
content in vegetation [41,42]. Once trained, the models can be applied to new remote
sensing data, enabling the comprehensive mapping and monitoring of the chlorophyll
distribution in vegetation across various ecosystems. The advancements of unmanned
aerial vehicle (UAV) technology have led to a new era in remote sensing, enhancing the
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modeling process through the synergy between very-high-spatial-resolution UAV data and
satellite images. However, the integration of satellite data with UAV-derived information
still requires formalization and evaluation across various research studies and at different
levels, such as ‘data comparison’, ‘multiscale explanation’, ‘model calibration’, and ‘data
fusion’ [43]. According to Alvarez-Vanhard et al. [43], two thirds of all UAV–satellite data
fusion publications are related to enhancing the satellite spatial resolution by incorporating
very-high-spatial-resolution information from UAVs. While studies related to the retrieval
of the canopy chlorophyl content commonly utilize multispectral or hyperspectral satellite
or UAV imagery [44,45], UAV–satellite data fusion has been emerging slowly [40,46,47],
and the scientific literature must demonstrate how and to what extent UAV information can
enhance different satellite data. It is worth noting that while RTMs offer a more detailed
understanding but are often computationally intensive, empirical models are site-specific
and lack a physical interpretation of the spectral interactions with vegetation [48,49].

In this study, the aim is to assess and contrast the effectiveness of multiple MLRAs
when utilized with UAV–satellite fused data or integrated within hybrid RTMs (PRO-
SAIL + MLRAs), as outlined by Verrelst et al. [38,50]. The performance of five MLRAs in
mapping the crop canopy chlorophyl is quantified over the Kellogg Biological Station in
Michigan, USA, in three scenarios: (1) applied to Landsat 7, RapidEye, and PlanetScope
images; (2) applied to UAV–satellite fused data; and (3) integrated within the PROSAIL
radiative transfer model (hybrid methods PROSAIL + MLRAs). The five MLRAs are kernel
ridge regression (KRR), least squares linear regression (LSLR), partial least squares regres-
sion (PLSR), Gaussian process regression (GPR), and neural networks (NN). It is anticipated
that this study will attract increasing research interest in the future development of the
integration of data-driven machine learning methods and RTMs, with an emphasis on
data fusion.

2. Data and Methods
2.1. Study Area

The study site is located within the Kellogg Biological Station (KBS) in Southwestern
Michigan, USA (Figure 1). The KBS includes a diverse range of ecosystems, such as agricul-
tural lands, wetlands, forests, and lakes. Since the 1980s, the area has undergone continuous
monitoring, offering invaluable long-term data on the agricultural, hydrological, and mete-
orological processes in the region. The study site (42◦24′32.3′′N, 85◦22′23.8′′W) covers a
farmland area of approximately 800 m × 1000 m (Figure 1). The site is maintained through
the Main Cropping System Experiment (MCSE) of the Long-Term Ecological Research
(LTER) program, which is part of a nationwide network of LTER sites established by the
National Science Foundation [51,52]. The KBS MCSE site is well known for its rotational
cultivation of corn, soybean, and wheat using different chemical and soil management
treatments. In 2017, when the current study was conducted, the main crop was corn.
Twenty-four parcels of corn were randomly distributed and placed among the parcels of
alfalfa, early successional communities, and young poplar trees.

The corn parcels, each with an approximate size of one hectare (87 × 105 m), have been
grown under four agricultural treatments (T1–T4), each with 6 replicates (R1–R6) (Figure 1).
The conventional tillage (T1) and no tillage (T2) treatments receive conventional levels of
chemical inputs. The reduced input (T3) treatment is a biologically based treatment with a
low chemical input. The certified organic (T4) treatment receives no chemical inputs, and it
is rotary-hoed for weed control.

The MCSE soils are well-drained Alfisol loams of the Kalamazoo series (fine–loamy,
mixed, mesic Typic Hapludalfs) mixed with well-drained loams of the Oshtemo series
(coarse–loamy, mixed, mesic Typic Hapludalfs), as described by Robertson et al. [51]. The
study area has a humid continental climate with warm summers and cold winters.
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Figure 1. Study site (42◦24′32.3′′N, 85◦22′23.8′′W) with 24 parcels of corn grown under four chemical
and management treatments.

2.2. Field and Satellite Data

Field data and leaf chlorophyll content and leaf area measurements were collected
on 11 August 2017. Mid-August 2017 was the peak of the growing season for corn at the
study site [53], when the LAI of the crop canopy reached its maximum and the effect of the
soil was minimal. Leaf chlorophyl measurements were collected at three randomly chosen
locations at each parcel with the Konica Minolta Chlorophyll Meter SPAD-502Plus. The
meter has accuracy of ±1 SPAD unit [54]. The measurements were taken over several leaves
at each location, at various positions within each leaf, and from the top and middle parts of
plants, as expected to be seen by the sensors. The sampling locations were approximately
10–15 m apart and positioned as a triangle around the center of each parcel, to avoid
any negative impact from the edge effect and mini-plots placed at some corners of the
parcels. Digital hemispherical photographs were taken using a Canon EOS Rebel T5 digital
SLR 18.7-megapixel camera with the Sigma 8 mm F3.5 EX DG Circular Fisheye lens at
each location and used to derive the leaf area index (LAI). At each location, the set of
measurements was collected within a radius of 5 m. The photographs were processed using
the Can-Eye (V6.49) software package [55].

The eBee AG Sensefly UAV and the Sequoia camera were used to collect UAV spectral
information over the KBS on 11 August 2017 (Figure 2) [56]. The lateral and longitudinal
overlap was set to 75%, and the spatial resolution/ground sampling distance was ~13 cm.
The reflectance images were created for each green (530–570 nm), red (640–680 nm), red-
edge (RE) (730–740 nm), and near-infrared (NIR) (770–810 nm) band (for more information
on UAV data collection and processing, see [56]) (Figure 2).
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Figure 2. Images acquired in 2017 for the study site by Landsat 7 (8 August), RapidEye (9 August),
PlanetScope (8 August), and UAV (11 August).

The Landsat 7 and PlanetScope images were acquired on 8 August 2017, while the
RapidEye imagery was obtained on 9 August 2017 (Figure 2 and Table 1). Besides the
availability of the imagery, the intention was to explore the performance of imagery with
different spatial and spectral resolutions to capture the overall patterns of the findings, i.e.,
to compare the chlorophyll retrieval capabilities of the MLRAs and hybrid models using
medium-, high-, and very-high-spatial-resolution imagery, including data fusion. Landsat
7 was selected for its greater number of spectral bands, aiming to evaluate whether a freely
available satellite image with a lower spatial resolution could yield satisfactory results.
RapidEye was chosen to examine the impact of including the red-edge spectral band and
a fine spatial resolution on the retrieval process. PlanetScope was incorporated into the
study due to its exceptionally fine spatial resolution of 3.125 m, despite the absence of the
red-edge band. Unfortunately, cloud-free Landsat 8/9 or Sentinel-2 datasets for this period
were not available.

Table 1. Sensors and bands used in the current study. Note: GSD—ground sampling distance.

Landsat 7 RapidEye PlanetScope UAV

Band
Center
(nm)

GSD
(m)

Band
Center
(nm)

GSD
(m)

Band
Center
(nm)

GSD
(m)

Band
Center
(nm)

GSD
(m)

Blue 485 30 440 5 455 3.125 - -
Green 560 30 520 5 545 3.125 550 0.13
Red 665 30 670 5 660 3.125 650 0.13

Red Edge - - 690 5 - - 720 0.13
NIR 835 30 760 5 865 3.125 800 0.13

SWIR1 1650 30 - - - - - -
SWIR2 2200 30 - - - - - -

2.3. Methods and Models

Five machine learning regression algorithms (MLRAs) were employed across the
three scenarios to assess their performance in estimating the canopy chlorophyll content
(CCC): (1) application to Landsat 7, RapidEye, and PlanetScope images; (2) application to
UAV–satellite fused data; and (3) integration within the hybrid radiative transfer model
PROSAIL + MLRAs (Figure 3). The five MLRAs utilized in this study were kernel ridge
regression (KRR), least squares linear regression (LSLR), partial least squares regression
(PLSR), Gaussian process regression (GPR), and neural networks (NN).
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Figure 3. The flowchart illustrates the methods employed to derive the canopy chlorophyll content
(CCC) across the study area. Note that MLRA stands for ‘machine learning regression algorithm’,
which includes kernel ridge regression (KRR), least squares linear regression (LSLR), partial least
squares regression (PLSR), Gaussian process regression (GPR), and neural networks (NN); NV
signifies non-vegetated spectra.

Five diverse sets of MLRAs were implemented to ensure robust and accurate pre-
dictions while exploring their relative performance. LSLR, due to its simplicity and in-
terpretability, provides a baseline for performance and is computationally efficient for
large datasets, which is paramount for satellite data processing [57]. PLSR was chosen
for its ability to handle collinear data and its proven success in estimating the LAI and
CCC, outperforming other linear regression methods [31,58,59]. NN offer adaptability
and have demonstrated superiority in vegetation mapping, making them a compelling
choice for our CCC estimation [60,61]. Moreover, NN have shown enhanced efficiency in
mapping vegetation attributes compared to vegetation indices, as demonstrated in studies
by Uno et al. [62] and Wang et al. [63]. KRR was included for its competitive performance,
speed, and ease in handling high-dimensional spectroscopic data without the need for
dimensionality reduction [64,65]. For instance, Wang et al. [66] assessed the high accuracy
of KRR in LAI estimation, comparing KRR with multiple linear regression and PLSR. Simi-
larly, Peng et al. [67] demonstrated the effectiveness of KRR in identifying the chlorophyll
content, confirming its suitability for the retrieval of the CCC from satellite images. Lastly,
GPR was used for its Bayesian framework, which provides probabilistic outputs, offering
not only accurate predictions but also quantifying the associated uncertainties, which
is particularly valuable in remote sensing applications [68–70]. A comparative analysis
conducted by Caicedo et al. [64] revealed that GPR excelled over most other MLRAs in
predicting the CCC and LAI from spectroscopic data. This finding was verified by Ashour-
loo et al. [71], who reported that GPR provided the most accurate detection of leaf rust
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disease, surpassing the performance of PLSR and support vector machine (SVM). KRR
and GPR are the most efficient methods for the hybrid technique, performing better than
other algorithms [3]. Each MLRA brought unique strengths to the study, facilitating a
comprehensive approach to accurate CCC retrieval. The fundamental advantages and
disadvantages of these MLRAs are outlined in Table 2.

Table 2. Advantages and disadvantages of the MLRAs used in the study.

Algorithm Name Advantages Disadvantages Source

Kernel ridge regression (KRR)
Handles non-linear
relationships with
kernel functions

The memory requirement for the storage of
the kernel matrix can be quite high for

large datasets, which can be a limitation for
systems with limited memory resources

[72]

Least squares linear regression
(LSLR)

Simple, interpretable,
computationally efficient

Prone to overfitting with
high-dimensional data [57]

Partial least squares
regression (PLSR)

Reduces dimensionality and
handles correlated features

Interpretation of coefficients can
be challenging [73]

Gaussian process regression
(GPR)

Provides uncertainty
estimates for predictions,

simple to train, and works
well with comparatively

smaller datasets

Computationally expensive for
large datasets [69,74]

Neural networks (NN) Highly flexible, learns
complex patterns in data

Can be prone to overfitting and requires
careful configuration [75]

In the first scenario, reflectance values were extracted from each satellite image in the
ENVI 5.6 software [76] and paired with the measured CCC values, calculated as the product
of the leaf chlorophyll content and LAI, to form the training dataset for each MLRA. In the
second scenario, the application to UAV–satellite fused data, the training data included
the extracted values from the satellite imagery and from three UAV-derived products,
the NDRE index, LAI, and crop height model [56], which were spatially resampled and
geo-registered before they were integrated with the satellite information. Additionally,
nine non-vegetated spectra (pixels from bare soil, roads, water bodies) were added to the
training dataset to enhance the accuracy of the MLRAs. The 3-fold cross-validation method
was employed to determine their accuracy.

In the third scenario, the hybrid methods integrated PROSAIL RTM and each MLRA,
all implemented within the ARTMO toolbox [77,78]. PROSAIL combines the PROSPECT-
PRO RTM, which operates at the leaf level [24], incorporated into 4SAIL, a canopy RTM [16].
The model can simulate the bidirectional reflectance of the canopy across the spectrum
of 400 to 2500 nm. The RTM incorporates various biochemical input parameters, such as
pigments, proteins, and water content, along with biophysical input parameters like the LAI,
average leaf inclination angle, spectral soil background, and viewing geometries [2,20,79].

PROSAIL creates training databases of the vegetation properties and simulates their
spectral signals via LUT, a reliable, physically based inversion technique [32]. In Table 3,
the input parameters of the PROSAIL RTM are listed. Among the parameters, the LAI
and leaf chlorophyll content were determined based on in situ measurements, while the
diffuse/direct radiation was set to the default value provided by the ARTMO toolbox [78].
The remaining parameters were established using references from the literature (Table 3).
The Latin hypercube sampling method [80] was employed and 500 simulations were
selected to train each MLRA to facilitate the avoidance of data redundancy while increasing
the computational speed for further analysis [81]. The simulations were resampled to
match the 6 bands of Landsat 7, 5 bands of RapidEye, 4 bands of PlanetScope, and 4 bands
of the UAV using the spectral bandwidth and response function unique to each sensor. The
active learning (AL) strategy was employed to optimize the model by selecting the best
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samples from the simulations, which used the Euclidean distance-based diversity (EBD)
sampling approach [74] and GPR machine learning regression algorithm [74]. AL is based
on intelligent sampling, which optimizes the selection of training datasets from LUTs and
increases the accuracy of regression algorithms [74,82]. The hybrid model was executed
with each MLRA using satellite imagery: Landsat 7, RapidEye, and PlanetScope, as well as
the UAV images.

Table 3. Descriptions and ranges of parameters used as input data in PROSPECT-PRO and 4SAIL models.

Model Parameter Description Unit Distribution Range Source

PROSPECT-PRO

N Leaf structure unitless Uniform 1–2 [83]
Cab Leaf chlorophyll content µg/cm2 Uniform 0–80 -
Ccx Leaf carotenoid content µg/cm2 Uniform 2–20 [3]

Canth Leaf anthocyanin content µg/cm2 Uniform 0–2 [83]
EWT Leaf water content cm Uniform 0.001–0.02 [83]
Cp Leaf protein content g/cm2 Uniform 0.001–0.0015 [3]

Cbrown Brown pigment content µg/cm2 - 0 [83]
CBC Carbon-based constituents g/cm2 Uniform 0.001–0.01 [83]

4SAIL

ALA Average leaf inclination
angle deg Uniform 20–70 [1]

LAI Leaf area index m2/m2 Uniform 0–6 -
HOT Hot spot parameter m/m Uniform 0.01–0.5 [1]
SZA Solar zenith angle deg Uniform 20–35 [82]
OZA Observer azimuth angle deg - 0 [82]
RAA Relative azimuth angle deg - 0 [82]
BG Soil brightness unitless - 0.8 [9]
DR Diffuse/direct radiation unitless - 80 -

CCC maps were generated as outputs for each of the three scenarios for every MLRA.
Subsequently, the estimated and measured CCC values were correlated and compared
for each model [84]. The effectiveness of each model in predicting the CCC was reported
and compared.

3. Results

The five MLRAs applied to satellite images (‘without fusion’ scenario) demonstrate
relatively strong performance for RapidEye and PlanetScope (maximum coefficient of de-
termination R2 = 0.62 and R2 = 0.53, respectively, for GPR), but considerably poorer perfor-
mance for Landsat 7 (maximum R2 = 0.30 for GPR) (Table 4), although the root mean square
error and normalized root mean square error (RMSE = 22.28 µg/cm2 and NRMSE = 24.96%,
respectively) are relatively low for GPR and similar to other datasets. Other models ap-
plied to Landsat 7, such as LSLR (RMSE = 158.53 µg/cm2, NMRSE = 177.56%) and PLSR
(RMSE = 153.76 µg/cm2, NMRSE = 172.22%), demonstrate exceptionally high error values.
Overall, GPR emerges as the most effective method among the five algorithms for all three
satellite images. The finer spatial resolution of the RapidEye and PlanetScope images
positively influences the outcomes of the regression modeling for most of the algorithms,
particularly for GPR. The superior performance observed for RapidEye can be attributed
to the presence of the red-edge band, which is known to be a reliable predictor of the
chlorophyll content. This underscores the significance of both the spectral and spatial
properties of satellite data within this method, such as those provided by the RapidEye
and PlanetScope images.
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Table 4. Performance of MLRAs with and without data fusion and performance of hybrid PROSAIL +
MLRA models using five MLRAs: kernel ridge regression (KRR); Gaussian process regression (GPR);
neural network (NN); partial least squares regression (PLSR); least squares linear regression (LSLR).

Performance of Five MLRAs Applied to Satellite Images

Landsat 7 RapidEye PlanetScope

RMSE
(µg/cm2)

NRMSE
(%) R2 RMSE

(µg/cm2)
NRMSE

(%) R2 RMSE
(µg/cm2)

NRMSE
(%) R2

GPR 22.28 24.96 0.30 16.51 18.49 0.62 19.61 21.96 0.53
KRR 24.65 27.61 0.23 20.91 23.42 0.45 22.34 25.03 0.37
LSLR 158.53 177.56 0.07 22.62 25.34 0.34 22.27 24.95 0.40
NN 29.74 33.31 0.25 23.96 26.83 0.37 24.24 27.15 0.33

PLSR 153.76 172.22 0.07 22.62 25.34 0.34 21.11 23.65 0.43
Performance of five MLRAs applied to fused satellite and UAV images

GPR 10.61 11.88 0.85 9.65 10.81 0.89 11.69 13.09 0.83
KRR 10.22 11.45 0.86 8.99 10.07 0.89 9.64 10.79 0.87
LSLR 19.06 21.34 0.67 48.50 54.30 0.36 13.37 14.97 0.76
NN 12.83 14.37 0.78 14.41 16.15 0.75 14.66 16.42 0.75

PLSR 24.73 27.70 0.49 79.50 89.90 0.26 24.30 27.21 0.36
Performance of hybrid PROSAIL + MLRA models applied to satellite images

GPR 42.91 85.96 0.51 19.16 21.46 0.66 76.33 152.76 0.47
KRR 33.10 66.24 0.77 26.13 29.27 0.69 148.12 296.45 0.57
LSLR 71.83 143.76 0.02 28.54 31.97 0.71 40.66 81.37 0.75
NN 148.72 297.63 0.34 25.60 28.68 0.71 67.73 135.55 0.48

PLSR 73.64 147.37 0.02 27.53 32.99 0.71 39.78 79.60 0.75

Note: best results are in bold.

Combining UAV information (NDRE, LAI, and canopy height model) with satellite
data yields considerably improved performance across almost all five MLRAs across all
satellite images. Particularly noteworthy is the significant enhancement observed for UAV–
Landsat 7, where the R2 values increase substantially for all five models, with the best
performance for KRR, which achieves its maximum value of R2 = 0.86 (up from R2 = 0.23 in
the ‘without fusion’ scenario). Moreover, the GPR model demonstrates a significant im-
provement, with its R2 increasing from 0.30 to 0.85 when UAV information is integrated
with the Landsat 7 dataset. Similarly, for PlanetScope, the data fusion significantly en-
hances the performance of the MLRAs, with KRR and GPR reaching an R2 of 0.87 and 0.83,
respectively (up from R2 = 0.37 and 0.53, in the ‘without fusion’ scenario, respectively). The
UAV–RapidEye dataset reaches the best results, with the maximum values of R2 = 0.89 for
both KRR and GPR, compared to its previous R2 of 0.45 and 0.62, respectively. KRR and
GPR consistently emerge as the most effective predictors across images, demonstrating
comparatively low RMSE and NRMSE values. While the integration of UAV information
significantly enhances the performance of the NN for all three satellites, LSLR and PLSR do
not demonstrate any trends. Overall, the results for the data fusion scenario are consistent
regardless of the spatial and spectral resolution of the imagery. Although the red-edge
band may contribute the most to the optimal results in the UAV–RapidEye scenario, the
observed differences across the models are not significant or uniformly improved.

The hybrid models (PROSAIL + MLRAs) exhibit generally higher R2 values for all three
satellite images compared to the empirical MLRA methods for the ‘without fusion’ scenario.
However, the performance is lower for most of the models across all datasets for the ‘with
fusion’ scenario. For instance, GPR shows only a slight improvement for the hybrid models
employing RapidEye (R2 = 0.66) when compared to the ‘without fusion’ scenario (R2 = 0.62),
while it performs worse for the ‘with fusion’ scenario (R2 = 0.89). KRR and GPR are the
best models for Landsat data (R2 = 0.77 and 0.51, respectively; RMSE = 33.10 µg/cm2 and
42.92 µg/cm2, respectively). LSLR and PLSR reach their maximum performance for the
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data with a finer spatial resolution (RapidEye and PlanetScope) within the hybrid model
(i.e., PROSAIL + PLSR: R2 = 0.71 and 0.75, for RapidEye and PlanetScope, respectively).

Despite the careful parametrization of the PROSAIL model, the RMSE and NRMSE val-
ues for most models are exceedingly high across all runs using the Landsat 7 (RMSE = 33.10–
148.72 µg/cm2) and PlanetScope (RMSE = 37.36–148.72 µg/cm2) imagery. Notably, only the
RapidEye-based hybrid models exhibit insignificantly different errors, with the maximum
RMSE value of 33.07 µg/cm2. While the Landsat 7- and PlanetScope-based hybrid models
achieve higher R2 values for KRR and PLSR, respectively, the RapidEye-based hybrid
models emerge as the most stable option, demonstrating high R2 values and the lowest
error values across all PROSAIL + MLRAs.

The Landsat-based CCC maps over the study site appear fuzzier compared to the
maps produced with the RapidEye and PlanetScope data (Figure 4) due to their coarser
spatial resolutions. Notably, the UAV–RapidEye data fusion approach exhibits the largest
range of estimated CCC values but has a correlation coefficient R = 0.94 when compared
with the field-measured CCC (Figure 5). Among the three models, the ‘with fusion’ scenario
demonstrates the highest correlation coefficient between the measured and estimated CCC
values (R = 0.93 from Landsat and PlanetScope and R = 0.94 for RapdiEye) (Figure 5).

Figure 4. Canopy chlorophyl content (CCC) maps generated from (a–c) Landsat 7, (d–f) RapidEye,
and (g–i) PlanetScope satellite images using the best-performing MLRA applied to satellite images,
applied to fused UAV–satellite imagery, and integrated within the hybrid model (PROSAIL + MLRA)
for each satellite dataset, respectively.
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Figure 5. Relationship between measured and estimated canopy chlorophyll content (CCC) values
for maps generated from (a–c) Landsat 7, (d–f) RapidEye, and (g–i) PlanetScope satellite images
using the best-performing MLRA applied to satellite images, applied to fused UAV–satellite imagery,
and integrated within the hybrid model (PROSAIL + MLRA) for each satellite dataset, respectively.

There is a considerable improvement between the estimated and measured CCC
values from the ‘without fusion’ to ‘with fusion’ scenario, increasing from R = 0.55 to
R = 0.93 using the best-performing MLRAs for the Landsat data. The RapidEye-based
empirical models demonstrate the highest R values when compared with other satellites
(R = 0.79 and R = 0.94 for the ‘without fusion’ and ‘with fusion’ scenario, respectively) but
slightly lower values within the hybrid modeling than the two other satellites (R = 0.81 for
RapidEye vs. R = 0.88 for Landsat and R = 0.86 for PlanetScope). The Landsat-based hybrid
model achieves the highest R value of 0.88; however, the estimated CCC values are slightly
underestimated. In contrast, the estimated CCC values are highly overestimated for the
PlanetScope imagery (Figure 5).

The models were also run on a single UAV image to explore the performance of the
models on a very fine-resolution image, potentially serving as a reference point (Table 5).
The MLRA methods applied to the UAV bands achieved similar results across all models,
with the best performance observed in LSLR, PLSR, and KRR (R2 = 0.74, 0.73, and 0.72,
respectively). The addition of the NDRE, LAI, and height model to the UAV bands consid-
erably improved the performance of all MLRAs, reaching R2 = 0.92 for KRR. The hybrid
model did not perform well for most of the MLRAs. The highest R2 was reached with KRR
(R2 = 0.25). Overall, all empirical MLRAs generally performed well in both the with and
without fusion scenarios. A similar trend is observed when the estimated and measured
CCC values are compared for the UAV image, while reaching its best R value for the ‘with
fusion’ scenario (R = 0.96) (Figure 6).
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Table 5. Performance of proposed MLRAs applied to UAV image with and without UAV-generated
NDRE, LAI, and canopy height information and integrated into the hybrid PROSAIL + MLRA models.

MLRAs Applied to
UAV Image

MLRAs Applied to UAV Image
Including UAV-Derived NDRE,
LAI, and Canopy Height Model

Hybrid (PROSAIL + MLRA)
Applied to UAV Image

RMSE
µg/cm2

NRMSE
% R2 RMSE

µg/cm2
NRMSE

% R2 RMSE
µg/cm2

NRMSE
% R2

GPR 17.60 19.72 0.67 9.27 10.38 0.91 38.89 43.56 0.06
KRR 16.11 18.05 0.72 8.31 9.31 0.92 83.21 93.20 0.25
LSLR 15.57 17.44 0.74 9.77 10.94 0.90 92.46 103.57 0.02
NN 18.49 20.70 0.66 13.34 14.94 0.81 35.80 40.10 0.02

PLSR 16.59 18.58 0.73 9.26 10.37 0.91 92.46 103.57 0.02

Note: best results are in bold.
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Figure 6. Canopy chlorophyl content (CCC) maps generated from (a) UAV image; (b) UAV image
including UAV-derived NDRE, LAI, and canopy height model; (c) hybrid (PROSAIL + MLRA) model
applied to UAV image—all using the best-performing MLRA for each scenario—followed by graphs
showing the relationship between the measured and estimated CCC.
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4. Discussion
4.1. Empirical Modeling Using MRLAs

The primary focus of this study has been to contrast data fusion versus hybrid ap-
proaches for small agricultural land. In this context, data fusion involves integrating
commonly used UAV-derived products, while hybrid modeling exclusively utilizes satellite
bands. The findings affirm the significance of fusing UAV–satellite data for the retrieval of
the canopy chlorophyll content in crops. The ‘with fusion’ empirical MLRAs exhibit notably
superior performance compared to other modeling scenarios, including the ‘without fusion’
empirical MLRA approach and hybrid models (PROSAIL + MLRAs). With the highest
R2 values (max R2 = 0.89) and the lowest RMSE (RMSE = 9.65 µg/cm2), this approach
demonstrates stability, with minimal performance variability among the five MLRAs. Two
MLRAs, GPR and KRR, stand out for their strong and consistent performance: GPR excels
as the best-performing model for the ‘without fusion’ scenario across all three satellites,
while KRR leads as the best-performing model for the ‘with fusion’ empirical scenarios
across all three UAV–satellite combinations. Another noticeable trend is the significant
improvement in the performance of NN within the data fusion scenario for all satellites.
The incorporation of the NDRE bands likely contributed to the NN’s enhanced ability to
estimate the chlorophyll values regardless of the spatial resolution of the satellite images.

Although the concept is underexplored, several studies in the agriculture or pre-
cision agriculture fields demonstrate the benefits of using machine learning techniques
in combination with UAVs or the synergies between UAVs and satellites to effectively
explore the impact of multiscale phenomena [43]. Various agriculture-related studies
show the advantages of using UAV imagery and satellite data, such as Seninel-2 [85,86]
and Worldview-2/3 [41]. Singhal et al. [85], who utilized UAV imagery to estimate leaf
chlorophyll, praised KRR as the top-performing MLRA among those tested, surpassing
GPR. Similarly, Zhou et al. [87] compared multiple MLRAs, including KRR and GPR, and
concluded that KRR excelled, particularly when working with high-resolution UAV sensor
data. Wang et al. [88] used UAV hyperspectral data to retrieve the CCC and found that the
backward propagation neutral network worked better than the support vector machine
and PLSR, praising the incorporation of the RE-related parameters in the modeling. On the
other hand, Maimaitijiang et al. [41] suggested that random forest regression outperformed
PLSR, the support vector machine, and extreme learning regression with a newly proposed
activation function.

Based on our observations and a quick sensitivity analysis, two major properties of
UAV images significantly contribute to the robust results of the ‘with fusion’ empirical
modeling. Firstly, the very high spatial resolution of UAV imagery enables the detailed and
precise capture of vegetation characteristics. Secondly, the inclusion of NDRE proves valu-
able in detecting subtle changes in chlorophyll content, leveraging the specific absorption
properties of chlorophyll in the red-edge region [89,90]. Additionally, it is noted that the
UAV-derived canopy height model effectively distinguishes corn parcels from other crops
and vegetation types, such as poplar trees, grass, and alfalfa. Although the primary goal of
this study was not to map the differences between the four treatments (T1–T4, as described
in the Study Site section), most of the models using RapidEye and PlanetScope imagery
generally distinguish parcels with different treatments. This is especially evident in the
case of T4 (organic) parcels with minimal or no chemical inputs (see Figures 1, 2 and 4).
In both ‘with fusion’ modeling and modeling using solely UAV imagery, the LAI emerges
as a pivotal input parameter. Its inclusion significantly boosts the regression power of
all models and bolsters the correlation between the estimated and measured CCC. This
observation is consistent with the findings of Simic Milas et al. [56], who underscored
the importance of the LAI, particularly when combined with UAV-derived biochemical
parameters, in CCC estimation. Consequently, incorporating canopy structural parameters
into the process of upscaling UAV measurements to the satellite level for CCC monitoring
is imperative, especially across heterogeneous fields, as demonstrated in our study. A
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similar beneficial approach of integrating UAV-derived canopy structural information with
satellite reflectance data was highlighted by [41].

Interestingly, while the ‘without fusion’ scenario suggests generally more sensitivity to
the spatial and spectral resolutions of satellite data—with Landsat-based models exhibiting
the least powerful and RapidEye showing the most powerful predictive capabilities for
most of the models—this trend is mitigated within the ‘with fusion’ scenario. It is surmised
that very-high-spatial-resolution UAV imagery helps to overcome, or at least minimizes,
the gap between in situ and satellite reflectance measurements. Overall, the integration
of UAV information with satellite imagery has been shown to enhance the accuracy of
analyses [41,43]. Consequently, the ongoing advancement of UAV technology is expected
to further bolster the synergistic approach between UAVs and satellites, bridging the gap
between sensor capacities and potentially eliminating the need for in situ measurements.

4.2. Hybrid Models (PROSAIL + MRLAs)

The PROSAIL model has been a cornerstone in remote sensing research for more
than three decades, owing to its ability to account for both the spectral and structural
characteristics of canopies based on leaf-level biochemistry [20,79]. However, the findings
of this study suggest that the performance of the hybrid models is strongly influenced by
the choice of MLRA used in conjunction with PROSAIL, as well as their capacity to handle
the spatial and spectral resolutions of the input satellite data.

Although PROSAIL + KRR demonstrates the highest R2 for the Landsat data (R2 = 0.77),
followed by PROSAIL + LSLR/PLSR for the PlanetScope images (R2 = 0.75), the hybrid
models exhibit their best overall performance with the RapidEye data. Across all MLRAs,
the RapidEye data display a relatively high R2 and relatively low errors (max R2 = 0.71,
RMSE = 19.16 µg/cm2). RapidEye’s spatial resolution of 5 m is finer than Landsat’s 30 m res-
olution and coarser than PlanetScope’s 3.125 m resolution. However, RapidEye includes the
RE band, which is not available in the PlanetScope and Landsat datasets. The combination
of spectral and spatial information from RapidEye is anticipated to enhance the stability of
the hybrid models, as evidenced by both the R2 and RMSE/NRMSE values. Similar to the
‘with fusion’ empirical modeling, the hybrid model with RapidEye demonstrates minimal
performance variability among the five MLRAs.

As briefly mentioned above, the RE band is widely recognized for its sensitivity to
changes in chlorophyll content [85,91,92]. Over time, numerous RE chlorophyll indices
have been developed and documented in the literature, enhancing spectral data for both
the canopy chlorophyll content, such as the Canopy Chlorophyll Content Index [93,94],
and the leaf chlorophyll content, including the Chlorophyll Index—Red Edge (CLRE) [95],
NDRE [96], and Chlorophyll-Sensitive Index (CSI) [97].

When considering both the R2 and error values as criteria for comparison, KRR demon-
strates strong performance for both the Landsat 7 and RapidEye data, generally followed
by GPR. Both KRR and GPR excel particularly with datasets containing more abundant
spectral information or bands, such as Landsat 7 and RapidEye. Despite their differing
mathematical formulations, both KRR and GPR are kernel-based methods. They rely on ker-
nel functions to compute the similarities between pairs of data points in a high-dimensional
feature space. This characteristic allows them to capture non-linear relationships between
input features and output variables, enabling them to model complex data relationships
effectively. Furthermore, both methods incorporate regularization techniques to prevent
overfitting, thereby enhancing their generalization performance on unseen data [69,72].

Several studies have suggested that integrating PROSAIL with GPR yields robust
performance in hybrid models. For instance, Guo et al. [2] found that integrating PROSAIL
with GRP alongside an AL strategy enhanced the model performance (from R2 = 0.57 to
R2 = 0.74 and RMSE from 5.60 to 3.96 when applied to Sentinel-2 imagery). GPR is a
potent nonparametric probabilistic algorithm [69] that requires a relatively small amount of
training data to establish relationships between the spectra and parameters, corresponding
to the number of simulations generated by the PROSAIL model. Active learning (AL)-
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based optimized training datasets are better suited to real-world scenarios as they are
queried against in situ data. GPR trained with AL-based optimized datasets results in
higher retrieval certainties compared to the training method with a full dataset [83]. Fur-
thermore, GPR does not necessitate large training datasets, and it generates uncertainties
in chlorophyll content estimates [50].

LSLR and PLSR demonstrated superior results in this study for the RapidEye and
PlanetScope data compared to the Landsat data, where both methods performed poorly.
It is hypothesized that these two statistical approaches work significantly better for fine-
spatial-resolution data, a phenomenon also observed in the ‘without fusion’ empirical
modeling. When dealing with fine-spatial-resolution data, both LSLR and PLSR can
offer advantages, although they operate differently and may be better suited for different
aspects of analysis [98,99]. They are both linear regression techniques that are simple
to implement; however, PLSR addresses multicollinearity in a better way and aims to
achieve both prediction accuracy and dimensionality reduction simultaneously, while
LSLR primarily focuses on predicting the response variable accurately [57,73]. LSLR works
well when there is little collinearity among the predictors and the relationship between
the predictors and the response can be accurately modeled with a linear equation. In the
current study, there was no significant difference in the results yielded by LSLR and PLSR
for each satellite. Similarly to LSLR/PLSR, the NN performed weakly for the Landsat
data but considerably better for the RapidEye data, suggesting the possible importance of
the RE band for this model. However, unlike PLSR and LSLR, the NN is commonly used
in remote sensing for the prediction of vegetation parameters and crop yields [100,101].
Nevertheless, it inevitably faces overfitting issues [99]. Additionally, the design parameters
and implementation of the NN involve complex and time-consuming processes, and its
performance can be compromised when dealing with low-dimensional datasets [102].

Regarding the spectral and spatial resolutions of the input data, the study of Guo et al. [2]
revealed that the PROSAIL + GPR model performed better with Planet data compared to
four-band Sentinel-2 data but not as well as with 10-band Sentinel-2 imagery. In this study,
the same model performed better for Landsat than for PlanetScope. However, the fact that
the best performance was obtained with RapidEye underscores the importance of red-edge
information in the hybrid models’ performance, as explained above. This coincides with
the findings of Guo et al. [2].

The hybrid models PROSAIL + MLRAs performed better than the empirical machine
learning methods applied to satellite data in our study area, but they did not outperform
the UAV data fusion technique. The hybrid model is generally used for a larger study
area where there is much heterogeneity in the surface available [38]. The wide range
of simulated training data for hybrid models helps the regression algorithms to predict
various surfaces apart from only crops. However, for small agricultural fields, simple
machine learning and data fusion techniques are preferable for higher overall accuracy and
lower uncertainty.

4.3. Uncertainties

One of the main irregularities that may impact the results of this study is related to
the process of UAV–satellite data fusion. As explained earlier, the UAV-generated products
were properly resampled, geo-registered, and combined within the satellite data. However,
a better approach must be utilized, especially for the UAV–Landsat data integration, as the
difference between the two spatial resolutions is large (30 m vs. 0.13 m) [86]. The process
of geo-registration between satellite and UAV data is a challenging task and may add to
the uncertainties.

Although physically based models, as opposed to empirical statistical models, can
offer more general and in-depth estimates of biochemical variables, their proper parame-
terization is critical to correctly simulate remote sensing information used as a reference
for model calibration. Similar to other physically based models, the hybrid models used
in this study are highly sensitive to some input parameters. However, to minimize the
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uncertainties and optimize model performance, the Matlab (R2021a) version of Gaussian
process regression (GPR) within the advanced sampling technique AL was applied in
the current study to match the simulated reflectance to our field data. Specifically, the
Euclidean distance-based diversity (EBD) method was used for sample selection (see the
Method section).

Some predictive uncertainties of the hybrid models, attributed to uncertainties in
the model parameterization, could be investigated by employing prior networks (PNs),
which utilize a unique approach to generate uncertainties in model performance. Unlike
traditional methods that focus on the model itself or the training data, PNs concentrate on
understanding the uncertainty arising from disparities between the data that the model was
trained on and the new data that it encounters. This methodology is advantageous because
it assists the model in distinguishing between uncertainty stemming from unfamiliar data
and uncertainty regarding its own settings [103]. For this study, Landsat 7 data were used
to build the model and compare the performance with satellites that had a finer spatial
resolution. Landsat 8/9 or Sentinel-2 could have been used for this purpose, but the higher
cloud coverage of these images at the study time hindered us from choosing these satellites.

The very fine spatial resolution of the UAV image with the RE and NIR bands, which
are commonly highly correlated with canopy chlorophyll [104,105], demonstrated superior
results for MLRAs compared to the hybrid method. One reason could be related to the
parameterization. The input parameters (i.e., the solar zenith angle, observer azimuth
angle, relative azimuth angle) for the PROSAIL model were adapted from previous studies
that were developed using satellite data. As a result, PROSAIL could not precisely simulate
the reflectance of UAV imagery, leading to suboptimal results with the hybrid technique.
However, future research could address this limitation by refining the parameterization
to better accommodate UAV data. Moreover, in the current study, the focus was on corn;
however, the input parameters may vary across different types of vegetation and should be
modified accordingly for different crop types.

Due to their somewhat coarse spatial resolution compared to the size of the parcels
in the study area, Landsat data could introduce some minor uncertainties. However, a
visual evaluation of the extracted values from the central area of the parcels minimized the
negative impact of the parcel-edge effect in the current study. The parcels were generally
homogenous and flat. Thus, Landsat data are a viable option for the agricultural settings of
the Kellog Biological Station.

In summary, integrating UAV data with data fusion techniques and machine learning
algorithms provides a potent method to improve the chlorophyll retrieval accuracy. This
involves merging high-resolution UAV imagery with complementary satellite data and
utilizing advanced machine learning techniques. Such integration enables researchers to
gain more precise insights into the chlorophyll distribution within vegetation, thereby
enhancing our understanding of plant health, productivity, and environmental dynamics.
The increasing adoption of UAVs in remote sensing applications is due to their outstanding
spatial resolution capabilities, versatility, and adaptability in data acquisition. This was
reaffirmed by employing solely UAV data in all three scenarios in this study. While the
results of empirical modeling using UAV data alone demonstrated strong performance
when based on UAV bands (including the red-edge band), the incorporation of additional
information (such as NDRE, LAI, and canopy height model) significantly enhanced the
performance of all MLRAs for the UAV image. Another advantage of UAV–satellite data
fusion was observed in its ability to neutralize the impact of the spatial and spectral
resolutions of the satellite data on the performance of the models.

The primary message of this study is not to advocate for MLRAs over UAV–satellite
data, but rather to emphasize the importance of enhancing the integration of UAV–satellite
data fusion within hybrid models. RTMs indeed play a crucial role in estimating the
chlorophyll content using remote sensing data, including both UAV and satellite imagery.
RTMs allow sensitivity analyses to understand the influence of various factors, such as the
leaf biochemical content, canopy structure, and atmospheric conditions, on the observed
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spectral signals and chlorophyll estimation accuracy. Overall, RTMs are indispensable tools
in understanding the physical principles underlying remote sensing observations and in
developing accurate and robust methods for the estimation of the chlorophyll content in
vegetation using UAV and satellite data [26]. In the current study, the comparison of the
two modeling approaches was based on a field campaign and satellite data acquired in
mid-August 2017, during the peak of the growing season [53], to minimize the impact of
the crop phenology, varying LAI values, and soil effects. In future studies, the influence of
the crop growth stages on chlorophyl retrieval using standalone MLRAs and hybrid models
should be considered. Due to phenological changes, enhanced by agricultural treatments,
the structural and biochemical properties of crops can significantly alter their spectral
responses, affecting the relationship between the crop parameters and vegetation spectral
information. For instance, vegetation indices often suffer from problems related to spectral
saturation, vegetation senescence, the soil background, and the canopy structure. Moreover,
the acquisition of ground data becomes more uncertain due to variations in the leaf area and
leaf chlorophyl content distribution. Regardless of the approach used to retrieve the CCC,
the early and late growing stages of crops result in unavoidable uncertainties [106,107].

5. Conclusions

This study evaluated the performance of five machine learning regression algorithms
(MLRAs) for the mapping of the crop canopy chlorophyll content (CCC) at the Kellogg
Biological Station (KBS) in Michigan, USA, across three scenarios: (1) application to Landsat
7, RapidEye, and PlanetScope images; (2) application to UAV–satellite data fusion; and
(3) integration within the hybrid radiative transfer model (PROSAIL + MLRAs). The
five MLRAs were kernel ridge regression (KRR), least squares linear regression (LSLR),
partial least squares regression (PLSR), Gaussian process regression (GPR), and a neural
network (NN). The research also investigated the impact of the different spatial and spectral
resolutions of the satellite data on the performance of the five MLRAs. Based on the results
obtained, the following overall conclusions were drawn.

• The five MLRAs applied to UAV–satellite data fusion outperformed their application
to satellite bands or integration within hybrid models (PROSAIL + MLRAs) in small
agricultural areas such as the KBS.

• UAV–satellite data fusion neutralized and mitigated the impact of the spatial and
spectral resolution of the satellite imagery on the MLRAs’ performance.

• The red-edge-related information of RapidEye proved advantageous for all models
across all three study scenarios, contributing to the stability of the models with minimal
performance variability.

• The leaf area index (LAI) emerged as a critical parameter, necessitating incorporation
with UAV-derived products in estimating biochemical parameters.

• The choice of MLRAs significantly influenced the performance of the hybrid models
(PROSAIL + MLRAs).

• GPR and KRR emerged as standout models, demonstrating strong performance across
various scenarios.

This study emphasizes the crucial role of integrating both UAV and satellite data to
optimize the utilization of MLRAs for the mapping of the canopy chlorophyll content in
small agricultural areas. It provides valuable insights for further advancement in hybrid
model development.
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