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Abstract: To address the problems of noise interference and image blurring in hyperspectral imaging
(HSI), this paper proposes a denoising method for HSI based on deep learning and a total variation
(TV) prior. The method minimizes the first-order moment distance between the deep prior of a Fast
and Flexible Denoising Convolutional Neural Network (FFDNet) and the Enhanced 3D TV (E3DTV)
prior, obtaining dual priors that complement and reinforce each other’s advantages. Specifically, the
original HSI is initially processed with a random binary sparse observation matrix to achieve a sparse
representation. Subsequently, the plug-and-play (PnP) algorithm is employed within the framework
of generalized alternating projection (GAP) to denoise the sparsely represented HSI. Experimental
results demonstrate that, compared to existing methods, this method shows significant advantages in
both quantitative and qualitative assessments, effectively enhancing the quality of HSIs.

Keywords: hyperspectral image denoising; deep learning; sparse observation matrix

1. Introduction

HSI has become significantly important in remote sensing, for it provides rich spectral
information across a wide range of wavelengths, enabling more precise analysis and the
interpretation of complex scenes and materials. The analysis of hyperspectral images (HSIs)
is a rapidly advancing technique in remote sensing, extensively applied in sectors such
as agriculture, mineral detection, military, and biomedicine [1]. Since HSIs are typically
generated by an array of sensors, they are often contaminated with noise [2–4]. The main
sources of noise consist of signal-independent (SI) circuitry noise and signal-dependent
(SD) photonic noise [5]. These noise sources contribute to the degradation of hyperspectral
images during the acquisition process, often manifesting as a combination of different
types of noise such as Gaussian noise [6], impulse noise, deadlines, stripes, and others [7].
Moreover, atmospheric turbulence and system movement cause blurring in HSIs, leading
to a mixture of different degradation types [8–13]. Consequently, there is an urgent need
to enhance the quality of and reduce the noise in HSI before its application in various
fields. Several denoising strategies for HSI have been suggested up to now, including
non-local similarity, principal component analysis (PCA), low-rank regularization, matrix
decomposition/factorization, the adaptive-weighting rank-reduction method [14], random
noise attenuation in images using antileakage least-squares spectral analysis [15], and
so forth.

In the past two decades, numerous techniques have emerged for the denoising of
hyperspectral images (HSIs). Initially, each band of a HSI was treated as a grayscale image
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for noise removal in conventional two-dimensional optical images. However, directly
extending conventional image processing methods to HSI band-by-band denoising [16,17]
failed to fully exploit the spectral correlation, resulting in unsatisfactory denoising results.
To address this issue, improved methods based on model optimization have been proposed
to leverage both the spatial and spectral prior information of HSIs. These methods model
the statistical properties of HSIs and employ optimization algorithms for denoising. By
combining prior information and observed data, HSIs can be better restored after noise
removal. Common examples of prior knowledge utilized in model-based optimization
methods include local smoothness priors, non-local similarity priors, sparsity priors, and
low-rank (LR) priors. Among them, the local smoothness prior assumes that adjacent pixels
in HSIs exhibit spatial similarity, while the non-local similarity prior optimizes denoising
results by leveraging image similarities [18,19]. The sparsity prior hypothesizes that HSIs
can be expressed with fewer sparse representations, and related HSI denoising methods are
broadly classified into two types: methods based on fixed dictionaries [19] and methods
based on learned dictionaries [20,21]. However, sparse representation-based methods still
have difficulties fully utilizing the joint spectral–spatial redundancy in three-dimensional
data. Therefore, the low-rank prior for HSI denoising has been increasingly developed to
address these issues collectively.

The low-rank prior assumes that an HSI is low-rank in a specific representation space,
and researchers have explored noise removal through methods such as low-rank matrix
denoising frameworks and low-rank tensor denoising frameworks. Among them, the
low-rank matrix recovery (LRMR) framework was the first low-rank method proposed,
which utilizes the low-rank structure of HSIs to remove noise [7]. It leverages the low-
rank property along the spectral dimension by rearranging the three-dimensional HSI
into a two-dimensional matrix, serving as the foundation for a series of subsequent HSI
recovery operations that harness the low-rank structure [14,22,23]. However, this model
fails to effectively utilize the spectral information of HSIs, thus rendering it incapable of
handling heavy noise. To address this issue, total variation (TV) regularization, which
preserves spatial edge information, is introduced to enhance the performance of LRMR.
He et al., proposed a Total Variation Regularized Low-Rank Matrix Factorization (LRTV)
method [23] for HSI denoising. This method combines TV regularization with low-rank
matrix factorization, effectively removing noise while preserving spatial edge information
in HSIs. Their findings demonstrate the necessity of jointly applying sparsity and low-
rankness in HSI denoising. Considering HSIs’ strong spectral smoothness prior, He further
proposed a Local Low-Rank Matrix Recovery and Global Spatial–Spectral Total Variation
(LLRSSTV) method [24], which introduces anisotropic spatial–spectral TV regularization
and non-local similarity regularization, further enhancing the performance of the denoising
model. Additionally, approaches that employ nonconvex functions to approximate the
rank can also improve the performance of LRMR [25,26]. Some methods aim to denoise
HSIs by constraining differential images, effectively removing noise through constraints on
the differential information [27]. It is worth noting that some low-rank matrix modeling
methods still yield suboptimal recovery results in heavy noise conditions, as they are unable
to leverage finer spatial–spectral information. Consequently, HSI denoising techniques
have evolved to incorporate methods that consider spectral information.

In recent years, low-rank tensor denoising models have gained widespread applica-
tions, with numerous methods leveraging tensor decomposition and tensor rank minimiza-
tion to handle HSI noise. Tensors are effective for representing high-dimensional data, and
third-order tensors are regarded by researchers as appropriate for HSI [28]. Due to the re-
dundancy and correlation in HSIs’ spatial and spectral dimensions, the low-rank feature of
third-order tensors is prominent and intrinsic [29]. Therefore, strategies based on low-rank
tensor decomposition are also suitable for HSI restoration. Among tensor decomposition
methods, commonly used approaches include t-SVD decomposition, Tucker decomposition,
CP decomposition, and tensor ring decomposition. These tensor decomposition methods
and tensor rank minimization methods enable more accurate and efficient HSI denoising.
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To address the major issue of low-rank tensor-based methods—how to select the minimized
rank, which is a computationally complex NP-hard problem—and the further increase in
computational complexity caused by adding regularization terms based on tensor low-rank
methods, researchers have begun to primarily explore the use of tractable approximation
methods to replace rank minimization. For instance, the tensor nuclear norm method, a
convex approximation approach, has been widely applied in HSI denoising. However, due
to the lack of consideration for the differences in low-rank properties across HSI dimen-
sions, this method often exhibits substandard denoising performance [27]. Consequently,
researchers have proposed novel methods to improve the performance of the nuclear
norm method, including Wang et al.’s method [30], Total Variation Regularized Low-Rank
Tensor Decomposition (LRTDTV), combining low-rank tensor Tucker decomposition and
TV regularization [28], as well as Weighted Group Sparsity-Regularized Low-Rank Ten-
sor Decomposition (LRTDGS), integrating weighted group sparsity regularization. These
methods have demonstrated superior denoising performance and results [31,32].

While rank approximation methods have proven effective in HSI denoising, their
practical application requires computationally intensive singular value decomposition.
Consequently, researchers have begun to explore the use of low-rank factorization tech-
niques to enhance computational efficiency while capturing the high correlations in HSIs. A
common low-rank decomposition approach is factor group sparsity-regularized nonconvex
low-rank approximation (FGSLR), which combines low-rank constraints with sparse con-
straints based on factor group sparsity regularization. This approach utilizes regularization
terms to promote sparsity in the factor groups, thereby better capturing the low-rank struc-
ture and sparse nature of the data [33]. Besides low-rank decomposition methods, subspace
representation-based denoising methods can also reduce computational costs. For instance,
Zhuang et al., proposed Fast Hyperspectral Image Denoising (FastHyDe), a denoising
method that represents the spectral vectors of clean images in pre-learned subspaces [34].
To further improve computational efficiency and denoising effect, He et al., introduced
the NGmeet method [35], a unified HSI denoising paradigm based on subspace models.
This approach better addresses issues such as high computational costs and difficulties in
handling mixed noise, demonstrating superior HSI denoising results.

Recently, numerous researchers have proposed HSI noise removal models based
on the Convolutional Neural Network (CNN) framework to further enhance denoising
performance, achieving promising results in feature selection and nonlinear fitting [36–44].
Through the CNN, these models are capable of learning rich feature representations from
data and achieving efficient noise removal for HSIs. The Denoising Convolutional Neural
Network (DnCNN) and the Fast and Flexible Denoising Convolutional Neural Network
(FFDNet) are two CNN frameworks applied to image deep learning that have achieved
remarkable results in HSI noise removal. DnCNN utilizes batch normalization and residual
learning to effectively remove uniform Gaussian noise and suppress noise within a certain
noise level range [36]. FFDNet combines the degradation map with the noisy image as
the input of the denoising network, balancing noise suppression and detail preservation,
resulting in denoising outcomes that eliminate noise without excessive smoothing [45].

Despite the significant progress made in denoising with deep learning-based methods,
they still lack consideration for the characteristics of HSI, especially the spectral correla-
tion, which is crucial in enhancing denoising effectiveness and achieving stable denoising
results [46,47]. For example, FFDNet may potentially compromise certain image details
and edge information. On the other hand, some traditional model optimization methods
can leverage the spectral information and correlations in HSIs to enhance denoising perfor-
mance. In summary, in the context of noise removal in HSIs, deep learning methods and
traditional model optimization methods each have their strengths and weaknesses [48–51].
Further research and exploration are needed to effectively leverage the advantages of both
approaches and compensate for their respective shortcomings.

The closeness between various priors grants them an opportunity to acquire each
other’s respective advantages [52]. While utilizing denoising networks such as FFDNet or
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TV regularization independently does not yield satisfactory results, this paper employs the
PnP algorithm [53] within the GAP framework [54] to denoise HSIs processed by the sparse
observation matrix. By decreasing the L2 norm difference between the initial statistical
moments of the FFDNet deep prior and the TV prior, the problem is transformed into
quadratic and semidefinite programming. Consequently, a dual prior information approach
that combines machine learning and deep learning is obtained, effectively compensating
for their respective limitations, and capitalizing on their strengths. As a result, a superior
denoising effect for hyperspectral images is achieved. This paper makes the following three
main contributions:

• We first process the original HSI using a randomly binarized sparse observation
matrix. This not only reduces the influence of noise on the HSI, but also mitigates the
blurring effect experienced during HSI acquisition, providing a better initial input
for subsequent denoising operations. Additionally, by introducing the randomness
inherent in this process, the randomness in image processing is increased, enhancing
the robustness and stability of the subsequent denoising algorithms.

• We innovatively introduce two priors, FFDNet and TV, into the hyperspectral remote
sensing image denoising algorithm simultaneously. FFDNet provides high-quality
initial denoising results by learning the complex relationship between noise and
signaling. TV regularization further optimizes these results by reducing noise while
preserving image details. By leveraging two complementary priors, this compensates
for their individual limitations and combines their strengths, resulting in superior
denoising performance for hyperspectral images.

• Extensive experiments are conducted, and the results demonstrate significant improve-
ments in quantitative evaluation and visual effects when juxtaposed with prevailing
denoising techniques.

The layout of the present study is systematically arranged as follows: Section 2
provides a comprehensive analysis of the methodology put forward. Section 3 presents
the experimental outcomes and partakes in pertinent discourse. Section 4 introduces the
discussion of the experimental results. Conclusions are presented in Section 5.

2. Methodology
2.1. Related Work
2.1.1. Compressed Sensing Theory

The accelerated advancement of Internet technology has brought about the explosive
growth of data information, and people are faced with more and more data processing
and information analysis tasks in their daily life. As an efficient information carrier,
images play an increasingly important role in today’s technologically developed world.
HSI (hyperspectral imaging) technology has indeed garnered significant attention in the
field of imaging due to its unique advantages. This technique captures detailed spectral
information unavailable in traditional images, enabling images to transcend the mere
expression of spatial information and delve deeper into the spectral characteristics of
objects. This type of imagery simultaneously captures spectral information across multiple
contiguous wavelength bands, thereby providing a more comprehensive description of
an object’s characteristics and properties. Nevertheless, researchers encounter a challenge
when utilizing HSI: their desire for imagery that possesses higher spatial and spectral
resolutions. Traditional data sampling compression techniques encounter limitations in
addressing this issue, necessitating the development of a more efficient data compression
method that can meet these demands. Compressed sensing (CS) theory indeed provides a
solution to the aforementioned challenge. By leveraging the sparsity and redundancy of
signals, it enables the acquisition of sufficient signal information with minimal sampling.
Specifically, CS employs special sparse sampling matrices and reconstruction algorithms
to sample images at a lower sampling rate than traditional methods, while effectively
reconstructing the original image.
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In contrast to traditional imaging methods, which adhere to the Nyquist–Shannon
sampling theorem and require at least twice the sampling rate of the original signal for
information collection, compressed sensing techniques capitalize on signal sparsity and
redundancy to achieve the effective imaging of high-dimensional image signals at signifi-
cantly lower sampling rates.

At present, Snapshot Compressive Imaging (SCI) stands out as a pivotal hyperspectral
imaging system, deriving its principles from compressed sensing (CS) theory. SCI employs
a two-dimensional sensor for high-dimensional image data acquisition and utilizes suitable
algorithms for reconstructing the necessary information. In contrast to conventional sys-
tems, SCI introduces a fresh perspective on compressed imaging. It amalgamates multiple
image frames into a singular snapshot measurement by leveraging a sparse observation
matrix, which results in benefits such as reduced memory usage, power consumption,
bandwidth needs, and cost. These characteristics equip SCI with the capability to capture
HSI effectively.

Inspired by this, we follow the approach outlined in reference [45] by first processing
the original HSI through a randomly binary sparse observation matrix. This matrix, with
its unique properties, spatially selects and weights certain pixel values in the image by
setting them to 0 or 1. This process achieves a sparse representation of the HSI, effectively
selecting and emphasizing certain informational components. This sparse representation
serves as a superior initial input for subsequent denoising procedures.

2.1.2. DnCNN

The Denoising Convolutional Neural Network (DnCNN) represents a specialized
deep convolutional neural network (CNN) model, thoughtfully engineered for the purpose
of denoising images. Proposed by Kai Zhang and his colleagues in 2017 [36], it is tailored
to address noise issues in images.

The overall structure of the DnCNN is remarkably straightforward, consisting pri-
marily of multiple convolutional layers. The DnCNN learns a residual mapping function
R(y) = w to obtain a denoised and clean HSI x through x = y − R(y).

The network architecture of the DnCNN can be summarized into the following
three components:

1. The first layer performs a convolution operation using a 3 × 3 kernel size with zero
padding incorporated into the input. Following this, the output of this stratum
undergoes an ReLU [37], a non-linear transformation, yielding the initial layer’s
image configuration.

2. For each subsequent layer, batch normalization (BN) [55] is utilized in conjunction
with both the convolution operation and the ReLU nonlinear activation function.
Batch normalization accelerates the convergence of training and enhances the model’s
robustness. This combination ensures that the activations within the network remain
stable, facilitating efficient learning.

3. The final layer: The last layer exclusively utilizes a convolution procedure to procure
the ultimate residual outcome for the image. This residual outcome embodies the
noise element that the DnCNN has been trained to deduct from the initial input,
consequently unveiling the noise-reduced HSI.

During the training process, the DnCNN model continuously adjusts its parameters
using backpropagation and gradient descent algorithms to minimize the mean squared
error. With numerous training samples and iterative optimization, the DnCNN learns the
statistical characteristics of noise present in images, enabling it to effectively attenuate noise
and enhance image quality.

Overall, the DnCNN has demonstrated excellent performance in image denoising
tasks. It boasts several advantages, including a straightforward model structure, strong
trainability, and good adaptability to various noise categories. Essentially, the DnCNN
represents a specialized deep convolutional neural network designed for the purpose of
removing noise from images. It incorporates the characteristics of image noise and the
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process of denoising, enabling it to accurately restore pristine image quality. It stands as
one of the most efficient and broadly implemented models in the image processing domain.

2.1.3. FFDNet

FFDNet is a neural network model, building upon the advancements of the DnCNN.
Its structure remains similar to the DnCNN, but incorporates a more flexible learning strat-
egy, enabling accurate denoising across various noise levels. A crucial element of FFDNet
involves the application of the batch normalization (BN) technique, which normalizes
the output of each node within a layer before forwarding it. This normalization process
accelerates convergence.

FFDNet’s objective function is denoted as x = F(y, M; Θσ), in which y symbolizes the
noisy image, x represents the desired output, and F(•) represents the mapping function
between y and x. A crucial aspect of FFDNet is the utilization of a noise level map, M,
which is generated based on user-inputted parameter σ. Notably, a distinctive feature of
FFDNet compared to the DnCNN is the inclusion of the noise level map, denoted as M, as
an input to the system, rather than allowing the model parameters Θσ to vary with different
noise levels. Consequently, the model parameters Θ remain constant across different noise
levels σ. This design confers significant flexibility to FFDNet, as it eliminates the need for
retraining the model under varying noise intensities.

FFDNet employs a strategy of processing downsampled sub-images. This approach
not only reduces the size of the input images, accelerating both training and inference
speeds, but also preserves finer details, thereby enhancing the denoising effectiveness of the
algorithm. The network structure of FFDNet remains largely consistent with the DnCNN,
albeit with distinct inputs and outputs. Particularly, the system processes four sub-images
that are derived from downscaling the initial noisy image and includes a noise level map,
denoted as M. It generates four cleaned sub-images as its output, which are subsequently
enlarged to reconstruct the final noise-free image. The performance metric employed here
is the mean squared error (MSE).

In summary, the design of FFDNet enables it to handle images with varying noise
intensities and types while maintaining excellent denoising performance even during
accelerated training and inference processes.

2.1.4. E3DTV

In order to more effectively utilize the inherent information in the image space and en-
hance the effectiveness of image recovery, the total variation (TV) regularization technique
was introduced by Rudin and colleagues [56] in 1992. This method exploits the sparse prior
details present in the difference image, skillfully reconstructing fine details and preserving
overall image smoothness. To put it simply, the TV regularization for a two-dimensional
grayscale image A ∈ Rm×n can be expressed as follows:

∥A∥TV =
2

∑
n=1

∥DnA∥1 (1)

where D1 and D2 denote the first-order discrete differential operators, with each operator
pertaining to the horizontal and vertical axes, respectively.

The preliminary strategy for integrating TV regularization into HSI restoration in-
volved treating each band separately, followed by a consolidation of the outcomes [23]. This
approach, however, only delves into the sparse prior within the HSI space and overlooks
the interrelation among distinct HSI bands, thus constraining the efficacy of the restoration.
In response to this limitation, Chang and his team [57] suggested an enhanced variant of
TV regularization, specifically designed for HSI, referred to as anisotropic spatial–spectral
total variation (SSTV) regularization. SSTV incorporates the correlation between different
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frequency bands, leading to improved HSI restoration results. For a 3-D HSI, the SSTV
regularization can be formulated as follows:

∥Γ∥LSTV =
3

∑
n=1

∥DnΓ∥h (2)

where D signifies the first-order differential operator along the spectral axis.
Among various regularization techniques, the SSTV method exhibits strong adapt-

ability and performs well in HSI denoising. Upon delving deeper into the complexities
of actual HSI data, it was observed that the sparse nature of hyperspectral imagery (HSI)
difference images across different spectral bands is both independent and non-uniform.
Under these conditions, Peng et al. [58] noted that SSTV (Smoothed Second-Order Total
Variation) regularization fails to precisely capture the true attributes of data. They argued
that the sparseness pattern of the difference images varies independently among HSI
bands, yet these images remain interconnected. As a result, they introduced the E3DTV
method, which incorporates meager prior details from the low-dimensional subspace of
the difference images, thereby better mirroring the traits of actual HSI data. Specifically, for
a two-dimensional HSI data matrix, the E3DTV-norm can be expressed as follows:

∥X∥E3DTV =
3

∑ ∥Bn∥1, DnX = BnCT
n (3)

where Dn represents the first-order difference operator. Meanwhile, matrices Bn ∈ Rmn×1

and Cn ∈ R1×B (l ≪ min(mn, B)) can be approximated through a low-rank decomposition.
Variants of TV have a wide range of applications in HSI processing. In [59], Chan

et al. use smoothed total variation (STV) to increase the classification accuracy. It is used to
detect semi-supervised changes in small water bodies in [60].

2.1.5. PnP Framework

Plug-and-play (PnP) is an algorithm that enables the interchangeable utilization of
various algorithms and models within a unified framework, thereby achieving greater effi-
ciency and flexibility. It leverages advanced denoisers (denoising algorithms) derived from
proximal algorithms such as GAP, employing variable splitting techniques to decompose
originally intricate optimization problems into more tractable subproblems. A common
approach for addressing these subproblems involves the utilization of proximal algorithms
with regularization for optimization. The definition of the regularized proximal operator
proxΦ : Rn → Rn is as follows:

proxΦ(y) = argmin
x

{
Φ(x) +

ρ

2
∥ x − y ∥2

}
(4)

Within the plug-and-play (PnP) framework, proxΦ can be seamlessly replaced by a
denoiser. This denoiser algorithm serves to transform a noisy image into a clean one. Here,
the denoiser functions as an implicit regularizer, encoding prior knowledge about the
structure of the underlying depth image. Regularization by denoising (RED) is a technique
that utilizes a denoising engine to define the regularization for inverse problems, offering
an alternative framework for image restoration tasks.

The fundamental concept of the PnP framework involves breaking down the initial
problem into two separate subproblems: first, regularizing the image using a prior model,
and then minimizing the discrepancy with observed data through an optimization process.
Since these two subproblems are decoupled, the PnP framework leverages the prior knowl-
edge encoded in the model and the specific capabilities of existing algorithms to tackle
specific problems.

A key feature of the PnP framework is its flexibility and scalability. By incorporating
different prior models, adapting to various data issues, and employing diverse optimiza-
tion methods, the PnP framework can adapt to diverse application scenarios and deliver
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efficient solutions. Additionally, the iterative nature of the framework allows for a gradual
improvement in results, introducing additional prior information and constraints at each
iteration step.

In summary, the PnP framework provides a flexible and efficient approach to tackle
image restoration and signal processing problems. It combines the regularization of prior
models with data-adaptive optimization, enabling its widespread application across differ-
ent problem domains and scenarios. By leveraging the strengths of both prior knowledge
and optimization techniques, the PnP framework offers a powerful tool for enhancing
image quality and extracting meaningful information from noisy data.

2.1.6. GAP Algorithm

Generalized alternating projection (GAP) is a recurring optimization technique em-
ployed to address constrained optimization issues. It is suitable for a variety of general
variational problems, wherein the optimal solution is sought within a defined set of con-
straints. It presumes the optimization issue being examined is outlined as follows:

minx,C C s.t. ∥ x ∥
ℓ

ςβ
2,1
≤ C and Ax = y (5)

The core idea of the GAP algorithm is to iteratively apply projection operators to drive
the objective function towards the constrained set. The essence of the aforementioned
optimization problem is to find a minimum weighted ℓ2,1 norm ball that has a non-empty
intersection with a given linear manifold. This problem can be solved through a series of
alternating projections, and it can be transformed by introducing auxiliary variable w:

(x(l), w(l)) = argminx,w
1
2
∥ x − w ∥2

2 +λ(l) ∥ w ∥
ℓ

ςβ
2,1

s.t. Ax = y (6)

where the Lagrange multiplier λ(l) ≥ 0 is associated with a constraint related to C(l). By
alternatingly updating the variables x and w, the aforementioned optimization problem
can be solved. For instance, when w is given, the update of x corresponds to the Euclidean
projection of w onto a linear manifold. Conversely, when x is fixed, the update of w is
obtained through a soft-thresholding operation on x. Both updates possess closed-form
solutions, facilitating the efficient solution of the optimization problem.

Specifically, during each iteration of the GAP (generalized alternating projection)
algorithm, an update operation is first performed on the variables. Subsequently, a projec-
tion operator is employed to map the updated variable values back to the constraint set,
ensuring the satisfaction of the preset constraints. This process can be repeated until conver-
gence criteria are met or the maximum iteration count is reached. Detailed mathematical
derivations and proofs can be found in [61].

The GAP algorithm finds extensive application, notably in areas such as signal pro-
cessing, image rejuvenation, image compression, and machine learning. It is effective in
handling optimization problems with multiple constraint conditions and, in some cases,
can converge to the global optimal solution. Furthermore, the GAP algorithm exhibits
excellent scalability, allowing for the integration of various prior information and con-
straint conditions to adapt to different problem scenarios. Although the GAP algorithm
may exhibit slower convergence in certain situations, it has demonstrated its effectiveness
and practicality in addressing real-world problems. Through continuous improvements
and optimizations, the GAP algorithm remains an essential optimization tool in various
domains, offering a viable approach to addressing optimization issues with constraints.

2.2. Proposed Method

The FFDNet-TV technique, which is the focus of this manuscript, is detailed in this
section. Given the superiority of sparsity, inspired by [52], the original HSI X ∈ Rm×n×B is
first processed using a random binary sparse observation mask M ∈ Rm×n×B. By exploiting
the characteristics of the random binary values, certain pixel values of the image are set to 0
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or 1 in the spatial domain, which achieves the partial information selection and weighting
of the image, further realizing the sparse representation of HSI Y ∈ Rm×n:

Y =
B

∑
i=1

Mi ⊙ Xi + N (7)

in which Mi = M(:, :, i) denotes the i-th band of the sparse observation mask, while
Xi = X(:, :, i) corresponds to the i-th band of the image for the respective hyperspectral
band. In the real world, the imaging process frequently introduces blurs into the HSI. The
X to be collected is actually the result of the convolution of the ideal X0 and the blurring
matrix form b of the point spread function (PSF): X=bX0 [62]. N ∈ Rm×n denotes different
degrees of zero-mean Gaussian noise here.

Expressing Equation (7) as a product of matrices and vectors,

y=Ax+n (8)

in which y = Vec(Y) ∈ Rmn and n = Vec(N) ∈ Rmn. The collected HSI vector x ∈ RmnB is
described as

x =
→
X = [

→
X1

T
, · · · ,

→
XB

T
]T (9)

The sparse observation matrix A ∈ Rmn×mnB in Equation (8) is denoted as

A = [C1, · · · , CB] (10)

where Ci = diag(Vec (Mi)) ∈ Rmn×mn, for i = 1, · · · , B.
The advantage of processing the original HSI in this way is that it does not only

retain pixels that may not be contaminated by noise in the subsequent process, but it
also suppresses pixels that are prone to noise interference. In the original HSI, the sparse
observation matrix may selectively retain image areas with higher intensity and suppress
areas with lower intensity. It should be noted that setting certain pixel values of the image
to 0 or 1 can also reduce the impact of blurring during the HSI acquisition process to some
extent. Therefore, processing the original HSI through a random binary sparse observation
matrix can reduce the range of noise interference in the subsequent HSI and the blurring
effect during acquisition. At the same time, since this process is random, it introduces
randomness into image processing, which helps improve the robustness and stability of
subsequent denoising algorithms.

The subsequent denoising problem is addressed using the model given by Equation (11).

x̂ = arg min
x

1
2
∥ y − Ax ∥2

2 +λΦ(x) (11)

where 1
2 ∥ y − Ax ∥2

2 denotes the data fidelity, Φ(x) denotes the regularization term, and λ
manages the equilibrium between the terms of data fidelity and regularization.

Within this part, we employ the generalized alternating projection (GAP) framework,
utilizing the plug-and-play (PnP) algorithm to refine the aforementioned issue. We briefly
outline the specific steps of this algorithm. The in-depth derivation of these steps can be
found in [54].

x(l+1) = w(l) + AT
(

AAT
)−1(

y − Aw(l)
)

(12)

w(l+1) = arg min
w

λ

γ
Φ(w) +

1
2
∥ x(l+1) − w ∥2

2 (13)
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where l denotes the iteration index. FFDNet and TV regularization are employed to model
the proximal operator of Φ(w) to obtain a more stable solution. Equation (13) is solved by
using the maximum a posteriori (MAP) model here, as shown in the following equation:

w(l+1) = arg max
w

p(w|x(l+1), σ) (14)

where σ is the denoiser hyperparameter, and p(w|x(l+1), σ) is its distribution.
Integrating over σ to eliminate σ and obtaining the posterior of Equation (14),

we obtain
p(w|x(l+1)) =

∫
p(w|x(l+1), σ)p(σ|x(l+1))dσ (15)

Our approach combines two denoisers. Similarly, the other denoiser is represented
as follows:

q(w|x(l+1)) =
∫

q(w|x(l+1), g)q(g|x(l+1))dg (16)

Due to the computationally challenging nature of Equations (15) and (16) in their
integral forms, a simple approach is to discretize σ and g by considering them as elements
of finite sets E and F, respectively. This allows us to express p(σ|x(l+1)) and q(g|x(l+1)) as
discrete distributions. Consequently, Equations (15) and (16) can be reformulated as

p(w|x(l+1)) = ∑
σ∈E

p(w|x(l+1), σ)p(σ|x(l+1)) (17)

q(w|x(l+1)) = ∑
g∈F

q(w|x(l+1), g)q(g|x(l+1)) (18)

When different priors are closely related, they naturally inherit the strengths of one
another. To implement the above statement using mathematical methods, the distance
between p(w|x(l+1)) and q(w|x(l+1)) is necessary to be kept to a minimum:

min
p(σ|x(l+1)),q(g|x(l+1))

dist(p(w|x(l+1)), q(w|x(l+1))) (19)

where dist(·, ·) is the distance function. Given the consideration of computational efficiency,
we harness the L2 norm between the initial statistical moments p(w|x(l+1)) and q(w|x(l+1)).

min
p(σ|x(l+1)),q(g|x(l+1))

∥ Ep(v|x(l+1) [v]− Eq(v|x(l+1))[v] ∥
2
2 (20)

Given the FFDNet training data of clean and Gaussian-noisy image pairs, we model
FFDNet posterior p(w|x(l+1), σ) as a Gaussian distribution:

p(w|x(l+1), σ) = N(FFDσ(x), σI) (21)

where FFDσ(x) is FFDNet with x being the input, I the identity matrix, and σI the covari-
ance matrix associated with the Gaussian distribution.

The Gaussian distribution serves as a model for the posterior in the context of a
TV denoiser:

q(w|x(l+1), g) = N(TVg(x), ∑g) (22)

where TVg(x) ∈ Rm×n×B is the average, and ∑g is the covariance matrix.
The ultimate optimization issue is as follows:

min
p(σ|x(l+1)),q(g|x(l+1))

∥ p(σ|x(l+1)), FFDσ(x)− q(w|x(l+1))TVg(x) ∥2
2

s.t. ∑
σ∈E

p(σ|x(l+1)) = 1, ∑
t∈F

p(g|x(l+1)) = 1, p(σ|x(l+1)) ≥ 0, p(g|x(l+1)) ≥ 0
(23)
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We employ quadratic programming and semidefinite programming to solve
Equation (23), resulting in two similar posterior estimates that can be mutually beneficial.

By averaging these posteriors, we obtain a denoiser that is weighted towards the mean
of the combined posterior:

w(l+1) =
1
2

(
∑

σ∈E
p(σ|x(l+1))FFDσ(x) + ∑

t∈F
q(g|x(l+1))TVg(x)

)
(24)

Algorithm 1 delineates the procedure of our approach.

Algorithm 1. Proposed approach.

1. Input: the sparse representation of HSI y and the sparse observation matrix A.
2. Initialize: Set w(0) = y, E = Einitial , F = Finitial
3. When not converging, do
4. l := l + 1
5. Update x via (12).
6. Acquire a set of denoising images: {FFDσ(x) : σ ∈ E}
7. Acquire a set of denoising images:

{
TVg(x) : t ∈ F

}
8. Solve problem (23).
9. Update w via the denoiser (24).
10. End while

2.3. Evaluation Metrics

In this section, we describe the evaluation metrics used to assess the performance of
our proposed method. Specifically, we employ Mean Peak Signal-to-Noise Ratio (MPSNR),
the Mean Structural Similarity Index Measure (MSSIM), and Spectral Angle Mapper (SAM)
as our evaluation metrics [63,64].

2.3.1. Mean Peak Signal-to-Noise Ratio (MPSNR)

MPSNR is a widely used metric to evaluate the quality of image restoration or recon-
struction. It measures the ratio between the maximum possible power of a signal and the
power of corrupting noise that affects the fidelity of its representation. MPSNR is computed
as the mean of the Peak Signal-to-Noise Ratio (PSNR) values obtained for each pixel or
patch in the reconstructed image. Mathematically, MPSNR is defined as

MPSNR =
1
N

N

∑
i=1

PSNR(i) (25)

where N is the total number of pixels or patches in the image, and PSNR(i) is the PSNR
value for the i-th pixel or patch. The PSNR for a pixel or patch is calculated as

PSNR(i) = 20 log10

(
MAXI
MSE(i)

)
(26)

where MAXI is the maximum possible pixel value of the image and MSE(i) is the mean
squared error between the original and reconstructed pixel or patch values.

2.3.2. Mean Structural Similarity Index Measure (MSSIM)

MSSIM is a perceptual image quality metric that quantifies the similarity between two
images based on their luminance, contrast, and structure. It is calculated as the mean of
the Structural Similarity Index Measure (SSIM) values obtained for local windows in the
images. Mathematically, MSSIM is defined as

MSSIM =
1
M

M

∑
i=1

SSIM(j) (27)
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where M is the total number of local windows in the image, and SSIM(j) is the SSIM value
for the j-th window. The SSIM for a window is computed as:

SSIM(j) =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (28)

where µx and µy are the mean values of the local windows in the original and reconstructed
images, σ2

x and σ2
y are their variance, σxy is the covariance between the two windows, and

C1 and C2 are small constants to avoid division by zero.

2.3.3. Spectral Angle Mapper (SAM)

SAM is a metric commonly used in remote sensing and hyperspectral image analysis
to compare the spectral signatures of pixels. It measures the angle between two spectral
vectors and quantifies their similarity. For our purposes, we apply SAM to compare
the spectral signatures of corresponding pixels in the original and reconstructed images.
Mathematically, SAM is defined as

SAM(s1, s2) = arccos
(

s1 · s2

| s1 | | s2 |

)
(29)

where s1 and s2 are the spectral vectors of corresponding pixels in the original and recon-
structed images, · denotes the dot product, and |s| represents the magnitude of the spectral
vector. A lower SAM value indicates a higher similarity between the spectral signatures.

3. Experiments
3.1. Experimental Configuration

In order to assess the efficacy of the method we have introduced (referred to as FFDNet-
TV) for HSI restoration, we use a combination of visual and quantitative measures. We
perform a thorough evaluation of our algorithm’s performance by contrasting it with six
other denoising techniques. This list encompasses several techniques such as low-rank
matrix recovery (LRMR) [65], the weighted sum of nuclear norms (WSNM) [66], low-rank
tensor decomposition with total variation (LRTDTV) [30], factor group sparsity-regularized
nonconvex low-rank approximation (FGSLR) [33], FFDNet [36], and E3DTV [58]. The codes
for these competing methods were supplied by their respective authors, with parameters
either fine-tuned or as described in their respective papers for optimal performance. Our
approach leverages the deep network FFDNet, which has previously been trained for vari-
ous tasks. We employ the existing network architecture and its parameters to accomplish
our objectives [36]. Before initiating the simulation, we standardize the grayscale values of
all HSI bands to the interval [0, 1]. After the denoising procedure, the grayscale values are
restored to their initial states.

Experiments are carried out on four different datasets: the Pavia City Center dataset,
the University of Pavia dataset (captured via the Reflective Optics System Imaging Spec-
trometer, University of Pavia, Pavia, Italy), the Washington DC Shopping Center dataset
(collected through the hyperspectral digital imagery collection experiment, or HYDICE),
and the Salinas dataset. To simulate the blur effect that occurs during the image capture
process, we implement convolution to yield the blurred HSI. We operate under the assump-
tion that the point spread function (PSF) is known. To mimic the blur incurred during the
imaging process for the first three datasets, we opt for a 5 × 5 light Gaussian blur kernel
with a standard deviation of 3, a 3 × 3 Gaussian blur kernel with a standard deviation of
1, and a 6 × 6 Gaussian blur kernel with a standard deviation of 2. Thereafter, we add
Gaussian noise, which has a mean of zero and variances of 0.13, 0.23, 0.15, and 0.10 to every
spectral band in these four datasets.
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3.2. Visual Quality Comparison

Considering the vast number of spectral bands in a hyperspectral data set, we choose
a single band from each set to demonstrate the visual outcomes of various noise reduction
techniques. Figures 1–4 visually represent the results of these various denoising techniques
applied to the four datasets. We only display one band of sub-images with notable features
from the Pavia City Center dataset, with dimensions of 50 × 50 × 80, in Figure 1, after
discarding bands heavily affected by noise contamination. Similarly, Figure 2 shows one band
of sub-images from the University of Pavia with data size 50 × 50 × 103, and Figure 3 shows
one band of sub-images from Washington DC Mall with data size 50 × 50 × 191. Figure 4
shows full-band images from the Slinas dataset with a data size of 217 × 217 × 204.
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In Figure 1a,b, the original hyperspectral image (HSI) and its degraded counterpart
from band 21 of the Pavia City Center dataset are presented. Similarly, Figure 2a,b showcase
the pristine and corrupted images from band 82 of the University of Pavia dataset. Moving
on to Figure 3a,b, we observe the untouched and distorted images from band 17 of the
Washington DC Mall dataset. Similarly, Figure 4a,b show the original HSIs of Salinas
and the corrupted ones. Comparative results from various denoising techniques can be
observed in Figures 1c–i, 2c–i, 3c–i and 4c–i. It is worth noting that the noise removal results
for LRMR and LRTDTV—that are particularly evident in Figures 1c,e, 2c,e, 3c,e and 4c,e—
that were deemed unsatisfactory are primarily attributed to the heightened noise levels.
Furthermore, the visual quality assessment reveals that FFDNet underperforms in terms of
visual fidelity, as evident from Figures 1g, 2g, 3g and 4g. This deficiency is attributed to the
absence of prior knowledge regarding blurring effects, resulting in excessive smoothness,
blurriness, and the consequential loss of intricate details. In contrast, an examination of
Figures 1d, 2d, 3d and 4d reveals that WSNM, while adept at preserving edge details,
exhibits subpar performance in noise reduction. In comparison to other methods like
E3DTV, which partially mitigates Gaussian noise but introduces excessive smoothing, as
evident in Figures 1i, 2i, 3i and 4i, the proposed approach excels in enhancing texture and
edge details while maintaining clarity in smooth regions, surpassing the results achieved by
FFDNet or E3DTV in isolation. This superiority stems from the synergistic combination of
FFDNet and TV priors in the proposed method, optimizing their complementary strengths
by reducing the discrepancy between their primary characteristics. While FFDNet can
provide high-quality initial denoising results by learning the complex relationship between
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noise and signal, TV regularization further optimizes these results by reducing noise while
preserving image details. Additionally, the early application of a random binary sparse
observation matrix not only reduces the range of noise interference after HSI, but also
diminishes the blurring effect during HSI acquisition, providing a better initial input for
subsequent denoising processes. Consequently, among all these advanced methods, our
method best preserves local details and eliminates noise.

3.3. Quantitative Comparison

To furnish a comprehensive and numerical assessment of the noise reduction capa-
bilities, three metrics—Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index
(SSIM), and Spectral Angle Mapper (SAM)—are utilized to evaluate the outcomes of the
conducted simulations. The PSNR and SSIM metrics are computed individually for each
clean band and restored band of each HSI, and subsequently averaged to calculate their
mean equivalents, referred to as the MPSNR and MSSIM indices. MPSNR and MSSIM
are spatial-based indicators, whereas SAM is a spectral-based indicator. The evaluation
results of various denoising strategies for the Pavia City Center dataset are presented
comprehensively in Table 1. Table 2 showcases the quantitative assessment results of seven
different denoising approaches for the University of Pavia dataset. Additionally, Table 3
presents a numerical assessment of the noise reduction methods used on the Washington
DC Mall data, emphasizing the best value for each metric in boldface.

Table 1. Quantitative assessment using Pavia City Center dataset.

Noisy LRMR WSNM LRTDTV FGSLR FFDNet E3DTV Ours

MPSNR 17.2142 25.7200 26.2446 26.2574 26.2786 24.7698 26.0635 25.2010
MSSIM 0.2061 0.6503 0.6884 0.6820 0.6827 0.5846 0.6685 0.6986

SAM 0.6289 0.2543 0.2371 0.2380 0.2356 0.2828 0.2401 0.2341

Table 2. Quantitative assessment using University of Pavia dataset.

Noisy LRMR WSNM LRTDTV FGSLR FFDNet E3DTV Ours

MPSNR 12.7006 22.9192 23.8758 24.4816 23.3588 23.6282 23.6166 23.1644
MSSIM 0.1614 0.5829 0.7642 0.6590 0.6361 0.6137 0.6649 0.7950

SAM 0.7171 0.2527 0.2257 0.2141 0.2127 0.2189 0.2054 0.2034

Table 3. Quantitative assessment using Washington DC Mall dataset.

Noisy LRMR WSNM LRTDTV FGSLR FFDNet E3DTV Ours

MPSNR 15.9062 22.1283 22.0652 22.7005 22.3429 22.3168 22.5068 21.6217
MSSIM 0.1887 0.4605 0.5415 0.4906 0.4734 0.4433 0.4651 0.5417

SAM 0.6420 0.3422 0.3324 0.3200 0.3151 0.3282 0.3140 0.3131

Although the aggregate results of the experiments might not show extraordinary per-
formance, this can be attributed to the combination of blurriness and significant Gaussian
noise present in the images. Despite this, the method proposed in this study showcases
superior quantitative outcomes when compared to alternative approaches, as illustrated
in Tables 1–3, except for PSNR. The discrepancy in PSNR values can be attributed to its
focus on pixel-level distinctions, which may not accurately reflect overall image quality. In
scenarios where image structure and texture hold greater significance, such as in image
enhancement and denoising, evaluations based on SSIM can offer a more consistent and
meaningful assessment. As exhibited in Tables 1–3, our technique reliably secures the
highest SSIM scores, which corresponds with the visual quality evaluations performed.
Regarding Table 4, although our MPSNR, MSSIM, and SAM values are not the best among
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all methods, the values of these three indices for our method are relatively good. Fur-
thermore, the other methods all exhibit deficiencies in one of these three indices, which
demonstrates that our denoising method possesses a certain level of reliability. Moreover,
the increased SAM values indicate that our approach successfully maintains the spectral
fidelity of the initial hyperspectral image (HSI). In other words, the use of a random binary
sparse observation matrix not only reduces the range of noise interference after HSI, but
also decreases the blurring effect during HSI acquisition, providing a better initial input for
subsequent denoising processes. Additionally, by leveraging both FFDNet and TV priors
and minimizing the L2 distance between their first-order moments, the proposed method
allows for a closer relationship between these priors, giving them more opportunity to
leverage each other’s strengths and achieve better results than using either method alone.

Table 4. Quantitative assessment using Salinas dataset.

Noisy LRMR WSNM LRTDTV FGSLR FFDNet E3DTV Ours

MPSNR 10.0009 26.3611 28.5849 31.1776 32.8068 70.3252 32.4068 66.1001
MSSIM 0.0256 0.4474 0.5754 0.6746 0.7584 0.9875 0.8554 0.7517

SAM 0.7908 0.1615 0.7907 0.0942 0.1316 0.6769 0.0791 0.1737

4. Discussion
4.1. Comparison of L1 and L2 Norm

The L1 norm of a vector is defined as the sum of the absolute values of its elements. In
one-dimensional space, it is equivalent to the sum of the absolute values of the vector’s
elements [67]. The L1 norm is commonly employed in sparse inference and feature selec-
tion, as it encourages certain elements to become zero, thereby facilitating sparsity. For
x = (x1, x2, . . . , xn), its L1 norm is as follows:

|x|1 = |x1|+ |x2|+ · · ·+ |xn| (30)

The L2 norm of a vector is defined as the square root of the sum of the squares of
its elements. In Euclidean space, it represents the distance of the vector from the origin.
The L2 norm is widely used in various mathematical and optimization contexts due to its
properties such as differentiability and its ability to emphasize larger values in the vector.
It is calculated as follows:

| x |2 =
√

x2
1 + x2

2 + · · ·+ x2
n (31)

The L1 norm tends to produce sparse solutions by driving certain elements of the
vector to zero, making it suitable for applications such as feature selection and compressive
sensing. In contrast, the L2 norm emphasizes all the elements of the vector equally, is useful
for controlling overall magnitude, and is commonly used in ridge regression and neural
network weight regularization. Additionally, the L2 norm is well behaved mathematically
due to its smoothness and differentiability properties, while the L1 norm is not differentiable
at zero. To achieve more reliable results, we choose the L2 norm in this paper.

4.2. Stopping Criteria for Denoising

In our experimental setup, we empirically determined that iterating the denoising
process 100 times provided the optimal results for our specific task and dataset. This crite-
rion was based on thorough experimentation and analysis, where we observed that fewer
iterations failed to effectively remove noise from the images, while excessive iterations
led to potential over-smoothing and a loss of important details. By iterating the denoising
algorithm 100 times, we achieved a balance between noise reduction and the preservation
of image quality, which ultimately contributed to the overall performance of our approach.
This choice of iteration count demonstrates our commitment to thorough experimentation
and the pursuit of optimal results for our research.
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4.3. Run Time

Under the conditions of a Gaussian blur kernel size of 3 × 3 and a standard deviation
of 1, Table 5 presents the computational duration of different methods applied to the
Pavia University dataset. While our approach does not achieve the shortest computational
duration, it is worth noting that the stopping criteria for denoising vary significantly
among the various methods. Additionally, the algorithmic architecture employed in this
experiment is intricate, rendering the computational duration a mere reference indicator.

Table 5. Run time of different methods applied to the Pavia University dataset.

LRMR WSNM LRTDTV FGSLR FFDNet E3DTV Ours

Time(s) 143.66 3591.13 1644.89 1574.36 102.82 40.48 997.66

In evaluating the performance of a denoising algorithm, not only the computational
efficiency but also the denoising effect and preservation of image details are crucial factors.
Our method, despite its relatively longer computational time, has demonstrated promising
results in balancing these aspects. The intricate algorithmic design ensures that while
reducing noise, vital image features and details are preserved, which is crucial for sub-
sequent image analysis and interpretation. Therefore, while the computational duration
serves as a valuable metric, it should not be the sole criterion for evaluating the superiority
of a denoising method. Instead, a comprehensive analysis that takes into account multi-
ple performance metrics, including the denoising effect, image quality preservation, and
computational efficiency, is necessary to draw a more convincing conclusion.

4.4. Residual Image

The evaluation of the residual images resulting from the application of various denois-
ing methods provides crucial insight into the performance and efficacy of these techniques.
In this part, we compare the residual images after the normalization of the Pavia University
dataset obtained from [30,33,36,58,65,66]. The objective is to analyze the degree of noise
reduction achieved while preserving image detail and structural information.

Figure 5 shows us a group of residual images of the Pavia University dataset after
normalization. It is clear that the residual images obtained via the LRMR, WSNM, and
LRTDTV methods have less noise. However, some fine textural details were observed to
be lost, indicating a possible trade-off between noise suppression and detail preservation.
In contrast, the FGSLR, FFDNet, and E3DTV methods were able to restore texture details
with good fidelity while maintaining a moderate level of noise reduction. This suggests
a more balanced approach between noise removal and feature retention. Future research
should aim to develop more efficient and robust denoising techniques that can adapt to the
diverse challenges encountered in real-world scenarios.

4.5. Performance on Different Degrees of Noise

This part examines the efficacy of the suggested method when dealing with different
degrees of noise. To ensure equitable comparisons, we maintain consistent levels of original
blurring in both datasets before subjecting them to different noise intensities. In addition
to the Gaussian noise variance levels explored in prior experiments (referred to as Case
1), we amplify the variance to introduce higher Gaussian noise levels, particularly for
cases with variances of 0.2 (designated as Case 2) and 0.3 (designated as Case 3), for
assessing the efficacy of our method. The assessment of various noise reduction methods
on the Pavia Center dataset is portrayed in Figure 6a,b, displaying the MSSIM and SAM
metrics. Similarly, Figure 7a,b display the MSSIM and SAM metrics for a variety of
denoising techniques applied to the University of Pavia dataset, while Figure 8a,b show
the same for the Washington DC Mall dataset. Quantitative evaluations across these three
datasets clearly indicate that the method we have proposed effectively utilizes dual prior
information from both the FFDNet deep prior and the TV prior, showcasing remarkable
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robustness in HSI denoising. It outperforms other methods for denoising various data
under different noise conditions. Moreover, compared to alternative approaches, the
proposed method offers partial blurring mitigation alongside Gaussian noise removal. This
is attributed to the utilization of a random binary sparse observation matrix, which not
only minimizes noise interference post-his, but also mitigates blurring effects during HSI
acquisition. This approach enhances the initial input for subsequent denoising processes,
thereby improving the overall efficacy of denoising operations.
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5. Conclusions

This paper proposes a denoising method based on deep learning and total variation
priors for HSI. We introduce a random binary sparse observation matrix for preliminary
treatment that significantly improves denoising performance and reduces blurring effects
during the imaging process. To effectively combine the FFDNet deep prior and the E3DTV
prior, we employed the plug-and-play method within the framework of generalized alter-
nating projection, achieving a precise suppression of noise. The analysis of the experimental
results indicates that, compared to existing methods, the proposed method exhibits ex-
cellent performance across multiple datasets, especially in terms of MSSIM and SAM,
achieving greater accuracies than other methods, and demonstrating significant advantages
in maintaining image detail and spectral fidelity.
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