
Citation: Wang, Y.; Zhao, J.; Yao, L.;

Fu, C. Depth-Guided Dehazing

Network for Long-Range Aerial

Scenes. Remote Sens. 2024, 16, 2081.

https://doi.org/10.3390/rs16122081

Academic Editors: Silvia Liberata Ullo

and Li Zhang

Received: 19 May 2024

Revised: 4 June 2024

Accepted: 4 June 2024

Published: 8 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Depth-Guided Dehazing Network for Long-Range Aerial Scenes
Yihu Wang , Jilin Zhao, Liangliang Yao and Changhong Fu *

School of Mechanical Engineering, Tongji University, Shanghai 201804, China; 2130194@tongji.edu.cn (Y.W.);
zhaojilin@tongji.edu.cn (J.Z.); 2330373@tongji.edu.cn (L.Y.)
* Correspondence: changhongfu@tongji.edu.cn

Abstract: Over the past few years, the applications of unmanned aerial vehicles (UAVs) have greatly
increased. However, the decrease in clarity in hazy environments is an important constraint on their
further development. Current research on image dehazing mainly focuses on normal scenes at
close range or mid-range, while ignoring long-range scenes such as aerial perspective. Furthermore,
based on the atmospheric scattering model, the inclusion of depth information is essential for the
procedure of image dehazing, especially when dealing with images that exhibit substantial variations
in depth. However, most existing models neglect this important information. Consequently, these
state-of-the-art (SOTA) methods perform inadequately in dehazing when applied to long-range
images. For the purpose of dealing with the above challenges, we propose the construction of a
depth-guided dehazing network designed specifically for long-range aerial scenes. Initially, we
introduce the depth prediction subnetwork to accurately extract depth information from long-range
aerial images, taking into account the substantial variance in haze density. Subsequently, we propose
the depth-guided attention module, which integrates a depth map with dehazing features through
the attention mechanism, guiding the dehazing process and enabling the effective removal of haze in
long-range areas. Furthermore, considering the unique characteristics of long-range aerial scenes,
we introduce the UAV-HAZE dataset, specifically designed for training and evaluating dehazing
methods in such scenarios. Finally, we conduct extensive experiments to test our method against
several SOTA dehazing methods and demonstrate its superiority over others.

Keywords: image dehazing; long-range aerial scenes; depth information; UAV perspective

1. Introduction

With the continuous advancement of technology, unmanned aerial vehicles (UAVs)
have demonstrated outstanding performance in both military and civilian applications,
attributed to their advantages such as high speed, convenience, robust maneuverability,
and extensive operational capabilities [1]. However, practical applications of UAVs often
encounter adverse weather conditions, especially haze [2]. Image deterioration, observed as
blurring and color distortion in imaging system outputs, occurs in such hazy environments
due to airborne particles absorbing and scattering atmospheric light. This degradation
significantly impairs the brightness and contrast of objects, thereby impeding the normal
functionality of outdoor UAV vision systems [3]. Hence, conducting further research on
image dehazing methods is crucial for the further development of UAV technology.

Presently, the dominant approaches for image dehazing can be classified into two main
groups [4–7]: those founded on physical models and those using deep learning. The former
approach mainly focus on the mechanisms underlying the degradation of hazy images.
They explore the development of physical models that conform to the degradation patterns
specific to hazy images. Subsequently, parameters such as the transmission function
within these models are utilized to reverse the degradation process, ultimately obtaining
clear and haze-free images. As deep learning has become more popular and effective for
machine vision tasks like image enhancement and segmentation, it has also begun to show
promise in dehazing images. These methods leverage neural networks to learn the complex
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mappings between hazy images and their corresponding clear images or parameter maps,
thus enabling the restoration of haze-free images.

However, it is noteworthy that current research and applications of existing image
dehazing methods mainly target close-range scenes, such as indoor environments, and mid-
range scenarios, such as the perspective from moving vehicles [8,9]. In these scenarios, the
depth variation within a single image remains limited, resulting in a relatively consistent
haze distribution across the entire image. Distinct from the aforementioned images, aerial
images possess notable characteristics such as long-range views and overhead perspectives.
Considering the extensive coverage in a single image, the haze density within it obviously
fluctuates with changes in image depth. Existing image dehazing methods have not
adequately addressed this phenomenon, leading to poor dehazing performance when
adopted in long-range aerial scenes.

Considering the phenomenon mentioned above and recognizing the crucial role of
depth information in predicting haze distribution in long-range aerial scenes, this paper
proposes a depth-guided dehazing network (DGDN). Specifically, we first propose a depth
prediction subnetwork based on multiple residual dense modules (MRDMs) to estimate
the complex depth information of long-range aerial images, which further serves the
subsequent dehazing process. Secondly, inspired by the attention mechanism in Trans-
former [10], we design a depth-guided attention module (DGAM) to couple depth maps
with feature maps, leveraging depth information to guide the dehazing process, which
aligns more closely with the real-world mechanism of haze formation. Finally, consid-
ering the differences between the long-range aerial perspective and other perspectives
(we provide a comprehensive explanation in Section 2.3), we introduce the UAV-HAZE
dataset for training and evaluating long-range aerial image dehazing methods, as shown in
Section 4. The results of the experiments clearly demonstrate that the network we propose
surpasses existing SOTA dehazing networks in terms of performance for both synthetic
and real-world images.

To summarize, this article’s primary contributions can be described as follows:

• A depth prediction subnetwork based on multiple residual dense modules is proposed
to effectively accomplish depth estimation tasks for long-range aerial images.

• A depth-guided attention module, which couples depth information with dehazing
features, is proposed, which utilizes depth information to guide the dehazing process.

• The UAV-HAZE dataset is introduced, which includes approximately 35,000 synthetic
hazy images captured from UAV aerial perspectives, along with their corresponding
clear images and depth maps. Additionally, the dataset contains about 400 real-world
hazy images. All of them are utilized for training and evaluating dehazing methods
for long-range aerial images.

• Experiments are performed by utilizing both synthetic and real-world images. In
addition, comparisons are carried out with several SOTA methods. Furthermore, an
ablation study is performed to illustrate the benefits of the proposed DGAM.

2. Related Works

In this section, we first review the imaging mechanism of haze images and the develop-
ment history of single-image dehazing methods. Then, we provide a detailed explanation
of different perspectives and scenes.

2.1. Atmospheric Scattering Model

Image dehazing involves a substantial utilization of the atmospheric scattering model,
which offers a traditional framework for comprehending the imaging process of hazy
pictures. This model has been further developed by Nayar et al. [11,12] after being first
proposed by McCartney et al. based on the Mie scattering theory [13]. The following is a
detailed description of the model:

I(x) = J(x)t(x) + A(1 − t(x)) (1)
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The variables in Equation (1) are defined as follows: The imaging device collects the
hazy picture I(x), the clear image J(x), the global atmospheric light A, and the transmission
map t(x) that connects these parameters. Specifically, the function t(x) is defined as:

t(x) = e−βd(x) (2)

where β represents the atmospheric scattering coefficient, while d(x) denotes the distance
between the target and the imaging system.

The specific imaging process is illustrated in Figure 1. The atmospheric scattering
model states that there are two primary causes of hazy image degradation. First, airborne
particles absorb and scatter light from the target, making the reflected light weaker. This
makes the imaging results from the detection system less bright and clear (J(x)t(x) in
the first part of Equation (1)). Secondly, environmental light, like sunlight, is scattered by
atmospheric particles, creating a stronger background light than the target light, which
causes the imaging results to become blurry and distorted A(1 − t(x)) in the second part
of Equation (1). Equation (2) also suggests a tight relationship between the transmission
map and the depth map. This linkage emphasizes the significance of depth information in
determining the transmission characteristics of hazy scenes, leading to noticeable variations
in haze density in scenes with pronounced depth changes. This introduces new challenges
for image dehazing methods, which is precisely the focus of long-range aerial scenes.

Figure 1. The imaging mechanism of hazy weather explained by an atmospheric scattering model. The
hazy weather images captured by outdoor imaging systems are coupled with two components: direct
attenuation and atmospheric light scattering. The drawn materials in the image are sourced from
Vecteezy (https://www.vecteezy.com/, accessed on 10 April 2024), and the photos were obtained
from UAV-HAZE.

2.2. Single Image dehazing

Single image dehazing is a seriously ill-posed problem, with existing methods primar-
ily approaching it from two perspectives: the physical model perspective and the deep
learning perspective.

Physical model-based image dehazing methods typically begin with an atmospheric
scattering model [14,15], estimate the global atmospheric light A and transmission map
t(x), and finally, reverse the process to generate a clear image J(x). For example, Wang
et al. [16] presented a dehazing technique for single images. Their approach utilized
a physical model and employed a multiscale retinex filtering with a color restoration
algorithm to enhance the brightness components of the picture. In addition to employing

https://www.vecteezy.com/
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physical models to reverse the imaging process under haze, some methods also leverage
prior knowledge for image dehazing [17–20]. By studying a huge number of outdoor hazy
pictures, He et al. [17] suggested the renowned Dark Channel Prior (DCP). A simple
but effective Color Attenuation Prior (CAP) was suggested by Zhu et al. [19] after they
compared hazy and clear pictures in the HSV color space. Leveraging prior knowledge may
enhance the effectiveness of restoring important parameters in the physical model from a
statistical perspective. This, in turn, can provide guidance for the picture dehazing process
and facilitate the development of a more streamlined and efficient advanced dehazing
method.

There are two distinct technological ways to use deep learning-based image dehazing
methods: Firstly, Equation (1) is utilized to produce the final image J(x). Neural networks
are used to predict critical parameters, such as the global atmospheric light A and the
transmission map t(x), while integrating with the atmospheric scattering model [21–27].
Secondly, we may immediately convert hazy images to haze-free ones by training neural
networks to understand the relationship among the two types of images [28–34].

For the first approach, Zhang et al. [23] introduced the Densely Connected Pyramid
Dehazing Network (DCPDN), which utilized a densely linked pyramid network to improve
the ability to extract features. The network was designed to learn the global atmospheric
light A, the transmission map t(x), and the clear image J(x) together. This ensured that the
proposed technique rigorously followed a physically based scattering model for dehazing.
Li et al. [24] presented the All-In-One Network (AOD-Net), which was developed in
collaboration with the atmospheric scattering model. This network integrated the global
atmospheric light A and the transmission map t(x) into a unified parameter K(x) and then
employed a lightweight convolutional neural network to produce the clear picture J(x).
Chen et al. [27] addressed the challenge of significant performance gaps between synthetic
and real-world datasets in image dehazing. They proposed a novel network framework
that leveraged pre-training on synthetic datasets and fine-tuning on real datasets using
several prior knowledge. By integrating various forms of prior knowledge, they achieved
domain transfer from synthetic to real domains, resulting in outstanding performance in
real-world image dehazing.

For the second approach, Qin et al. [28] proposed the Feature Fusion Attention Net-
work (FFA-Net) for image dehazing, which employed both channel attention mechanism
and pixel attention mechanism to process multiscale features. Qu et al. [29] developed the
Enhanced Pix2pix Dehazing Network (EPDN). Inspired by the theory of visual perceptual
global precedence, they conducted dehazing operations separately on coarse and fine scales
using discriminators and generators and achieved excellent dehazing results through joint
training. Don et al. [31] presented a multiscale Boosted Dehazing Network (MSBDN) that
utilized a local U-Net architecture. An efficient boosting decoder, grounded in the boosting
and error feedback concepts, was used to gradually recover clear images, which produced
remarkable dehazing achievements.

However, the aforementioned methods do not address the uneven haze density within
single images due to depth variations, resulting in poor dehazing performance on long-
range aerial scenes, as shown in Figure 2. In this work, we focused on utilizing the depth
map to guide the dehazing process in regions with different haze densities, achieving
excellent dehazing results on long-range aerial scenes.
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Figure 2. The dehazing effect on different scenes. The upper row is the normal perspective image
from RESIDE, and the low image is the long-range perspective image from UAV-HAZE proposed by
us. It can be seen that the previous dehazing methods work well on normal perspective but cannot
restore the distant areas in long-range perspective images.

2.3. Different Perspectives and Scenes

In this part, we discuss the differences between various perspectives and their distinct
impacts on hazy images. Firstly, the normal perspective image is captured from ground
level, resulting in images similar to what we see in our daily lives. These images are
typically obstructed by objects on the ground, providing information mainly about nearby
objects. Consequently, there is not much variation in depth information within a single
image. Referring to Equations (1) and (2), it can be observed that the haze density across
the entire image is relatively uniform. As shown in Figure 3a, existing image dehazing
methods primarily rely on this perspective. For the aerial perspective commonly used in
aerial dehazing methods [35–37], the images are captured from high altitude, resembling
top-down views often seen in remote sensing imagery, as shown in Figure 3b. Due to
the height of capture, the overall image tends to resemble a planar projection, with little
variation in depth information caused by changes in surface objects. Degradation in these
images mainly arises from the occlusion caused by aerial haze, which differs from the
degradation mechanism outlined in the atmospheric scattering model. As a result, the
influence of depth information on the dehazing effectiveness for such images is relatively
limited. For the scenes researched in this paper, as shown in Figure 3c, this perspective,
which we call long-range perspective, involves an oblique bird’s-eye view captured by
UAVs from low altitude. In comparison to the normal perspective, this perspective offers
a higher capturing altitude, alleviating occlusion phenomena while providing a broader
field of view with richer layering within single images. Unlike the aerial perspective, this
perspective offers more detailed surface object information, and the oblique angle enhances
the importance of depth information within the images. In such scenes, the variations in
haze density induced by changes in depth cannot be overlooked, resulting in a non-uniform
haze density across the entire image. Therefore, the application of depth information is
crucial for image dehazing methods in these conditions.

However, existing image dehazing methods have not emphasized this aspect, which
is precisely the focus of this paper. As shown in Figure 2, with previous methods, the
near-distance region in the image can be restored relatively clearly, while the far-distance
region remains blurred. The degree of dehazing is approximately the same across the entire
image, without any adaptive adjustment based on the changes in haze density. Meanwhile,
it is clear that the farther regions in long-range images exhibit more serious degradation,
indicating that this phenomenon is related to the depth information of the image. Therefore,
this paper utilizes depth information to guide the dehazing process, making adaptive
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adjustments to the dehazing degree for different regions, thus achieving a more uniform
and accurate dehazing performance for long-distance perspective.

Figure 3. Different perspectives and captured clear and hazy images (from top to bottom: diagram,
clear image, hazy image): (a) Normal perspective, captured from ground level, with a limited
scene span leads to a relatively average haze density; images sourced from RESIDE [38]. (b) Aerial
perspective, captured from high altitude, where depth variations can be ignored, resulting in haze
density being less influenced by depth; images sourced from Sate1K [39]. (c) Long-range perspective,
captured from low altitude with an inclined overhead view, providing a larger span compared to
(a) and more details on surface objects compared to (b); the haze density varies significantly with
depth changes; images sourced from UAV-HAZE. The drawn materials in the image are sourced from
Vecteezy (https://www.vecteezy.com/, accessed on 10 April 2024).

3. Methodology

This section introduces the proposed depth-guided dehazing network as it shown in
Figure 4. Our method comprises two branches: the depth prediction subnetwork to predict
the depth map of the hazy image and the haze removal subnetwork for feature extraction.
The two branches are coupled by the depth-guided attention module to achieve the fusion
of depth information in the dehazing process. The details are elaborated in the following
part.

3.1. Depth Prediction Subnetwork

As described in Section 2.3, influenced by the shooting position of the UAV, long-range
aerial images typically exhibit a top-down perspective compared to a normal perspective,
with a wider shooting range. This means that long-range perspective images contain more
complex, in-depth information. To enable the depth prediction subnetwork to effectively
extract this depth information while keeping the process as simple as possible, inspired
by the residual dense block [40], this paper proposes the Multi-Residual Dense Module
(MRDM) for multiscale feature extraction and aggregation, as shown in Figure 4. The input
hazy picture I(x) is reduced in resolution by first passing it through a 3 × 3 convolutional
layer, which is coupled with a groupnorm layer and the SELU activation function. The
feature extraction procedure then continues through several residual dense blocks. In-
creasing the number of residual dense blocks could improve the network’s capacity to
extract features and provide a superior output depth map. However, it also slows down
the network’s runtime. Considering the trade-off between performance and efficiency,
we finally adopted two residual dense blocks. The residual dense block’s form is shown

https://www.vecteezy.com/
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in Figure 5a. In this block, the dense connection maximizes the efficient reuse of feature
maps, facilitating the network to learn richer feature representations [41]. Additionally,
skip connections help reduce network complexity, enhance model generalization, and
accelerate model convergence [42]. Furthermore, we extended the residual dense block to
a multiscale structure by constructing the residual dense blocks at different scales. This
enables the network to learn richer and more diverse features, thereby enhancing its ability
to represent image details. Subsequently, the multiscale feature maps go through a series of
convolution and normalization layers, ultimately generating the depth map through the
sigmoid function.

Figure 4. The schematic illustration of the depth-guided dehazing network: (i) The haze removal
subnetwork (upper branch) contains several convolution layers to change the feature map resolution
(in blue), a set of DDRB to extract feature map (in orange, details in Figure 5). (ii) The depth prediction
subnetwork (lower branch) contains a set of MRDM as encoder (in green) and several convolution
layers as decoder (in yellow) to predict the depth map. (iii) The depth-guided attention module (in
pink, details in Figure 6) uses depth information to guide the dehazing process.

Figure 5. The structure of (a) the residual dense block (RDB) and (b) the Depth-wise Dilated Residual
Block (DDRB).
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Figure 6. The schematic illustration of the depth-guided attention module (DGAM).

3.2. Haze Removal Subnetwork

The architecture of the proposed haze removal subnetwork is displayed in Figure 4.
The input hazy image I(x) is first downsampled, utilizing several convolutional layers, and
then passes through 11 Depth-wise Dilated Residual Blocks (DDRBs), with dilation rates
set to [1, 1, 2, 2, 4, 8, 4, 2, 2, 1, 1], which can solve the gridding problem caused by single
dilated convolutions [43]. The detail of the DDRB is shown in Figure 5b. By expanding the
receptive field without changing the size of the feature map, this module can gather more
diverse and rich feature information. Each DDRB contains two dilated convolution layers
and two SELU activation functions, with the input and output feature maps connected
via skip connections. The dilated convolution layers are implemented using a depth-wise
separable approach, resulting in a reduction in the number of parameters in the network.
This contributes to improved computational efficiency and network performance [44]. The
SELU activation function possesses the self-normalizing property, ensuring that the mean
and variance of the network’s output tend to stabilize [45]. This property can efficiently
address the issues of gradient vanishing and gradient exploding, hence improving the
training efficacy of the model. Subsequently, the feature maps undergo processing in a
depth-guided attention module (DGAM) to integrate depth information. Afterward, the
feature maps require resizing using convolutional layers to match the size of the input
image I(x), resulting in the residual map. Ultimately, we combine the residual map with
the haze image I(x) to get the dehazed image J(x). In the following section, the framework
of the DGAM is shown.

3.3. Depth-Guided Attention Module

As mentioned in Equations (1) and (2), the haze density is closely related to depth,
with this correlation being more obvious in a long-range perspective. Inspired by the self-
attention proposed in Transformer [10], we introduce the depth-guided attention module to
guide the dehazing process using depth information, which obtains excellent performance
for long-range perspective image dehazing, the detail of this module is shown in Figure 6.

Initially, the depth map D(x) ∈ Rh×w×1 obtained from the depth prediction subnet-
work and the feature maps FI(x) ∈ Rh×w×c obtained from the haze removal subnetwork
are the inputs of the DGAM. Then, we apply a sequence of convolutional layers to reduce
the size of the feature maps to one-fourth of their original size, thereby minimizing the
amount of computational memory. Following that, the feature maps are derived from the
feature matrices WQ, WK, and WV , as shown in Equation (3):

QD = WQD̃, KF = WK F̃, KV = WV F̃ (3)

where D̃ and F̃ represent the downsampled results of the depth map D(x) and feature
maps FI(x). We omit (x) in Figure 6 and the rest of this article for simplicity in writing
and reading.
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Next, we execute a matrix multiplication on D̃ and F̃ and then apply the Softmax layer
to generate the attention maps Att. These maps indicate the correlation between the depth
map and the feature maps, as shown in Equation (4):

Att = So f tmax(QD ⊗ KT
F ) (4)

where ⊗ represents the matrix multiplication, and KT
F is the transposition of KF.

After obtaining the attention maps Att, we obtain the new attention feature maps FA
by a matrix multiplication between the feature maps VF and Att. After resizing FA to the
same size of FI through the convolutional layer, we add both of them together to obtain the
final output feature maps of the DGAM, as shown in Equation (5):

FO = Conv(Att ⊗ VF)⊕ FI (5)

where ⊕ represents the element-wise addition.
In this part, we propose the depth-guided attention module inspired by self-attention.

The DGAM can extract the correlation between depth map D and the feature maps of hazy
images FI to generate an attention map Att and then obtain the depth-correlated attention
feature maps to guide the dehazing process. This module performs well when dealing with
long-range scenes with depth changes. For more details, please refer to Section 6.2.

3.4. Loss Function

The MSE loss is highly sensitive to outliers, often sacrificing the predictive performance
of other normal data, leading to a decrease in the whole model performance. In addition,
this loss function places more importance on global effects than on specific structures and
texture information, resulting in the loss of fine details and the creation of halos or artifacts
in dehazed images [46]. In order to address these issues, this article employs a joint loss
function for the purpose of training.

The first step is to substitute the MSE loss with the Charbonnier loss function [47].
This function has a higher tolerance to outliers and a smoother curve, which make it more
suitable for dealing with structural information for image processing. The formation of the
Charbonnier loss function is :

LChar(X, Y) =
√
∥X − Y∥2 + ϵ2 (6)

where X represents the predicted result of the network, Y represents the ground truth, and
ϵ is a constant used to prevent gradient vanishing; here, we set it to 10−6.

Then, we considered the edge information of the image from two aspects: (1) Laplacian
edge detection can effectively capture high-frequency texture information; (2) the shallow
layers of a CNN structure are capable of capturing low-level information such as edges and
contours [48]. Therefore, we propose the edge feature loss LEdge composed of the above
two parts, as shown in Equation (9):

LLap(X, Y) =
√
∥∆(X)− ∆(Y)∥2 + ϵ2 (7)

LFea(X, Y) = ∥VRELU1(X)− VRELU1(Y)∥+ ∥VRELU2(X)− VRELU2(Y)∥ (8)

LEdge(X, Y) = LLap(X, Y) + LFea(X, Y) (9)

where X, Y, and ϵ have the same meaning as described above and are not be further clarified.
∆ represents the kernel function in the Laplacian edge detection, serving as the first part of
the edge extractor, while VRELU1 and VRELU2 represent the network layers before RELU1-1
and RELU2-1 in VGG-16 [49], serving as the second part of the edge extractor.
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In conclusion, this paper presents the following loss function for the single image
processing task:

LTask(X, Y) = LChar(X, Y) + λLEdge(X, Y) (10)

where λ is the weight coefficient, and we set it to 0.8 in this work.
Given that this work involved two optimization tasks, depth prediction and image

dehazing, we defined the final loss function as follows:

LTotal = LDepth(Dpred, D) + LDehaze( Ĵ, J) (11)

where Dpred is the output of the depth prediction subnetwork, while D is the ground truth
of the depth map. Ĵ represents the output dehazed image, and J represents the original
clear image as ground truth.

4. Dataset

As mentioned in Section 2.3, in long-range scenes, the distribution of the haze den-
sity varies significantly with depth. However, existing image dehazing datasets fail to
adequately capture that characteristic [38,50–52]. Therefore, we propose the UAV-HAZE
dataset for training and evaluation for long-range scenes.

4.1. Data Collection

Firstly, we used the DJI Mavic 3 Classic (manufactured by DJI, shenzhen, China) to
collect raw videos in different scenarios. The image of the UAV is shown in Figure 7, and
its key parameters are listed in Table 1. The video files we acquired included videos in
good lighting environments for generating synthetic hazy images, as well as videos in real
haze conditions for generating real-world hazy images, which included multiple kinds of
scenarios such as urban environments and wilderness environments, as shown in Figure 8.
The video capture frame rate was 60 FPS, the resolution was 3840 × 2160 pixels, and the file
format was “mp4”. We obtained 60 sequences for synthetic images and 20 sequences for
real-world images. Afterwards, we extracted the original picture every 3 s from the video
sequences in order to guarantee scene diversity and prevent excessive repetition, which
would have decreased the quality of the dataset. In order to prepare for future network
training and evaluation, we further reset the resolution to 1024 × 512. This was all the
setup work required for generating the dataset.

Figure 7. The DJI Mavic 3 Classic UAV. Image from https://www.dji.com/cn/mavic-3-classic
(accessed on 10 April 2024).

https://www.dji.com/cn/mavic-3-classic
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Figure 8. Samples of the UAV-HAZE dataset. From top to bottom: different scenarios, including
urban and wilderness scenes. From left to right: clear image, hazy image, and its depth map.

Table 1. The main parameters of DJI Mavic 3 Classic.

UAV Camera

Take-off weight 895 g image sensor 4/3 CMOS
Unfolded dimensions 347.5 × 283 × 107.7 mm Effective Pixels 20,000,000

Maximum ascent speed 8 m/s Field of view 84°
Maximum descent speed 6 m/s Equivalent focal length 24 mm

Maximum horizontal speed 21 m/s Lens aperture f/2.8–f/11
Maximum flight time 46 min ISO 100–6400
Maximum tilt angle 35° Maximum photo size 5208 × 3956

Ambient temperature −10–40 °C Maximum video resolution 5120 × 2700
Satellite navigation system GPS + Galileo + BeiDou Maximum video bitrate 200 Mbps

Parameters from https://www.dji.com/cn/mavic-3-classic/specs (accessed on 10 April 2024).

4.2. Dataset Introduction

In order to achieve synthetic hazy pictures, it was necessary to manipulate the original
images that were shot in ideal lighting conditions. At first, we needed to obtain the images’
depth maps. In this research, we decided to estimate the original image’s depth using
Marigold [53]. Marigold is the SOTA depth estimation method which generates depth
maps for input images via stable diffusion. It achieves excellent results in various scenarios,
but due to its time-consuming nature, it was only suitable for the depth estimation task in
the data processing stage of this study. Subsequently, the atmospheric scattering model
in Equation (1) can be used to create various degrees of hazy images. In this study, we
established the values for the global atmospheric light as A ∈ [0.3, 0.5, 0.8, 1.0] and for
the atmospheric scattering coefficient as β ∈ [0.2, 0.5, 1.0, 2.0, 3.0]. Figure 9 displays an
example of the original image, depth map, and synthetic hazy images from the UAV-HAZE
dataset. It can be clearly observed that as the global atmospheric light A increases, the
image becomes brighter, while as the atmospheric scattering coefficient β increases, the haze
concentration in the image gradually intensifies. Additionally, the haze concentration in a
single image varies significantly with depth, being sparser in the foreground and denser

https://www.dji.com/cn/mavic-3-classic/specs
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in the background, which aligns well with the real-world discipline and characteristics of
long-range scenes. In summary, the UAV-HAZE dataset included 34,344 synthetic hazy
images with their original images and depth maps. Furthermore, the UAV-HAZE also
comprised approximately 400 real hazy images for testing in real-world environments.

Figure 9. The example images in the UAV-HAZE dataset, including the original image, the depth
map, and synthetic hazy images generated by the atmospheric scatting model.

4.3. Dataset Analysis

In order to assess the authenticity of our proposed dataset, we carried out user research
that included comparing it with real-world hazy pictures as well as images from other
hazy datasets. Specifically, we recruited a total of 25 participants, comprising 17 males
and 8 females, for our research. Afterwards, we provided them with the images we
collected, which included (i) ten random synthetic hazy images from our UAV-HAZE
dataset, (ii) ten real-world hazy images downloaded from the Internet by searching “hazy
images”, (iii) ten images from the SOTS-outdoor-hazy part in the RESIDE dataset [38],
(iv) ten hazy images from the O-HAZE dataset in NTIRE 2018 [50,54], (v) ten hazy images
from the NH-HAZE dataset [51], and (vi) ten hazy images from the Dense-Haze dataset [52].
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A total of sixty images were provided to the participants in random order, and they were
asked to rate their realness on a scale of 0 (fake) to 10 (real). We collected and analyzed the
ratings for each category, and the results are summarized in Table 2.

Table 2. Rating result of the research, including mean ratings (from 0 (fake) to 10 (real)) and standard
deviation given by the participants.

Datasets Rating (Mean and Standard Deviation)

Real hazy images 8.74 ± 0.79
RESIDE [38] 5.36 ± 2.47
O-HAZE [50] 6.12 ± 2.67

NH-HAZE [51] 3.84 ± 2.15
Dense-Haze [52] 6.59 ± 1.86

UAV-HAZE (ours) 7.26 ± 1.52

Based on the results shown in Table 2, it is evident that our proposed dataset exhibited
ratings that were more closely aligned with those of real-world hazy pictures in comparison
to the other four hazy datasets. This indicated that the images in our dataset more closely
resembled the distribution of haze in real-world scenarios. However, several participants
mentioned that some of our images were overly dim, which was the main reason for the
discrepancy in ratings compared to real hazy images.

Figure 10 graphically illustrates the attributes of images in several hazy datasets. The
RESIDE dataset applies a consistent blur filter to clear pictures, resulting in equally blurred
images at both close and long distances. This introduces a notable disparity with real-world
images. O-HAZE, NH-HAZE, and Dense-haze use a smoke generator to create real haze,
indicating that these images are not artificially created but obtained from real photography.
It is undeniable that the results do not entirely conform to the depth distribution observed
in the real world but instead display a certain degree of randomness in their distribution.
Conversely, our proposed UAV-HAZE dataset closely approximates the distribution of
actual hazy photos, unlike other datasets. These pictures demonstrate that details and
contours are not severely muted in close areas, while distant places are noticeably blurred
because of the haze that has accumulated. This observation provides clear evidence that
our dataset has a strong resemblance to real-world hazy photos, confirming the results
presented in Table 2.

Figure 10. Comparison of images from different datasets.

5. Experimental Results

This part involved conducting experiments on both synthetic and real images to verify
the efficacy of our method in recovering long-range scenes.
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5.1. Experimental Setup

• Operation environment: all experiments were based on the PyTorch library and ran on
the Ubuntu 20.04 system, with an Intel® Xeon® Gold 6430 CPU and an RTX 4090
(24 GB) GPU;

• Evaluation metrics: This paper employed common metrics, the Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity (SSIM) index, to quantitatively evaluate the
dehazing performance of various methods [55]. Although the parameter results are not
perfectly equal to the dehazing effectiveness, larger PSNR and SSIM values generally
indicate better performance. The definitions of PSNR and SSIM are as follows:

PSNR = 10 · log10

(
MAX2

MSE

)
(12)

where MAX represents the maximum possible value of the pixels in the image, typi-
cally 255, and MSE stands for Mean Squared Error.

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(13)

where x and y are sliding windows of the two images, µx and µy are the means, while
σ2

x and σ2
y are the standard deviation, σxy is the covariance between x and y, and C1

and C2 are constants used for stabilizing the computation.
Additionally, to further analyze the quality of the dehazed images obtained by our
method, we employed the NIQE (Natural Image Quality Evaluator) [56] to quantify it
from the data perspective. The NIQE, which incorporates statistical features of natural
images, can provide evaluation results that are more consistent with human visual
perception compared to the PSNR and SSIM.

• Parameters setting: The controllable factors in the MRDM were defined by setting the
number of RDBs to two, while the weight coefficient λ in the loss function was set to
0.8, as explained in Sections 3.1 and 3.4. During the training process, we started by
randomly assigning initial weights to the network from a Gaussian distribution. Next,
we used the Adam optimization algorithm [57], with a first momentum value of 0.9,
a second momentum value of 0.999, and a weight decay of zero. The initial learning
rate was set to 5 × 10−4. The policy of “poly” reduced it to a power of 0.9 and stopped
it after 100,000 iterations.

5.2. Results on Synthetic Images

We randomly selected 50 images from the UAV-HAZE dataset for evaluating the
dehazing results of SOTA dehazing methods, which included DCPDN [23], AOD [24],
PSD [27], FFA-Net [28], EPDN [29], and MSBDN [31]. In order to clearly demonstrate the
variation in the effects of long-range dehazing, we present a comparison of the results
obtained by different dehazing methods on two images, as seen in Figure 11. These two
images displayed a low-altitude oblique top perspective, which aligned with the long-range
image described in Section 2.3. As the depth increased, the concentration of haze grew as
well, resulting in clear visibility in nearby areas and decreased visibility in distant areas,
which was exactly the scenario we wanted to deal with. For the first image, our method
successfully restored the distant mountain area without chromatic aberration. In contrast,
the SOTA methods were unsuccessful at effectively restoring the distant mountain area,
resulting in persistent haziness. Moreover, EPDN [29] also produced very serious chromatic
aberration. In conclusion, our method effectively achieved a more accurate restoration effect
compared to the ground truth (GT). In the case of the second picture, our approach likewise
attained the most optimal restoration result for distant buildings, effectively enhancing
their delineation, a task that other SOTA methods were unable to achieve. Hence, the
empirical findings unequivocally demonstrated that our method attained the best dehazing
performance while handling long-range images.
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Figure 11. The results on synthetic images in UAV-HAZE through different methods.

Additionally, we have precise data that substantiate our conclusions. Specifically,
we calculated the average PSNR, SSIM, and NIQE for each method, as shown in Table 3.
Compared to other SOTA dehazing approaches, it is evident that our approach obtained
the highest values in PSNR and SSIM while the lowest one in NIQE, suggesting that it
performed the best on long-range images and produced more pleasing results that aligned
with human visual perception.

Table 3. Comparison with SOTA methods using PSNR, SSIM, and NIQE on synthetic hazy images.

Methods PSNR SSIM NIQE

DCPDN [23] 28.58 0.8457 5.6333
AOD [24] 28.04 0.7851 3.2062
PSD [27] 27.80 0.7663 2.5118

FFA-Net [28] 28.31 0.8112 2.0774
EPDN [29] 27.90 0.8529 4.2659

MSBDN [31] 29.23 0.8893 1.9913
DGDN (ours) 29.72 0.9186 1.8415
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5.3. Results on Real-World Images

In order to assess the effectiveness of our method on real-world photos, we performed
experiments using the real part of UAV-HAZE and compared its performance with other
SOTA dehazing methods. Our method demonstrated exceptional performance on real
images, as seen in Figure 12. The first picture reveals clear and distinct features of the
structures nearby, but the distant buildings seem blurry, making it difficult to discern their
exact outlines and intricate characteristics. Hence, in order to enhance the appearance,
dehazing methods should be specifically focused on the remote areas. Other SOTA methods
were unable to adequately restore the outlines of distant buildings, particularly in the group
of buildings situated in the upper left corner. On the other hand, our method successfully
brought back the remote areas, enabling a distinct representation of the outlines of distant
buildings while maintaining the precise characteristics of buildings at medium and close
distances. The second picture showcases a similar phenomenon, in which our methodology
effectively reinstated the outlines and intricacies of some distant structures, an achievement
that other SOTA methods were unable to accomplish. In summary, our approach was
capable of achieving outstanding results in dehazing on real-world images, showcasing its
ability to perform well on realistic datasets.

Figure 12. The results on real-world images in UAV-HAZE through different methods.
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6. Discussion

This section provides a three-fold analysis of our proposed method: first, we discuss
the depth map obtained using various methods; second, we discuss the ablation experi-
ment to emphasize the importance of the depth-guided attention module; and third, we
discuss the comparative experiment to demonstrate the benefits of our method over other
SOTA methods.

6.1. Discussion of the Depth Map

This section primarily focuses on contrasting the depth estimation subnetwork used
in this article with the results achieved by Marigold [53] utilized in the UAV-HAZE dataset.
Simultaneously, it elucidates the correlation between the distribution of haze concentration
in the hazy image and the depth map, in order to substantiate the rationale supporting
using depth information to direct the dehazing procedure, especially for long-range images.

Figure 13 displays the depth maps acquired by the depth estimation subnetwork
presented in this article and Marigold [53]. Within our depth prediction subnetwork,
each MRDM consisted of two RDBs, and each RDB had five individual dense layers. In
Marigold [53], we assigned a value of 10 to both the “denoise steps” and “ensemble size”
parameters for every single image. This means that we conducted 10 denoising inference
steps for each prediction and then calculated the average result of these 10 predictions as
the final output. Figure 13 clearly demonstrates that Marigold [53] outperformed in depth
estimation, providing more distinct outlines and features. However, our depth estimation
subnetwork also predicted similar depth distribution results, although it missed certain
specific details. Nevertheless, the dehazing impact was not dependent on this factor, as seen
in Figure 13, which shows that the use of these two depth maps produced almost identical
dehazing performance. However, when considering the aspect of time, our approach
had a significant benefit. Table 4 displays the duration required for the three pictures in
Figure 13 on the device mentioned in Section 5.1. The depth prediction subnetwork had
a processing time of just 0.035 s, whereas Marigold [53] took 6.23 s, which amounted to a
difference factor of approximately 180. The proposed approach effectively decreased the
time required while maintaining the dehazing effect, making it well suited for platforms
with low processing capabilities, such as UAV.

Figure 13. The depth maps and dehazing results by the proposed depth prediction subnetwork
and Marigold [53].



Remote Sens. 2024, 16, 2081 18 of 26

Table 4. The time cost of different methods for depth prediction.

Image DGDN (s) Marigold (s)

Image 1 0.03507 6.277
Image 2 0.03500 6.228
Image 3 0.03516 6.184
Average 0.03508 6.230

Figure 13 shows the link between the distribution of haze concentration and the depth
map on the long-range images. The hazy image exhibits an uneven distribution of haze
densities. The bottom portion exhibits a less dense fog, allowing for clearer visibility of the
image’s features. In contrast, the top portion is characterized by a denser fog, resulting in a
whitish, hazy region. The depth information corresponds to the distance to things, with
light-colored regions in the depth map indicating nearby objects and dark-colored portions
indicating distant ones. The dark regions in the depth map accurately correspond to the
places with the highest density of fog in the foggy picture, namely the hazy regions. This
illustrates the strong association between depth information and the process of removing
haze from long-range images. Moreover, our dehazing results confirm the accuracy of
this correlation.

6.2. Discussion of the Ablation Experiment

In order to assess the efficacy of the DGAM, we performed ablation experiments as
shown in Table 5. The first row in Table 5 signifies the results obtained solely using the
haze removal subnetwork without incorporating depth information as baseline, thereby
validating the efficacy of depth information in long-range dehazing. The second row in
Table 5 introduces depth information but does not utilize the DGAM when dehazing, thus
verifying the effectiveness of the DGAM. The results achieved by the proposed DGDN
approach are shown in the third row of Table 5.

Table 5. The results of the ablation experiment.

Methods PSNR SSIM

Haze removal subnetwork (baseline) 27.59 0.8245
DGDN (without DGAM) 28.67 0.8989

DGDN (ours) 29.72 0.9186

Table 5 demonstrates that our DGDN outperformed other methods in the ablation
studies, emphasizing the beneficial impact of the DGAM’s depth-guided attention method-
ology. To visually demonstrate the differences between these baselines, we plotted them in
Figure 14. It shows the results obtained by the baseline and variants and the hazy images
and ground truth: (i) original hazy image, (ii) the haze removal subnetwork only, (iii) haze
removal subnetwork with depth information (without DGAM), (iv) our proposed DGAM
method, (v) ground truth. Furthermore, the focus of this ablation experiment was on the
dehazing effect in the long-range part. Therefore, we stacked these images to highlight
more prominently the dehazing effect achieved by different methods in the long-range
area, resulting in a clearer and more pronounced contrast.

From Figure 14, it can be observed that the results obtained when only using the haze
removal subnetwork had a poor dehazing effect in the long-range area (compared with (i)
and (ii) in Figure 14). After introducing depth information, there was a slight improvement
in the dehazing effect, but the area still appeared blurry, indicating a noticeable impact
from the haze (compared with (ii) and (iii) in Figure 14). By applying the DGAM, there was
a significant improvement in the dehazing effect, with clear texture structures visible in the
long-range area. The image representation also appeared more natural. This indicated the
excellent performance of our proposed method in long-range dehazing (compared with (ii),
(iii), and (iv) in Figure 14). However, it is regrettable that the long-range area typically has
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a denser haze density, which means that the degradation caused by hazy environments is
more severe. Consequently, there was still a little difference between the dehazed images
produced by our approach and the actual reference pictures. This discrepancy is an area
that requires further improvement in future iterations, as seen in (iv) and (v) in Figure 14.

Figure 14. The visualization of the ablation experiment for depth information and the DGAM. Since
this experiment focused more on the comparison of long-range dehazing performance, we stacked
the images and used red dashed lines to distinguish key areas for an obvious contrast by different
methods. From front to back: (i) original hazy image, (ii) haze removal subnetwork only, (iii) haze
removal subnetwork with depth information (without DGAM), (iv) our proposed DGAM method,
(v) ground truth. Our method achieves the best dehazing performance in the long-range area.

6.3. Discussion of the Comparative Experiment

This section discusses the experimental results obtained in Sections 5.2 and 5.3, demon-
strating the benefits of our suggested approach in long-range dehazing.

6.3.1. Discussion on Synthetic Images

In order to effectively showcase the dehazing performance of our suggested method-
ology in long-range regions, we extracted and enlarged relevant portions of those pictures,
as shown in Figure 15. It displays the experiment’s visualization on synthetic images using
the SOTA methods mentioned in Section 5.2. It is clear that our approach produced the
most effective dehazing impact.

Specifically, in Figure 15, our method demonstrated excellent dehazing results for
the mid-to-long-range highway and the distant mountains. The contour lines and specific
details are clearly visible, and the restored image is closer to the ground truth in terms
of color. Additionally, the color rendition of the sky is also more accurate. In contrast,
other SOTA approaches such as AOD [24], PSD [27], FFA-Net [28], and MSBDN [31]
exhibited poor dehazing performance in that area. They failed to thoroughly dehaze the
highway area, let alone the distant mountains. As for DCPDN [23] and EPDN [29], they
indeed showcased impressive dehazing performance in the highway area. However, their
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performance notably suffered when handling distant mountains. Additionally, both of
them fell short of delivering satisfactory restoration in the sky area. Furthermore, the image
obtained by EPDN [29] exhibited severe color cast issues in the overall image, with several
overly dark regions, resulting in the loss of crucial details such as texture information. On
the other hand, our approach successfully overcame these issues.

Figure 15. The dehazed long-range areas of synthetic images. Pictures are from Figure 11.

6.3.2. Discussion on Real-World Images

We applied the methodology illustrated in Figure 15 to analyze the dehazing results
obtained on real-world images in Figure 16. To more effectively analyze the discrepancies
in outcomes produced by different methods, we magnified our focus on the distant regions,
where the distinction between nearby and distant buildings becomes apparent.

When applied to real-world circumstances, the SOTA approaches, namely, DCPDN [23],
AOD [24], EPDN [29], FFA-Net [28], and MSBDN [31], demonstrated the same issues noted
earlier. For instance, while these methods achieved acceptable results when processing
nearby buildings, with EPDN [29] displaying sharper performance, they still failed to
produce satisfactory outcomes when dealing with distant buildings, leaving them in the
hazy state. PSD [27] performed well on real-world images, with brighter visuals, due to
the particular transfer from synthetic to real world. However, it also failed to completely
dehaze distant buildings, and there was obvious noise in the image. In contrast, our method
effectively restored the distant buildings, revealing clear contours and details. It is also
evident that both AOD [24] and EPDN [29] created large areas of excessive darkness in
the shadows of the buildings, resulting in a significant loss of detail. This phenomenon
is particularly prominent in Figure 12, where both methods displayed a severe color bias.
In contrast, our method achieved better color reproduction. However, our method may
produce slight artifacts along the edges when processing some images, such as the sky area
in Figure 16, which is an aspect that requires further optimization in our future work.
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Figure 16. The dehazed long-range areas of real-world images.

6.4. Discussion of the Training Sets

As mentioned earlier, the UAV-HAZE dataset contains synthetic hazy images of
various densities, which can cover diverse application scenarios. This subsection aims to
study the impact of different haze densities in the training sets on the model’s dehazing
results, thus investigating the model’s generalization performance. To this end, we selected
two different training sets: synthetic images with β = 1.0 in UAV-HAZE, representing a
light haze, and synthetic images with β = 3.0 representing a thick haze. Subsequently, we
trained the model on the two training sets until convergence and tested their dehazing
performance under both densities. The results are shown in Figure 17, where the first row
represents images with a light haze (β = 1.0), and the second row represents images with
a thick haze (β = 3.0). From left to right, Figure 17 displays the synthetic hazy images in
the UAV-HAZE dataset, the dehazing results of the model trained on the β = 1.0 dataset,
and dehazing results of the model trained on the β = 3.0 one. The obtained results were
consistent with human intuition. It can be seen that both models achieved good dehazing
results in their respective fields. But obviously, the model trained on the light-haze dataset
(β = 1.0) struggled to thoroughly dehaze the thick-haze images (β = 3.0), with distant
regions still remaining blurred. In contrast, the model trained on the thick-haze dataset
(β = 3.0) could easily restore clear images when dealing with light-haze images (β = 1.0).
However, it should be noted that although the distant regions seemed to have clearer
details, their brightness also decreased significantly, which is a phenomenon of excessive
dehazing according to CAP [19].

Therefore, it can be concluded that the model trained on the thick-haze training set
had good downward compatibility and could handle scenes with relatively lighter haze
densities, while the model trained on the light-haze training set could not handle thicker-
haze scenes well. However, the model trained on the thick-haze training set may suffer from
excessive dehazing and lead to a brightness reduction when processing different scenes,
indicating its limitations. In a more ideal condition, training models with different levels of
haze densities to distinguish them can achieve optimal results in their respective fields.
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Figure 17. The dehazing performance from different training sets. The first row is the synthetic
image with β = 1.0 in the UAV-HAZE dataset, which has a relatively light haze, while the second
row is its counterpart with β = 3.0, which has a relatively thicker haze. From left to right are: the
synthetic hazy image, the dehazing results of the model trained on the training set with β = 1.0, and
the dehazing results of the model trained on the training set with β = 3.0.

6.5. Discussion of the Time Cost

Time cost is also an important aspect of evaluating the algorithms. In this section,
we compared the time cost between the proposed method and other SOTA dehazing
algorithms, and the specific results are shown in Table 6. It can be seen that our proposed
method was not the fastest. With its simple network structure, AOD [24] outperformed
other methods in terms of time cost and took the lead. However, our method was still on the
same order of magnitude compared with other methods, and there was no significant lag.
As our proposed method was designed for long-range scenes, we expected to obtain faster
results to adapt to platforms with limited computing sources. Therefore, we attempted
to reduce the dense layers in the depth prediction subnetwork from five to three, and the
network speed was improved by nearly 30%, but this came at the cost of sacrificing some
defogging results. It must be acknowledged that our method does not have an advantage
in speed at present, which is also one of the directions for optimization in the future.

Table 6. Time cost for different dehazing methods.

Methods Time Cost (s)

DCPDN [23] 0.06177
AOD [24] 0.01171
PSD [27] 0.02768

FFA-Net [28] 0.08970
EPDN [29] 0.01859

MSBDN [31] 0.03838
DGDN (with 3 dense layers) 0.03465
DGDN (with 5 dense layers) 0.04988

7. Conclusions

In this article, we proposed the depth-guided dehazing network, specifically designed
for long-range scenes. At first, we introduced the atmospheric scattering model of the
haze environment and further analyzed the impact of different camera perspectives on the
imaging characteristics of hazy scenes. As a result, we defined long-range scenes as those
in which significant depth variations within a single image lead to corresponding changes
in haze density. To address the dehazing challenges posed by such scenes, we introduced
our method, which comprised three main components: (i) a depth prediction subnetwork,
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(ii) a haze removal subnetwork, and (iii) a depth-guided attention module. This network
leveraged depth information to guide the dehazing process, enabling excellent dehazing
performance in long-range scenarios.

Then, addressing the scarcity and dispersal of long-range images in existing dehazing
datasets, we introduced the UAV-HAZE dataset. This dataset comprised exclusively long-
range photos captured by UAVs, encompassing diverse scenarios. It included 34,334 syn-
thetic hazy images with varying concentrations and brightness levels, as well as nearly
400 real-world hazy images, serving as a valuable resource for training and evaluating
long-range scene’s dehazing tasks. On the UAV-HAZE dataset, we carried out ablation
experiments and comparison experiments using several SOTA approaches, comprehen-
sively showcasing the effectiveness of our suggested method for dehazing long-range
scenes. Looking ahead, we will continue to focus on addressing the degradation of depth
prediction in hazy images, aiming to achieve better dehazing results in long-range scenes.
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Abbreviations

UAV Unmanned aerial vehicle
DGDN Depth-guided dehazing network
RDB Residual dense block
MRDM Multiple residual dense module
DGAM Depth-guided attention module
DCP Dark Channel Prior
CAP Color Attenuation Prior
RGB Red, green, blue
HSV Hue, saturation, value
DCPDN Densely Connected Pyramid Dehazing Network
AOD-Net All-In-One Network
GAN Generative Adversarial Network
FFA-Net Feature Fusion Attention Network
EPDN Enhanced Pix2pix Dehazing Network
CycleGAN Cycle Generative Adversarial Network
MSBDN Multiscale boosted dehazing network
MSE Mean Squared Error
PSD Principled Synthetic-to-real Dehazing
DDRB Depth-wise Dilated Residual Block
SELU Scaled Exponential Linear Unit
CNN Convolutional neural network
PSNR Peak Signal-to-Noise Ratio
SSIM Structural Similarity
SOTA State of the art
GT Ground truth
FPS Frames per second
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