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Abstract: This study aims to establish a deep learning-based classification framework to efficiently
and rapidly distinguish between coniferous and broadleaf forests across the Loess Plateau. By
integrating the deep residual neural network (ResNet) architecture with transfer learning techniques
and multispectral data from unmanned aerial vehicles (UAVs) and Landsat remote sensing data, the
effectiveness of the framework was validated through well-designed experiments. The study began by
selecting optimal spectral band combinations, using the random forest algorithm. Pre-trained models
were then constructed, and model performance was optimized with different training strategies,
considering factors such as image size, sample quantity, and model depth. The results indicated
substantial improvements in the model’s classification accuracy and efficiency for reasonable image
dimensions and sample sizes, especially for an image size of 3 × 3 pixels and 2000 samples. In
addition, the application of transfer learning and model fine-tuning strategies greatly enhanced
the adaptability and universality of the model in different classification scenarios. The fine-tuned
model achieved remarkable performance improvements in forest-type classification tasks, increasing
classification accuracy from 85% to 93% in Zhengning, from 89% to 96% in Yongshou, and from
86% to 94% in Baishui, as well as exceeding 90% in all counties. These results not only confirm
the effectiveness of the proposed framework, but also emphasize the roles of image size, sample
quantity, and model depth in improving the generalization ability and classification accuracy of the
model. In conclusion, this research has developed a technological framework for effective forest
landscape recognition, using a combination of multispectral data from UAVs and Landsat satellites.
This combination proved to be more effective in identifying forest types than was using Landsat data
alone, demonstrating the enhanced capability and accuracy gained by integrating UAV technology.
This research provides valuable scientific guidance and tools for policymakers and practitioners in
forest management and sustainable development.

Keywords: deep learning; transfer learning; forest classification; multi-source data; residual neural
network (ResNet)

1. Introduction

Forest ecosystems, as one of the most important ecosystems on Earth, play a critical
role in maintaining biodiversity, regulating climate, and conserving soil and water [1,2].
With growing demands for global environmental governance and ecosystem protection,
the need for the accurate monitoring and management of forest ecosystems has become
increasingly urgent [3,4]. Effective forest monitoring requires advanced methodologies
capable of handling large, complex datasets and providing accurate classifications.

Remote Sens. 2024, 16, 2096. https://doi.org/10.3390/rs16122096 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16122096
https://doi.org/10.3390/rs16122096
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0009-0009-5552-1632
https://doi.org/10.3390/rs16122096
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16122096?type=check_update&version=1


Remote Sens. 2024, 16, 2096 2 of 23

The Loess Plateau, one of China’s key ecologically vulnerable zones, has historically
been faced with severe environmental challenges, including soil erosion, vegetation degra-
dation, and desertification, due to its long-term irrational land use, water scarcity, and
harsh terrain and climatic conditions [5,6]. To address these problems, the Chinese govern-
ment has undertaken several ecological restoration initiatives since the 1990s, most notably,
large-scale tree planting and afforestation efforts which have substantially expanded the
artificial forest cover on the Loess Plateau. Among these, coniferous and broadleaf forests,
mostly artificial, have become the primary forest types in the region. They play a crucial
role in preventing wind and sand fixation effects, improving soil quality, and conserving
biodiversity [7–9]. In the face of escalating climate change and human activities, rapid
and accurate identification and monitoring of these forest types is crucial for ecological
restoration and sustainable management on the Loess Plateau.

In recent years, the rapid growth of remote sensing data resources and the swift devel-
opment of deep learning technologies have unleashed unprecedented potential in the field
of environmental monitoring [10–12]. In image classification, deep learning improves its
capabilities in handling large, complex datasets, feature extraction, and image recognition
mainly through data fusion, multiscale feature learning, and transfer learning [13,14]. These
methods effectively uncover and integrate the latent value from different remote sensing
data sources. Among them, transfer learning stands out as a powerful framework that
excels in handling large heterogeneous data and quickly adapting to new environments.
It leverages pre-trained models on popular deep learning architectures to accelerate and
improve learning efficiency for new tasks, even with limited labeled data [15–17].

Residual Neural Networks (ResNet) is one of the most widely used models within
deep learning architectures, particularly adept at image classification tasks [18–21]. It
has been extensively applied in areas such as medical image diagnosis, identification of
agricultural crops and pests, and soil property estimation [22–24].

In forest monitoring and classification, emerging UAV data (hyperspectral cameras,
RGB imagery, oblique photography, and LiDAR) have significantly improved classification
accuracy and efficiency due to their high flexibility and resolution [25–27]. Many studies
focus on using transfer learning strategies, training these models on large and diverse
datasets (such as ImageNet) as a pre-training source, and then fine-tuning them on specific
small sample datasets. However, specific image recognition datasets such as ImageNet
contain many object categories that are unrelated to specific applications, such as forest
classification. This mismatch in category distribution reduces the ability of the model to
transfer from the source domain to the target domain, thereby affecting its performance.
The current research has underutilized data directly related to the task for pre-training.
Investigating how models can better identify specific forest types is critical. Factors such as
model depth, image size, and sample quantity also significantly affect performance [28–31].
In practical applications, it is essential to consider these factors comprehensively to optimize
the performance of the ResNet model. Furthermore, due to the cost limitations of UAV
data, these studies are often limited to small-plot applications. In contrast, medium- to low-
resolution remote sensing data (Landsat, Sentinel, and GF-1) have improved the accuracy
and efficiency of forest classification using deep learning techniques, while enabling large-
scale classification [32–35]. However, they still fall short of the high-precision classification
achieved by UAVs. Therefore, effectively identifying and selecting valuable features
from integrated multi-source data using deep learning technologies has broad application
prospects in expanding the application scope and efficiency of image classification. Some
studies have made initial attempts, such as [36], which effectively applied crop classification
by integrating UAV and satellite images through data augmentation, transfer learning, and
multimodal fusion techniques. Reference [37] proposed an object-oriented convolutional
neural network classification method combining Sentinel-2, RapidEye, and LiDAR data, one
which significantly improved classification accuracy in complex forest areas. Reference [38]
developed a novel mangrove species classification framework using spectral, texture, and
polarization information from three spatial image sources. However, there remains room for
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optimization in utilizing transfer learning techniques to explore the potential of emerging
high-resolution multispectral UAV data for landscape-scale forest classification, while
achieving data complementarity and cross-domain enhancements to improve classification
accuracy and expand application scope.

In response to these challenges, this study selected three counties in the Loess Plateau
region with similar forest types—Yongshou, Baishui, and Zhengning—as research sites.
Among them, the forests in Yongshou County were selected as the primary research object,
while Baishui County and Zhengning County served as supplementary research sites
to validate the applicability and generalizability of the developed model. Adopting a
transfer learning approach, the study uses the ResNet model in conjunction with multi-
resource remote sensing data to establish an effective framework for identifying forest
types. The effects of different combination strategies (sample quantity, model depth, and
image size) on the model performance will be explored. The main objectives of this study
are: (1) to develop an effective technical framework for rapidly distinguishing forest types
by using deep learning technology combined with multisource remote sensing data; and
(2) to reveal the impacts of image size, sample quantity, and model depth on the time
efficiency and accuracy of the training model. Our research aims to provide a more accurate
and efficient technical approach for remotely sensed forest classification, thereby offering
stronger technical support for forest resource management and ecological monitoring.

2. Materials and Methods
2.1. Study Area

The Loess Plateau (100◦54′~114◦33′E, 33◦43′~41◦16′N), located in north-central China
and marked as shown in Figure 1a, is the largest loess deposit area in the world, covering
640,000 km2. It features a temperate semi-arid climate and a complex terrain characterized
by numerous gullies and ravines. Yongshou County (107◦56′~108◦21′E, 34◦29′~34◦85′N),
highlighted in Figure 1b, lies in the southern Loess Plateau, within the hilly and gully
areas of the region. The county covers an area of 889 km2 and has an average elevation of
572 m. It experiences an average annual temperature of 12 ◦C and annual precipitation
of 725 mm. Its predominant soil type is dark loessial. The county hosts broadleaved
forests consisting mainly of Robinia pseudoacacia, Betula platyphylla, Populus davidiana, and
Salix × matsudana, and coniferous forests dominated by Pinus tabuliformis and Platycladus
orientalis. To verify the broad applicability and effectiveness of the research classification
model, Zhengning County and Baishui County, which have similar topography and tree
species composition to Yongshou County, were selected for validation; details are provided
in the Supplementary Materials.

2.2. Acquisition and Preprocessing of UAV Multispectral and Landsat Remote Sensing Data
2.2.1. UAV Platform and Multispectral Sensor

The DJI Phantom 4 Multispectral is a survey UAV equipped with an integrated
multispectral imaging system designed for high-precision multispectral data collection.
Renowned for its user-friendly design, this UAV is depicted in Figure 2. It includes a unique
imaging system consisting of an RGB camera and multiple spectral band sensors—blue,
green, red, near-infrared (NIR), and red edge. The incorporation of an RTK module together
with the DJI TimeSync system allows for precise location data acquisition. This combination
ensures centimeter-level positioning accuracy and makes it easy to capture accurate RGB
and multispectral images.

2.2.2. Setting up the UAV Operation Plots

Multispectral data from UAVs were collected in the forested area of Yongshou County
under clear, cloudless weather conditions. The survey plots were strategically positioned
throughout the study area to ensure uniform distribution and precise localization. These
positions were determined by examining both the topographical layout of the county and
the spatial distribution data for various tree species; the latter were obtained from the
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National Forest Resources Inventory (NFRI) Type-II data source. Using these detailed data
and employing supervised learning, we predefined the distribution areas of coniferous
and broadleaf forests, which are explicitly marked with their specific locations and spatial
extents in Figure 3c. Considering the characteristics of the forest areas in the county, where
coniferous and broadleaf forests appear in large clusters and small, dispersed patches, this
study designed an appropriate flight operation plan. Specifically, smaller plots (shown in
Figure 3a) were labeled P1 to P17, while larger plots (depicted in Figure 3b,d) were named
P18 and P19. Plots P1 to P8 and P18 were designated as broadleaf forest plots, and P9 to
P17 and P19 were designated coniferous forest plots.
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Figure 3. Distribution of UAV multispectral sample plots: (a) distribution of scattered small plots;
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2.2.3. UAV Operation Parameters and Data Preprocessing

Details regarding the UAV flight, including the date, time, and total number of images
captured, are documented in Table 1. The UAV was programmed to fly at an altitude of
100 m, achieving a ground resolution of 0.13 m. It maintained forward and side overlap
rates of 80% and 75%, respectively, and captured images at 2 s intervals.

Table 1. Unmanned aerial vehicle (UAV) multispectral data operation parameters.

Plot Number Flight Date Flight Time Number of Photos

P1 4 September 2022 11:19 1014
P2 4 September 2022 17:19 1410
P3 4 September 2022 16:47 492
P4 5 September 2022 12:15 780
P7 5 September 2022 17:19 1080
P8 5 September 2022 16:47 876
P9 6 September 2022 14:34 1080
P10 6 September 2022 15:22 948
P11 6 September 2022 12:00 1098
P12 6 September 2022 11:58 654
P13 6 September 2022 15:53 876
P14 7 September 2022 10:47 702
P15 7 September 2022 12:00 1164
P16 7 September 2022 13:04 954
P17 7 September 2022 13:22 2058
P18 8 September 2022 14:34 16,416
P19 9 September 2022 15:22 11,598

Note: The number of photographs is determined by the coverage requirements and terrain conditions of each
plot. For instance, plots P18 and P19 have substantially more photographs than other plots, due to their larger
areas, necessitating increased overlap in the photographs to ensure adequate coverage.
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For radiometric calibration, this study employed a diffuse reflectance board in conjunc-
tion with GS Pro software version 2.5.3 (developed by DJI Innovations, based in Shenzhen,
China) and Terra v2.3.3 software (also from DJI Innovations). The radiometric calibration
is detailed in Figure S1a, with the following reflectance coefficients: blue at 0.65, green at
0.66, red at 0.66, red edge at 0.65, and NIR at 0.59. Using Terra v2.3.3 software, this study
generated orthoimages for all plots, which also facilitated atmospheric and reflectance
corrections. To perform the geometric calibration, nine targets with unique markers were
strategically placed within the UAV operating area, and their locations were accurately
recorded using a handheld RTK device (manufactured by South Surveying, Guangzhou,
China), as shown in Figure S1b. The coordinates of these targets were entered into the
software to calibrate the system, with Figure S1c illustrating the comparison of images
before and after target-based correction. The process culminated in the acquisition of the
final multispectral composite data shown in Figure 4.
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2.2.4. Acquisition and Preprocessing of Landsat Remote Sensing Images

To minimize the variability in data characteristics caused by differences in acquisition
months, this study selected Landsat Operational Land Imager (OLI) remote sensing images
from the same months as the unmanned aerial vehicle (UAV) multispectral data collection.
These images, with less than 5% cloud cover (Figure S2), were sourced from the U.S.
Geological Survey website (https://earthexplorer.usgs.gov/, accessed on 4 March 2023).
The basic information involved in the research is recorded in Table 2. All images underwent
preprocessing steps such as radiometric calibration, atmospheric correction, geometric
correction, cropping, and mosaicking. Specifically, geometric correction was performed
using high-resolution Gaofen-2 panchromatic images for orthorectification of the Landsat
OLI images in ENVI 5.3 software, with a calibration error of 0.12 pixels.

Table 2. Data related to the Landsat images.

County Year Sensor Path/Row Date of Acquisition

YS 2022 Landsat OLI 9 127-36 18 September 2022
ZN 2022 Landsat OLI 9 127-35/36 22 September 2022
BS 2022 Landsat OLI 9 127-35/36 18 September 2022

Note: “ZN” denotes “ZhengNing”; “YS” denotes “Yongshou”; and “BS” denotes “BaiShui”.

2.3. Rapid Identification of Broadleaf and Coniferous Forests Using Deep Learning-Based Techniques

As illustrated in Figure 5, this study developed a deep learning-based technique to
rapidly identify extensive areas of coniferous and broadleaf forests on the Loess Plateau.
Additionally, this study conducted a comprehensive sensitivity analysis of the model to
reveal how key factors such as image size, sample quantity, and model depth impact model
performance. The entire process is based on pre-training the model using a large, pre-
acquired dataset. Subsequently, the model is fine-tuned using transfer learning techniques
on a smaller dataset of UAV multispectral imagery. This approach allows us to evaluate
performance changes before and after fine-tuning the pre-trained model.

2.3.1. Dataset Preparation for Labeling

The labeled dataset for the input model in this study comprises two parts: a large
dataset for pre-training the model and a smaller dataset for fine-tuning the model. Based
on the coniferous and broadleaf forest vector boundaries provided by the NFRI Type-II
data, sample labels are extracted from Landsat images using window sizes of 1 × 1 and
3 × 3 pixels. Labels for broadleaf forests are marked as ‘1’, and for coniferous forests as ‘0’.
This step aims to accurately capture the spectral texture information of the corresponding
samples. The generated images have sizes of 0.0009 km2 and 0.0081 km2, with sample
quantities of 500, 1000, 2000, 4000, and 8000, respectively. The smaller dataset consists of
multispectral data from UAVs, used for fine-tuning the model. Its spatial resolution is
adjusted to match that of the large dataset through the Spectral Angle Mapper technique.
Each 0.0009 km2 grid cell is independently labeled. The final dataset contains 288 labels for
coniferous forests and 320 for broadleaf forests. These data are processed using ArcMap
10.5 software to ensure consistency and accurate label assignment.

2.3.2. Determining the Number of Input Channels for the Model

To optimize the use of pre-trained weights and to reduce the need to relearn features
during the fine-tuning phase, this study ensures that the number of data channels remains
consistent throughout the pre-training and fine-tuning phases. This consistency facilitates
faster model convergence and improves the overall performance of the final model. In
selecting an appropriate combination of channels, this study considered the spectral bands
common to both Landsat and UAV multispectral data, specifically the red, green, blue, and
NIR bands. Additionally, the choice of three-band combinations was influenced by the
architecture of the ResNet model, which is inherently designed to handle three-channel

https://earthexplorer.usgs.gov/
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inputs. A random forest algorithm was employed to assess the classification accuracy
levels of various band combinations. The results, displayed in Figure S3, indicate that
the combination including the NIR band (GBNir: green, blue, and NIR) outperforms
other combinations in classification accuracy on both data sources, consistently achieving
accuracies above 0.79. This superior performance suggests that the GBNir combination
provides a richer and more discriminative set of information, making it the preferred choice
for the input channels of the model. As a result, the GBNir band combination was selected
as the default input configuration for ongoing model training and transfer learning efforts.
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2.3.3. Constructing Pre-Trained Models

(1) Model Selection

ResNets are a prominent architecture in the field of deep learning which have been
widely used for image processing and recognition tasks. Introduced by [39], the innovative
aspect of ResNet is its use of residual learning to address the vanishing gradient problem
which is common in deep networks training. In this study, ResNets of different depths are
used: ResNet-18, ResNet-34, and ResNet-50. As shown in Table 3, ResNet-18 and ResNet-34
consist of 18 and 34 layers, respectively, and feature a standard stacked structure of residue
blocks. Each block comprises two convolutional layers; specifically, ResNet-18 includes
8 such blocks, while ResNet-34 contains 16.

Table 3. Residual Neural Network (ResNet) model structure.

Layer Name Output Size 18-Layer 34-Layer 50-Layer

Conv1 32 × 32/64 × 64 3 × 3, 64, stride 1

Conv2x 32 × 32/64 × 64

[
3 × 3, 64
3 × 3, 64

]
× 2

[
3 × 3, 64
3 × 3, 64

]
× 3

 1 × 1, 64
3 × 3, 64

1 × 1, 256

× 3

Conv3x 16 × 16/32 × 32

[
3 × 3, 128
3 × 3, 128

]
× 2

[
3 × 3, 128
3 × 3, 128

]
× 4

1 × 1, 128
3 × 3, 128
1 × 1, 512

× 4

Conv4x 8 × 8/16 × 16

[
3 × 3, 256
3 × 3, 256

]
× 2

[
3 × 3, 256
3 × 3, 256

]
× 6

 1 × 1, 256
3 × 3, 256
1 × 1, 1024

× 6

Conv5x 4 × 4/8 × 8

[
3 × 3, 512
3 × 3, 512

]
× 2

[
3 × 3, 512
3 × 3, 512

]
× 3

 1 × 1, 512
3 × 3, 512
1 × 1, 2048

× 3

1 × 1 Average pool, 1000-d fc, SoftMax

FLOPs 1.8 × 109 3.6 × 109 3.8 × 109

Note: FLOPs denotes “Floating Point Operations Per Second”.

ResNet-50, on the other hand, adopts a deeper structure, with 50 layers, and utilizes
a ‘bottleneck’ design in its blocks. Each bottleneck block consists of a 1 × 1 convolution
for dimension reduction, a 3 × 3 convolution for feature extraction, and another 1 × 1
convolution for dimension recovery. This configuration not only reduces the parameter
count but also enhances the depth of feature extraction.

For specific image sizes (1 × 1 and 3 × 3), the kernel size and stride of the initial
convolution layer are adjusted, and the pooling layer is removed. These modifications
prevent premature shrinkage of feature maps and the loss of essential spatial information,
thus ensuring the efficiency and performance of the model when processing images of
specific dimensions.

(2) ResNet Model Initialization and Architectural Adjustments

The selected ResNet models are initialized using the PyTorch deep learning framework.
All weights are initialized using He normal initialization, and biases are set to zero to ensure
training stability. The architecture is further adjusted by modifying the final fully connected
layer. Originally designed to output 1000 neurons, this layer is altered to produce only two
neurons to meet the specific classification needs of the two of image types: coniferous and
broadleaf forests.

(3) Training of ResNet Models

We employed ResNet models of varying depths (ResNet-18, ResNet-34, and ResNet-50)
as the foundational architecture, training them using the prepared large dataset (Landsat
labeled data). To meet the input requirements of the ResNet models, the images were
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maintained at uniform sizes (1 × 1 and 3 × 3 pixels) and normalized to minimize the effects
of lighting and shadows. Initial training involved preliminary runs on this large dataset.
Determining the optimal combination of hyperparameters required iterative adjustments
and trials [40]. Various parameters were tested, with the initial learning rate set at 0.01, using
the Adam optimizer, and employing the He normal distribution for weight initialization
to promote early convergence. Weight decay (L2 regularization) was applied at 0.0001,
and the ReLU function was selected as the activation function; dropout techniques were
not employed. This study utilized the cosine annealing learning rate scheduler, setting
the cycle T_max at 100 iterations and the minimum learning rate at 1e-6. Training was
terminated early, using the early-stopping method, if there was no improvement in the
performance of the validation set after five consecutive iterations, to prevent overfitting.
The entire training process spanned 100 epochs, with an 80:20 split between training and
test sets, and 10% of the training set reserved for validation.

The model training and fine-tuning processes were conducted on a computer equipped
with an Intel Core i7-9700 CPU @ 3.00 GHz and 16 GB of RAM sourced from Intel Corpora-
tion, Santa Clara, CA, USA, and running Windows 10, version 22H2. This setup provided
a stable software environment for all training and data processing tasks, which were exe-
cuted within a Python environment. The specific versions of Python and the libraries were
installed and configured according to PyTorch’s requirements. Necessary Python libraries
such as GDAL, NumPy, Matplotlib, and PyTorch, along with other relevant libraries for
remote sensing data processing and deep learning, were installed using Conda and pip.
All datasets were stored in TIFF format.

(4) Performance Evaluation of the Pre-trained Model

The performance evaluation of the model is conducted across three dimensions: sta-
bility, classification accuracy, and time efficiency. First, to assess stability of the model,
this study utilizes training curves, a tool vital in monitoring the learning process. These
curves display the loss values for each training epoch, helping to analyze trends in loss
reduction across both the training and validation sets. This analysis indicates whether
the model is overfitting or underfitting. An ideal training curve should exhibit a trend
of gradually decreasing loss values that stabilize over time, suggesting effective learning
without overfitting [41].

Next, this study asses the time efficiency of the ResNet models, focusing on two
core metrics: total training time and average inference time per image. Total training
time, measured in hours, indicates the duration required for the model to progress from
initialization to completion of specified training epochs. This metric reflects the time cost
necessary for the model to achieve a certain level of performance. The average inference
time per image, measured in seconds, assesses how quickly the model can process a new
image input and output a prediction [42].

Finally, regarding the classification accuracy of the model, this study introduces a
series of key performance indicators: accuracy, recall, precision, and F1-score. These
metrics are calculated based on the confusion matrix of the binary classification problem.
In this matrix, as shown in Table 4, rows represent the actual class samples, while columns
represent the classes predicted by the model. Table 5 further provides the mathematical
expressions for these performance metrics.

Table 4. Binary classification confusion matrix.

Predicted class

Negative (N) Positive (P)
Actual Class Negative (N) True Negative (TN) False Positive (FP)

Positive (P) False Negative (FN) True Positive (TP)



Remote Sens. 2024, 16, 2096 11 of 23

Table 5. The performance metrics.

Metric Formula

Accuracy (ACC) TP+TN
TP+TN+EP+FN

Precision (P) TP
TP+EP

Recall (R) TP
TP+FN

F1-Score (F1) 2X PX R
P+R

2.3.4. Sensitivity Analysis

In this study, experimental analyses are conducted across three critical dimensions:
image size, sample quantity, and model depth. Fifteen different training strategy combi-
nations were established to cover a range of possible configurations for analyzing model
sensitivity, with detailed parameters as presented in Table 6. By conducting a compre-
hensive performance evaluation for each model combination, the optimal strategy com-
bination was determined in order to ensure both the accuracy and the efficiency of the
classification results.

Table 6. Different combinations of strategies.

Group Number Window Size Sample Quantity Model Depth

G1 1 × 1/3 × 3 500 ResNet-18
G2 1 × 1/3 × 3 500 ResNet-34
G3 1 × 1/3 × 3 500 ResNet-50
G4 1 × 1/3 × 3 1000 ResNet-18
G5 1 × 1/3 × 3 1000 ResNet-34
G6 1 × 1/3 × 3 1000 ResNet-50
G7 1 × 1/3 × 3 2000 ResNet-18
G8 1 × 1/3 × 3 2000 ResNet-34
G9 1 × 1/3 × 3 2000 ResNet-50

G10 1 × 1/3 × 3 4000 ResNet-18
G11 1 × 1/3 × 3 4000 ResNet-34
G12 1 × 1/3 × 3 4000 ResNet-50
G13 1 × 1/3 × 3 8000 ResNet-18
G14 1 × 1/3 × 3 8000 ResNet-34
G15 1 × 1/3 × 3 8000 ResNet-50

Note: The groups (‘G’) are formed by variations in image size, sample quantity, and model depth. Each configu-
ration is designed to systematically examine the impact of these parameters on the performance of the models,
aiding in the determination of the optimal training strategy.

2.3.5. Fine-Tuning the Pre-Trained Model Using Transfer Learning and
Performance Evaluation

After the construction and initial training of the pre-trained model, this study then
fine-tunes it using a small, specially prepared dataset of labeled multispectral UAV data.
The objective of this phase is to adjust and optimize the model’s parameters to enhance
its responsiveness and classification accuracy with the new dataset. To ensure consistency,
the input format of the UAV-labeled dataset matches that used in the pre-trained model.
The weights of the pre-trained ResNet model are loaded using the DataLoader function
within the PyTorch framework. For fine-tuning, the learning rate is set to 0.001, while other
hyperparameters remain unchanged. Notably, a dropout rate of 0.5 is added to the final
fully connected layer to enhance the model’s generalization capability. Early stopping
is implemented with a patience of three rounds, and the number of fine-tuning training
rounds is limited to 10. The loss function employed is cross-entropy loss, maintaining
an 80:20 data ratio for training and testing. Figure 5c,d illustrate the steps for assessing
the effectiveness and broad applicability of the model after fine-tuning. The study area’s
data awaiting classification is applied to both the fine-tuned model (Figure 5b) and the
directly trained ResNet model (Figure 5a), using a wide range of data. The validated and
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fine-tuned models are then applied to Baishui County and Zhengning County, comparing
classification accuracies to observe the model’s suitability.

3. Results
3.1. Impacts of Different Combination Strategies on the Performance of Pre-Trained Models

This study evaluated the performance of pre-trained models using metrics across
three dimensions, namely, loss curve, time efficiency, and classification accuracy, aim-
ing to investigate how image size, sample quantity, and model depth—three critical
factors—affect model performance. The experimental design was organized into two
groups based on image sizes: the first group utilized 1 × 1 images, while the second
employed 3 × 3 images. Furthermore, this investigation encompassed a range of sample
quantities (from 500 to 8000) and model depths (from ResNet-18 to ResNet-50) to determine
the impacts of various combination strategies on model performance.

3.1.1. Loss-Curve Variation Trends

The loss curve is a metric pivotal for gauging the performance of pre-trained models,
providing a vivid visual representation of the model’s learning journey and stability during
training. This research delves into the effects of varying image sizes on the training efficacy
of deep learning models by examining the loss curves based on images of 1 × 1 and
3 × 3 pixels. To evaluate the influences of various factors on model performance, the study
employed strategies that incorporated a diverse range of sample quantities (500, 1000, 2000,
4000, and 8000) and model depths (ResNet-18, ResNet-34, and ResNet-50). These strategies
were designed to monitor loss changes across both training and validation datasets in order
to understand the impacts of these factors on the model’s training outcomes.

The results shown in Figure 6 reveal that within the 1 × 1 image configuration, the
majority of combination strategies (G7–G15) exhibit a decline in both training and validation
loss curves as the epoch count increases. Notably, the rate of decrease in training loss
generally surpasses that of validation loss, indicating the model’s ability to learn effectively
from the training data. However, certain combination strategies (G1–G6) display either
fluctuating trends or a minor upward trend in their validation loss-curves. Conversely,
under the 3 × 3 image configuration depicted in Figure 7, the loss curves display more
uniform fluctuations and a more consistent downward trend, particularly with respect to
the training loss. This suggests that the model exhibits enhanced generalization capabilities
and a reduced likelihood of overfitting when processing information across a broader
context. Further examination of the 1 × 1 image configuration shows that the validation loss-
curves tend to stabilize with increasing sample size, underscoring the beneficial impacts of
appropriate sample sizes on the model’s generalization ability. Additionally, the selection
of model depth substantially affects the loss curves’ dynamics and the model’s ability to
mitigate overfitting, highlighting effective adaptive strategies for various model depths.
In contrast, for the 3 × 3 image configuration, a moderate sample size of 2000 (G7–G9)
leads to a markedly consistent decline and minimal volatility in the model’s loss curves,
demonstrating improved generalization performance in this specific setup.

In a side-by-side analysis of the loss curves for 1 × 1 and 3 × 3 image settings, it be-
comes clear that the 3 × 3 configuration achieves a quicker stabilization. This indicates that
slightly larger image sizes are more effective in capturing a wider spectrum of information,
which helps the model recognize more intricate data features and improves its ability to
generalize on the validation set. While the 1 × 1 setting might show a slower rate of loss
reduction, it offers long-term benefits by lowering the likelihood of overfitting, thus boost-
ing the model’s consistency and dependability. Moreover, the 1 × 1 setup is particularly
sensitive to sample quantity and model depth. An increase in model depth highlighted the
crucial role of having enough samples for generalization, revealing a distinct pattern. On
the other hand, with the 3 × 3 configuration, there are noticeable disparities in how quickly
and smoothly the loss curve declines; both factors are influenced by both model depth and
the quality of the samples.
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3.1.2. The Impacts of Image Size, Sample Quantity, and Model Depth on the Time
Efficiency of Pre-Trained Models

Figure 8 reveals how image size, sample quantity, and model depth impact both the
overall training time and average inference time per image for ResNet models. When
comparing total training times, it is evident that using an image size of 1 × 1 extends
training significantly, compared to use of 3 × 3, suggesting minimal gains in computational
efficiency from reducing image size. There was a noticeable escalation in training time
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which occurred as the sample quantity grew, particularly from 500 to 2000 samples, with
the rate of increase becoming more moderate between 4000 and 8000 samples. Model depth
also played a role in training time, with ResNet-50 requiring much longer training periods
than both ResNet-18 and ResNet-34. Remarkably, ResNet-34 achieved the shortest overall
training time, indicating that a network of moderate complexity can offer substantial time
savings. With respect to the average inference time per image, the trend was similar to
that of the overall training times, showing that 3 × 3 images are processed more efficiently
during inference than are their 1 × 1 counterparts. Apart from the highest sample quantity
of 8000, an increase in sample quantity led to a notable rise in inference time, suggesting
that efficiently processing diverse dataset sizes is feasible once the model is adequately
trained. Nevertheless, as the model depth increased, so did inference time, particularly with
ResNet-50, underscoring the increased computational demands of deeper models during
inference. To summarize, image size, sample quantity, and model depth substantially shape
the computational efficiency of models.

Remote Sens. 2024, 16, x FOR PEER REVIEW 17 of 26 
 

 

of increase becoming more moderate between 4000 and 8000 samples. Model depth also 

played a role in training time, with ResNet-50 requiring much longer training periods than 

both ResNet-18 and ResNet-34. Remarkably, ResNet-34 achieved the shortest overall 

training time, indicating that a network of moderate complexity can offer substantial time 

savings. With respect to the average inference time per image, the trend was similar to 

that of the overall training times, showing that 3 × 3 images are processed more efficiently 

during inference than are their 1 × 1 counterparts. Apart from the highest sample quantity 

of 8000, an increase in sample quantity led to a notable rise in inference time, suggesting 

that efficiently processing diverse dataset sizes is feasible once the model is adequately 

trained. Nevertheless, as the model depth increased, so did inference time, particularly 

with ResNet-50, underscoring the increased computational demands of deeper models 

during inference. To summarize, image size, sample quantity, and model depth substan-

tially shape the computational efficiency of models. 

 

Figure 8. Impacts of image size, sample quantity, and model depth on the total training time and 

the average inference time per image of the residual architecture model. 

3.1.3. The Impacts of Image Size, Sample Quantity, and Model Depth on Classification 

Results 

To evaluate the performance of different combination strategies on the forest-type 

classification task, this study focused on assessing the effects of these variables on the fol-

lowing six performance indicators: accuracy, recall, F1-score, overall accuracy, macro av-

erage, and weighted average. 

Figure 9 reveals that appropriate image sizes, specifically 3 × 3, consistently achieve 

higher precision and recall in classifying coniferous and broadleaf forests, particularly 

when sample sizes increase. This emphasizes the critical roles of a wider viewing perspec-

tive and a more comprehensive training dataset in accurately identifying specific types of 

forests. An upward trend in F1-score, along with improvements in precision and recall, 

indicates that enlarging image dimensions and increasing sample quantities can balance 

Figure 8. Impacts of image size, sample quantity, and model depth on the total training time and the
average inference time per image of the residual architecture model.

3.1.3. The Impacts of Image Size, Sample Quantity, and Model Depth on
Classification Results

To evaluate the performance of different combination strategies on the forest-type
classification task, this study focused on assessing the effects of these variables on the
following six performance indicators: accuracy, recall, F1-score, overall accuracy, macro
average, and weighted average.

Figure 9 reveals that appropriate image sizes, specifically 3 × 3, consistently achieve
higher precision and recall in classifying coniferous and broadleaf forests, particularly when
sample sizes increase. This emphasizes the critical roles of a wider viewing perspective and
a more comprehensive training dataset in accurately identifying specific types of forests. An
upward trend in F1-score, along with improvements in precision and recall, indicates that
enlarging image dimensions and increasing sample quantities can balance these metrics
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effectively, thereby enhancing the model’s overall performance. This increase in model
precision, brought about by bigger image sizes and more samples, highlights the value
of broader contextual data and plentiful training examples in improving classification
accuracy. Comprehensive performance metrics, such as the macro and weighted averages,
show the model’s consistent performance improvement across all categories. This progress,
reflected in the rise of overall precision, further validates the effectiveness of increasing
both image size and sample quantity in boosting model capabilities. Notably, under the
conditions of 3 × 3 image sizes and a dataset of 2000 samples, the highest accuracy was
achieved by employing strategies with three different model depths, namely, G7, G8, and
G9. To summarize, the study showcases the influences of different combination strategies
on model efficiency, revealing that, although model performance benefits from increased
depth and sample size with 1 × 1 images, the optimal outcome is seen with 3 × 3 images
and a sample quantity of 2000.
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Overall, the image size substantially impacts model accuracy. Specifically, increasing
the image size from 1 × 1 to 3 × 3 enhances performance across most combinations of
sample sizes and model depths. This result indicates that appropriate images offer more
contextual information, which aids in the model’s feature-recognition capabilities across
different forest types. Furthermore, the number of training samples plays a crucial role
in the model’s classification accuracy. As training samples increase, so does accuracy
in distinguishing between the two types of forests. This trend is especially evident at
sample sizes of 2000, 4000, and 8000, emphasizing the need for substantial training data to
improve model generalization. Additionally, the analysis of model depth reveals that, in
scenarios with smaller images (1 × 1) and fewer samples, simpler models like ResNet-18
can sometimes outperform deeper models such as ResNet-50. However, as image sizes and
sample quantity grow, the advanced feature extraction and representation capabilities of
deeper models generally yield better performance.

These insights highlight the critical role of factors like image size, sample quantity, and
model depth in optimizing pre-trained models for specific tasks. Image size and sample
size are crucial for enhancing model classification accuracy, while the choice of model
depth should be flexibly determined based on the specific requirements of the task and the
characteristics of the data.

3.2. Fine-Tuning Pre-Trained Models with Multispectral UAV Data for Enhanced
Classification Performance

Following the evaluation of model performance and repeated testing of combination
strategies, G9 was identified as the optimal strategy for inputting data into the pre-trained
model. Based on pre-trained models, this study examined the accuracy of forest-type
classification results before and after fine-tuning with UAV multispectral data. Additionally,
this research selected two counties with forest types similar to Yongshou County, Zhengning
County and Baishui County, to assess and ensure the robustness and general applicability
of the model by applying it to these three counties.

Figure 10 displays the spatial distribution maps of coniferous and broadleaf forests
in the three counties, with the classification accuracy shown in Table 7. The accuracy in
Zhengning increased from 85% to 93%; in Yongshou, from 89% to 96%; and in Baishui, from
86% to 94%. These results indicate that fine-tuning the model is very effective in improving
the accuracy of forest-type classification. The accuracy in all areas reached or exceeded
the 90% threshold after fine-tuning, demonstrating the robustness and applicability of the
adopted method under various terrain types and ecological conditions. These findings
contribute valuable experimental evidence aiding the further optimization of remote sens-
ing image analysis, offering scientific guidance for precision forest management and the
planning of sustainable development.
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Table 7. Precision comparison before and after fine tuning of the pre-model.

County Before Model Fine-Tuning After Model Fine-Tuning

ZN 0.85 0.93
YS 0.89 0.96
BS 0.86 0.94

4. Discussion

This study aimed to achieve two primary objectives, namely, to develop an effective
technical framework for rapidly distinguishing forest types using deep learning technology
combined with multisource remote sensing data, and to reveal the impacts of image size,
sample quantity, and model depth on the time efficiency and accuracy of the training
model. This research not only offers new perspectives and methods for forest landscape
classification at the technical level but also provides effective technical support for forest
management and environmental monitoring in the Loess Plateau.

This framework introduces a fine-tuning-based transfer learning strategy that effec-
tively integrates cross-scale information sources (UAV multispectral data and Landsat
remote sensing data), which significantly enhances the overall accuracy and efficiency of
large-scale forest-type identification in the region. This improvement is likely due to the
rigorous adherence to the fine-tuning-based transfer learning strategy, one which effectively
addresses the issue of insufficient training data for deep neural networks [43,44]. First,
knowledge from one or more source tasks is acquired during the pre-training phase, and
then this knowledge is transferred to the target task during the fine-tuning phase. The rich
knowledge acquired in the pre-training phase enables the model to effectively handle the
target task with limited samples during the fine-tuning phase [45]. The technical framework
proposed in this study consists of three important components: the pre-trained model, the
fine-tuned model, and the application to a wide range of data awaiting classification. The
pre-trained and fine-tuned models, as the core parts of the entire framework, are especially
beneficial for achieving advanced results in image classification when the target tasks in
both phases are the same [16]. In recent years, some studies have successfully identified
forest tree species and achieved good classification results by adopting advanced deep
learning architectures [20,27,46]; other scholars have also recognized forest tree species
by applying transfer learning strategies [47–49]. While these specific classification tasks
employ models such as fine-tuned transfer learning, they often overlook the quality and
relevance of the metadata sets in the pre-training steps. Existing research indicates that if
the source dataset differs substantially from the target application scenario, the model’s
effectiveness might be limited [16,22]. Our study does not rely solely on the original image
datasets in deep architectural models, but instead uses a large Landsat labeled dataset
for training the model. Only after validating the model’s performance does this study
use small-scale UAV labeled data for fine-tuning, taking full advantage of the hierarchical
structure of the deep architectural model. Our results also confirm the maturity of our
technical framework model, which achieves or exceeds a 90% accuracy threshold in all
areas tested. This result not only demonstrates the effectiveness of the methods employed,
but also underscores their reliability across different terrains and ecological conditions.

Selecting an appropriate image size for specific application scenarios and resource
limitations and adjusting the data preprocessing workflow and model structure accord-
ingly can more effectively balance size and performance [50,51]. The majority of deep
convolutional neural networks, particularly those based on the ResNet model, are gener-
ally designed to handle deep learning tasks involving images with widths and heights
ranging from tens to hundreds of pixels [52]. This design aims to capture visual features
sufficient for effective learning and prediction [53]. Many readily available deep learning
models and pre-trained weights are based on standard image sizes (224 × 224 pixels).
In this study, to accurately reflect the impact of image size variations, the configuration
of the model’s input layer was adjusted while keeping other conditions such as model
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architecture, training epochs, and learning rate unchanged. The performance of the loss
curves in Figures 6 and 7 demonstrates that images with dimensions of 1 × 1 or 3 × 3 pixels
carry feature information sufficient to meet the model’s effectiveness and performance
requirements. This indicates that for deep residual network models, satisfactory results
can be achieved in terms of model performance for specific applications, even when using
particular image sizes [54,55]. However, given the limited availability of samples from
remote sensing data sources, whether a labeled dataset constructed with appropriate image
sizes can enhance the model’s generalization capability and stability remains a topic for
debate. Further research should aim to explore and optimize the integration of multisource
remote sensing data using deep learning technologies to improve the spatial resolution of
medium to low-resolution (Landsat) imagery. Although data augmentation and prepro-
cessing techniques can effectively increase the sample quantity and ensure model stability,
they cannot completely eliminate the potential negative impact of augmented samples
on the model’s generalization ability. Therefore, further improvements are needed to
enhance the interpretability of deep residual architecture models. Moreover, attention
should be paid to increasing the efficiency and reducing the cost of genuine sample data
collection, and more diverse model optimization strategies should be explored to further
enhance the generalizability and practicality of the model. Additionally, investigating
the application of these technologies on a global scale can provide more comprehensive
support for environmental monitoring and forest management. This study has effectively
improved the identification accuracy and efficiency of coniferous and broadleaf forests
in the Loess Plateau by combining deep learning with multisource remote sensing data,
paving a new path for the application of remote sensing technology in forest management
and environmental monitoring.

Effectively quantifying and identifying factors that impact the performance of ResNet
models is crucial for model interpretability [56,57]. In our study, we selected image size,
sample quantity, and model depth as the three potential influencing factors for study,
evaluating their impacts on the model through meticulously designed experiments. Unlike
previous studies [56,58], this research focuses not only on the influence of individual factors,
but also systematically examines the combined effects of these factors. The experiments
comprised fifteen different combination strategies (Table 6) to test their responsiveness
to model performance. To comprehensively assess the model, this study employed a
robust evaluation of performance across three dimensions, namely, stability, accuracy,
and time efficiency, ultimately determining the model’s optimal combination strategy
(G9). Our study highlights the substantial impacts of different combination strategies
(including model depth, sample quantity, and image size) on the performance of forest-type
classification tasks. It also emphasizes the importance of considering these factors—image
size, sample quantity, and model depth—in the design and optimization of pre-trained
models. Image size and sample quantity are key factors in enhancing model classification
accuracy, while the choice of model depth should be flexibly determined based on the
specific requirements of the task and the characteristics of the data, a determination which
is consistent with the views of existing studies [59–61]. Moreover, these factors substantially
affect the time efficiency of model training and inference, which is particularly important
in resource-constrained application scenarios. In summary, for optimal performance and
efficiency, model design should carefully balance these factors, based on the specific task
and available resources.

Although this study provides an effective method for classifying forest types on the
Loess Plateau, there may still be issues with the singularity of the data sources. The limited
coverage of UAV data and the spatial resolution constraints of Landsat data could affect the
accuracy and representativeness of the study results. Additionally, the choices of sample
quantity and study area may limit the generalizability of the findings. If the sample size is
insufficient or the selected study area does not represent the diversity of the entire Loess
Plateau region, the model’s generalization ability may be compromised. Using the ResNet
model and transfer learning techniques can improve classification accuracy, but it also
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increases the model’s complexity and computational cost. In practical applications, this
complexity might limit the model’s usability and practicality. Although the study evaluated
different spectral band combinations, it may not have covered all possible combinations.
For certain vegetation types, specific spectral information might be required to achieve
optimal classification results. Moreover, the study may not have fully considered the
impacts of seasonal and climatic changes on the spectral characteristics of vegetation.
Vegetation spectral responses can vary under different seasonal and climatic conditions,
thereby influencing classification results. Despite these limitations, the model can be
adjusted and optimized through transfer learning, as long as corresponding remote sensing
data and sufficient samples are available.

Our research is only a first step towards cross-scale forest monitoring. Future studies
may extend upon this technical foundation using UAV hyperspectral and LiDAR data. By
enriching spectral features and spatial information, these studies could further achieve
large-scale tree species classification on the Loess Plateau, a process critically important for
evaluating vegetation restoration outcomes.

5. Conclusions

This study successfully developed and validated a deep learning classification frame-
work that integrates multispectral UAV data with Landsat remote sensing data to efficiently
and accurately identify coniferous and broadleaf forests on Loess Plateau. The following
are the key findings:

• By integrating the ResNet architecture with transfer learning techniques, and utilizing
multispectral data from UAVs and Landsat satellites, the framework achieved substan-
tial improvements in classification accuracy. The fine-tuned model achieved over 90%
accuracy in classifying forest types in Yongshou, Zhengning, and Baishui counties.
This validates the effectiveness and rapidity of the proposed technical framework.

• The study systematically evaluated the effects of image size, sample quantity, and
model depth on the model’s performance. It was found that appropriate image sizes
(3 × 3 pixels) and increased sample quantities substantially enhance the model’s
classification accuracy and generalization ability. The optimal strategy was identified
as using a 3 × 3 image size, 2000 samples, and a ResNet-50 model depth, achieving
the best balance between accuracy and efficiency.

Overall, the research not only validates the effectiveness of deep learning and transfer
learning in forest-type classification but also provides an innovative technical path for
forest resource monitoring and management. These achievements offer valuable scientific
guidance for forest management and sustainable development on the Loess Plateau.

Future research should further explore the integration of additional spectral data and
assess the model’s adaptability across different geographical and climatic conditions to
fully reveal the potential applications of deep learning technologies in remote sensing.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs16122096/s1, Figure S1: Calibration of UAV multispectral
data: (a) Radiometric calibration; (b) Target-laying calibration; (c) Effect before and after target
correction. Figure S2: Landsat RGB data with less than 5% cloud cover: (a) YS; (b) ZN; (c) BS. Figure
S3: Classification accuracy of different band combinations of Landsat data and UAV data based on
the random forest algorithm.
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48. Kırbaş, İ.; Çifci, A. An effective and fast solution for classification of wood species: A deep transfer learning approach. Ecol.
Inform. 2022, 69, 101633. [CrossRef]

49. Moritake, K.; Cabezas, M.; Nhung, T.T.C.; Caceres, M.L.L.; Diez, Y. Sub-alpine shrub classification using UAV images: Performance
of human observers vs DL classifiers. Ecol. Inform. 2024, 80, 102462. [CrossRef]

50. Han, D.; Liu, Q.; Fan, W. A new image classification method using CNN transfer learning and web data augmentation. Expert
Syst. Appl. 2018, 95, 43–56. [CrossRef]

51. Semma, A.; Lazrak, S.; Hannad, Y.; Boukhani, M.; El Kettani, Y. Writer Identification: The effect of image resizing on CNN
performance. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2021, 46, 501–507. [CrossRef]

52. Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif.
Intell. Rev. 2020, 53, 5455–5516. [CrossRef]

53. Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Asari, V.K. A state-of-the-art survey on deep learning
theory and architectures. Electronics 2019, 8, 292. [CrossRef]

54. Shorten, C.; Khoshgoftaar, T. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [CrossRef]
55. Shorten, C.; Khoshgoftaar, T.; Furht, B. Text Data Augmentation for Deep Learning. J. Big Data 2021, 8, 101. [CrossRef] [PubMed]
56. Peng, S.; Huang, H.; Chen, W.; Zhang, L.; Fang, W. More trainable inception-ResNet for face recognition. Neurocomputing 2020,

411, 9–19. [CrossRef]
57. Zhang, H.; Wu, C.; Zhang, Z.; Zhu, Y.; Lin, H.; Zhang, Z.; Smola, A. Resnest: Split-attention networks. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 2736–2746.
[CrossRef]

58. Song, Y.; Jang, S.; Kim, K. Depth-Specific Variational Scaling Method to Improve Accuracy of ResNet. J. Korean Inst. Intell. Syst.
2021, 8, 338–345. [CrossRef]

59. Khan, R.; Zhang, X.; Kumar, R.; Aboagye, E. Evaluating the Performance of ResNet Model Based on Image Recognition. In
Proceedings of the 2018 International Conference on Computing and Artificial Intelligence, Las Vegas, NV, USA, 12–14 December
2018; pp. 86–90. [CrossRef]

60. Gao, S.; Cheng, M.; Zhao, K.; Zhang, X.; Yang, M.; Torr, P. Res2Net: A New Multi-Scale Backbone Architecture. IEEE Trans. Pattern
Anal. Mach. Intell. 2019, 43, 652–662. [CrossRef] [PubMed]

61. Bello, I.; Fedus, W.; Du, X.; Cubuk, E.; Srinivas, A.; Lin, T.; Shlens, J.; Zoph, B. Revisiting ResNets: Improved Training and Scaling
Strategies. arXiv 2021, arXiv:abs/2103.07579.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.ecoinf.2022.101633
https://doi.org/10.1016/j.ecoinf.2024.102462
https://doi.org/10.1016/j.eswa.2017.11.028
https://doi.org/10.5194/isprs-archives-XLVI-4-W5-2021-501-2021
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.3390/electronics8030292
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-021-00492-0
https://www.ncbi.nlm.nih.gov/pubmed/34306963
https://doi.org/10.1016/j.neucom.2020.05.022
https://doi.org/10.1109/CVPRW56347.2022.00309
https://doi.org/10.5391/jkiis.2021.31.4.338
https://doi.org/10.1145/3194452.3194461
https://doi.org/10.1109/TPAMI.2019.2938758
https://www.ncbi.nlm.nih.gov/pubmed/31484108

	Introduction 
	Materials and Methods 
	Study Area 
	Acquisition and Preprocessing of UAV Multispectral and Landsat Remote Sensing Data 
	UAV Platform and Multispectral Sensor 
	Setting up the UAV Operation Plots 
	UAV Operation Parameters and Data Preprocessing 
	Acquisition and Preprocessing of Landsat Remote Sensing Images 

	Rapid Identification of Broadleaf and Coniferous Forests Using Deep Learning-Based Techniques 
	Dataset Preparation for Labeling 
	Determining the Number of Input Channels for the Model 
	Constructing Pre-Trained Models 
	Sensitivity Analysis 
	Fine-Tuning the Pre-Trained Model Using Transfer Learning andPerformance Evaluation 


	Results 
	Impacts of Different Combination Strategies on the Performance of Pre-Trained Models 
	Loss-Curve Variation Trends 
	The Impacts of Image Size, Sample Quantity, and Model Depth on the Time Efficiency of Pre-Trained Models 
	The Impacts of Image Size, Sample Quantity, and Model Depth on Classification Results 

	Fine-Tuning Pre-Trained Models with Multispectral UAV Data for EnhancedClassification Performance 

	Discussion 
	Conclusions 
	References

