Validation of Multisource Altimeter SWH Measurements for Climate Data Analysis in China’s Offshore Waters
Abstract
:1. Introduction
2. Data and Methods
2.1. China’s Offshore Buoy Measurements of SWH
2.2. HY-2A SWH Data
2.3. HY-2B SWH Data
2.4. HY-2C SWH Data
2.5. CFOSAT SWH Data
2.6. Jason-3 SWH Data
2.7. Jason-2 and Cryoset-2 SWH Data
2.8. Validation Methods
2.9. Method for Merging Long-Term Multisource SWHs
3. Results
3.1. Validation Using In Situ SWHs over China’s Offshore Waters
3.2. Evaluation of Multisource 10 d Mean Merged SWHs with In Situ SWHs
3.3. Spatial and Temporal Characteristics of Merged SWHs
4. Conclusions and Discussion
- (1)
- This study methodically validated SWH measurements from five altimeters across China’s offshore waters using 31 buoys. These comparisons demonstrated that linear correction is effective in reducing the bias of each altimeter, although the bias for HY-2A is notably higher for SWHs of <1.0 m, where a nonlinear relationship is observed. In moderate sea conditions, with SWHs of 1.75–5.25 m, all altimeters exhibited a stable relative bias of approximately 10%, indicative of high measurement quality. Correction equations for these altimeters are presented in this paper.
- (2)
- As a supplement to the in situ validation, in scenarios involving open-sea and high-sea conditions with SWHs of >6.0 m, cross-calibration among the multiple altimeters was employed using Jason-3 SWHs as reference. The matched SWHs maintained a linear relationship with Jason-3 and other altimeters, mirrored by consistent relative bias values that were comparable with those of the in situ measurements. These findings indicate that a linear correction equation can effectively minimize biases in the merging method.
- (3)
- Fifteen additional buoys were used to evaluate the quality of the merged SWHs. Validation of the 10 d averaged SWHs against in situ observations indicated improvement in the quality of the corrected gridded SWHs, with temporal correlation coefficients increasing and bias decreasing compared with those of the uncorrected SWHs, exhibiting a reduced bias of 0.03 m compared with a bias of 0.28 m for the uncorrected data.
- (4)
- Analyses of SWHs in four representative months and the annual mean highlighted the influence of dominant sea surface winds across different seasons, accurately reflecting the typical variances of SWHs in China’s offshore waters. The spatial distribution and variances of SWHs effectively mirror the real sea conditions. Notably, post-2020, the consistency in the variance among the altimeter-derived SWHs has improved substantially compared with that in 2012–2019, underscoring enhanced measurement reliability over time.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, M.; Du, J.; Yang, Y.; Yin, X. Evaluation of Assimilation in the MASNUM Wave Model Based on Jason-3 and CFOSAT. Remote Sens. 2021, 13, 3833. [Google Scholar] [CrossRef]
- Xu, J.; Zhi, X.; Sein, D.V.; Cabos, W.; Luo, Y.; Zhang, L.; Dong, F.; Fraedrich, K.; Jacob, D. Predictability of Coastal Boundary Layer Jets in South China Using Atmosphere–Ocean Coupling. J. Geophys. Res. Atmos. 2023, 128, e2023JD039184. [Google Scholar] [CrossRef]
- Xu, J.; Koldunov, N.V.; Remedio, A.; Sein, D.; Zhi, X.; Jiang, X.; Xu, M.; Zhu, X.; Fraedrich, K.; Jacob, D.J.C.D. On the role of horizontal resolution over the Tibetan Plateau in the REMO regional climate model. Clim. Dyn. 2018, 51, 4525–4542. [Google Scholar] [CrossRef]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.-H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C. The global monitoring for environment and security (GMES) sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Dobson, E.; Monaldo, F.; Goldhirsh, J.; Wilkerson, J. Validation of Geosat altimeter-derived wind speeds and significant wave heights using buoy data. J. Geophys. Res. Ocean. 1987, 92, 10719–10731. [Google Scholar] [CrossRef]
- Quartly, G.D.; Chen, G.; Nencioli, F.; Morrow, R.; Picot, N. An Overview of Requirements, Procedures and Current Advances in the Calibration/Validation of Radar Altimeters. Remote Sens. 2021, 13, 125. [Google Scholar] [CrossRef]
- Timmermans, B.W.; Gommenginger, C.P.; Dodet, G.; Bidlot, J.R. Global Wave Height Trends and Variability from New Multimission Satellite Altimeter Products, Reanalyses, and Wave Buoys. Geophys. Res. Lett. 2020, 47, e2019GL086880. [Google Scholar] [CrossRef]
- Durrant, T.H.; Greenslade, D.J.; Simmonds, I. Validation of Jason-1 and Envisat remotely sensed wave heights. J. Atmos. Ocean. Technol. 2009, 26, 123–134. [Google Scholar] [CrossRef]
- Ribal, A.; Young, I.R. 33 years of globally calibrated wave height and wind speed data based on altimeter observations. Sci. Data 2019, 6, 77. [Google Scholar] [CrossRef]
- Xiang, K.; Yin, X.; Xing, S.; Kong, F.; Li, Y.; Lang, S.; Gao, Z. Preliminary Estimate of CFOSAT Satellite Products in Tropical Cyclones. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4203516. [Google Scholar] [CrossRef]
- Aouf, L.; Dalphinet, A.; Hauser, D.; Delaye, L.; Tison, C.; Chapron, B.; Hermozo, L.; Tourain, C. On the Assimilation of CFOSAT Wave Data in the Wave Model MFWAM: Verification Phase. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 7959–7961. [Google Scholar]
- Hauser, D.; Tourain, C.L.; Hermozo, L.; Alraddawi, D.; Aouf, L.; Chapron, B.; Dalphinet, A.; Delaye, L.; Dalila, M.; Dormy, E.; et al. New Observations from the SWIM Radar On-Board CFOSAT: Instrument Validation and Ocean Wave Measurement Assessment. IEEE Trans. Geosci. Remote Sens. 2020, 59, 5–26. [Google Scholar] [CrossRef]
- Liu, J.; Lin, W.; Dong, X.; Lang, S.; Yun, R.; Zhu, D.; Zhang, K.; Sun, C.; Mu, B.; Ma, J.; et al. First Results From the Rotating Fan Beam Scatterometer Onboard CFOSAT. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8793–8806. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, J.; Xie, L.; Sun, C.; Liu, J.; Li, J.; Xian, D. China-France Oceanography Satellite (CFOSAT) simultaneously observes the typhoon-induced wind and wave fields. Acta Oceanol. Sin. 2019, 38, 158–161. [Google Scholar] [CrossRef]
- Jin, S.; Yang, S.; Yan, Q.; Jia, Y. Significant Wave Height Estimation from CYGNSS Delay-doppler Map Average Observations. In Proceedings of the 2022 Photonics & Electromagnetics Research Symposium (PIERS), Hangzhou, China, 25–29 April 2022; pp. 654–659. [Google Scholar]
- Ren, L.; Yang, J.; Xiao, Q.; Zheng, G.; Wang, J. On CFOSAT swim wave spectrometer retrieval of ocean waves. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 1966–1969. [Google Scholar]
- Zhang, K.; Dong, X.; Zhu, D.; Yun, R. Estimation and Correction of Geolocation Errors of the CFOSAT Scatterometer Using Coastline Backscatter Coefficients. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 53–61. [Google Scholar] [CrossRef]
- Hall, C.; Jensen, R.E. Utilizing Data from the NOAA National Data Buoy Center; U.S. Army Corps of Engineers/Engineering Research and Development Center: Vicksburg, MS, USA, 2021. [Google Scholar]
- Ye, X.; Lin, M.; Xu, Y. Validation of Chinese HY-2 satellite radar altimeter significant wave height. Acta Oceanol. Sin. 2015, 34, 60–67. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, Q.; Chen, G. Validation of HY-2A Remotely Sensed Wave Heights against Buoy Data and Jason-2 Altimeter Measurements. J. Atmos. Ocean. Technol. 2015, 32, 1270–1280. [Google Scholar] [CrossRef]
- Hauser, D.; Tison, C.; Amiot, T.; Delaye, L.; Corcoral, N.; Castillan, P. SWIM: The First Spaceborne Wave Scatterometer. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3000–3014. [Google Scholar] [CrossRef]
- Chen, C.; Zhu, J.; Lin, M.; Zhao, Y.; Wang, H.; Wang, J. Validation of the Significant Wave Height Product of HY-2 Altimeter. Remote Sens. 2017, 9, 1016. [Google Scholar] [CrossRef]
- Wang, J.; Aouf, L.; Jia, Y.; Zhang, Y. Validation and Calibration of Significant Wave Height and Wind Speed Retrievals from HY2B Altimeter Based on Deep Learning. Remote Sens. 2020, 12, 2858. [Google Scholar] [CrossRef]
- Jia, Y.; Yang, J.; Lin, M.; Zhang, Y.; Ma, C.; Fan, C. Global assessments of the HY-2B measurements and cross-calibrations with Jason-3. Remote Sens. 2020, 12, 2470. [Google Scholar] [CrossRef]
- Li, X.; Xu, Y.; Liu, B.; Lin, W.; He, Y.; Liu, J. Validation and Calibration of Nadir SWH Products from CFOSAT and HY-2B with Satellites and In Situ Observations. J. Geophys. Res. Ocean. 2021, 126, e2020JC016689. [Google Scholar] [CrossRef]
- Xu, X.-Y.; Xu, K.; Shen, H.; Liu, Y.-L.; Liu, H.-G. Sea Surface Height and Significant Wave Height Calibration Methodology by a GNSS Buoy Campaign for HY-2A Altimeter. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5252–5261. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Jia, Y.; Fan, C.; Cui, W. Validation of Sentinel-3A/3B and Jason-3 Altimeter Wind Speeds and Significant Wave Heights Using Buoy and ASCAT Data. Remote Sens. 2020, 12, 2079. [Google Scholar] [CrossRef]
- Wang, J.; Yu, T.; Deng, F.; Ruan, Z.; Jia, Y. Acquisition of the Wide Swath Significant Wave Height from HY-2C through Deep Learning. Remote Sens. 2021, 13, 4425. [Google Scholar] [CrossRef]
- Qin, D.; Jia, Y.; Lin, M.; Liu, S. Performance Evaluation of China’s First Ocean Dynamic Environment Satellite Constellation. Remote Sens. 2023, 15, 4780. [Google Scholar] [CrossRef]
- Jiang, H.; Mironov, A.; Ren, L.; Babanin, A.V.; Wang, J.; Mu, L. Validation of Wave Spectral Partitions from SWIM Instrument On-Board CFOSAT Against In Situ Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4204013. [Google Scholar] [CrossRef]
- Liang, G.; Yang, J.; Wang, J. Accuracy Evaluation of CFOSAT SWIM L2 Products Based on NDBC Buoy and Jason-3 Altimeter Data. Remote Sens. 2021, 13, 887. [Google Scholar] [CrossRef]
- Li, B.; Li, J.; Liu, J.; Tang, S.; Chen, W.; Shi, P.; Liu, Y. Calibration Experiments of CFOSAT Wavelength in the Southern South China Sea by Artificial Neural Networks. Remote Sens. 2022, 14, 773. [Google Scholar] [CrossRef]
- Tran, N.; Vandemark, D.; Zaron, E.D.; Thibaut, P.; Dibarboure, G.; Picot, N. Assessing the effects of sea-state related errors on the precision of high-rate Jason-3 altimeter sea level data. Adv. Space Res. 2021, 68, 963–977. [Google Scholar] [CrossRef]
- Dodet, G.; Piolle, J.-F.; Quilfen, Y.; Abdalla, S.; Accensi, M.; Ardhuin, F.; Ash, E.; Bidlot, J.-R.; Gommenginger, C.; Marechal, G. The Sea State CCI dataset v1: Towards a sea state climate data record based on satellite observations. Earth Syst. Sci. Data 2020, 12, 1929–1951. [Google Scholar] [CrossRef]
- Han, L.; Ji, Q.; Jia, X.; Liu, Y.; Han, G.; Lin, X. Significant Wave Height Prediction in the South China Sea Based on the ConvLSTM Algorithm. J. Mar. Sci. Eng. 2022, 10, 1683. [Google Scholar] [CrossRef]
- Xu, J.; Wu, H.; Xu, Y.; Koldunov, N.V.; Zhang, X.; Kong, L.; Xu, M.; Fraedrich, K.; Zhi, X. Validation of Nadir SWH and Its Variance Characteristics from CFOSAT in China’s Offshore Waters. Remote Sens. 2023, 15, 1005. [Google Scholar] [CrossRef]
- Sepúlveda, H.H.; Queffeulou, P.; Ardhuin, F. Assessment of SARAL/AltiKa Wave Height Measurements Relative to Buoy, Jason-2, and Cryosat-2 Data. Mar. Geod. 2015, 38, 449–465. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J. Validation of Sentinel-3A/3B satellite altimetry wave heights with buoy and Jason-3 data. Sensors 2019, 19, 2914. [Google Scholar] [CrossRef] [PubMed]
- Queffeulou, P. Long-Term Validation of Wave Height Measurements from Altimeters. Mar. Geod. 2004, 27, 495–510. [Google Scholar] [CrossRef]
- Ren, L.; Yang, J.; Xu, Y.; Zhang, Y.; Zheng, G.; Wang, J.; Dai, J.; Jiang, C.L. Ocean Surface Wind Speed Dependence and Retrieval from Off-Nadir CFOSAT SWIM Data. Earth Space Sci. 2021, 8, e2020EA001505. [Google Scholar] [CrossRef]
- Young, I.R.; Ribal, A. Multiplatform evaluation of global trends in wind speed and wave height. Science 2019, 364, 548–552. [Google Scholar] [CrossRef]
Altimeter | HY-2A | HY-2B | HY-2C | CFOSAT, 2172 | Jason-3 |
---|---|---|---|---|---|
Launch Date: | 16 August 2011 | 25 October 2018 | 21 September 2020 | 29 October 2018 | 17 January 2016 |
Inclination: | 99.35° | 99.35° | 66° | 97.5° | 66° |
Localization: | Sun-synchronous | Sun-synchronous | Non-sun-synchronous, frozen track | Sun-synchronous | Non-sun-synchronous, frozen track |
Altitude: | 971 km | 971 km | 957 km | 514 km | 1336 km |
Altimeter, Samples | HY-2A, 1013 | HY-2B, 1919 | HY-2C, 3461 | CFOSAT, 2172 | Jason-3, 7919 |
---|---|---|---|---|---|
Bias | −0.01 | 0.17 | 0.25 | 0.17 | 0.06 |
Correlation coefficient | 0.89 | 0.97 | 0.96 | 0.97 | 0.94 |
Linear correction equation | y = 0.93x + 0.02 | y = 0.97x − 0.18 | y = 0.93x − 0.16 | y = 0.98x − 0.16 | y = 0.95x − 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Wu, H.; Zhi, X.; Koldunov, N.V.; Zhang, X.; Xu, Y.; Zhang, Y.; Guo, M.; Kong, L.; Fraedrich, K. Validation of Multisource Altimeter SWH Measurements for Climate Data Analysis in China’s Offshore Waters. Remote Sens. 2024, 16, 2162. https://doi.org/10.3390/rs16122162
Xu J, Wu H, Zhi X, Koldunov NV, Zhang X, Xu Y, Zhang Y, Guo M, Kong L, Fraedrich K. Validation of Multisource Altimeter SWH Measurements for Climate Data Analysis in China’s Offshore Waters. Remote Sensing. 2024; 16(12):2162. https://doi.org/10.3390/rs16122162
Chicago/Turabian StyleXu, Jingwei, Huanping Wu, Xiefei Zhi, Nikolay V. Koldunov, Xiuzhi Zhang, Ying Xu, Yangyang Zhang, Maohua Guo, Lisha Kong, and Klaus Fraedrich. 2024. "Validation of Multisource Altimeter SWH Measurements for Climate Data Analysis in China’s Offshore Waters" Remote Sensing 16, no. 12: 2162. https://doi.org/10.3390/rs16122162
APA StyleXu, J., Wu, H., Zhi, X., Koldunov, N. V., Zhang, X., Xu, Y., Zhang, Y., Guo, M., Kong, L., & Fraedrich, K. (2024). Validation of Multisource Altimeter SWH Measurements for Climate Data Analysis in China’s Offshore Waters. Remote Sensing, 16(12), 2162. https://doi.org/10.3390/rs16122162