Aquaculture Ponds Identification Based on Multi-Feature Combination Strategy and Machine Learning from Landsat-5/8 in a Typical Inland Lake of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Samples Collection
2.4. Classification Features
2.5. Classification Algorithms
2.5.1. RF
2.5.2. XGBoost
2.5.3. KNN
2.5.4. GNB
2.5.5. ANN
2.6. Analysis
3. Results
3.1. Feature Selection and Feature Importance
3.2. Feature Profile Comparison
3.3. Accuracy Comparation of Different Classification Models
3.4. Land Cover Changes in Nansi Lake
3.5. Relationship between Water Quality and the Expansion of Aquaculture Ponds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dehong, D.; Yinfang, S.; Lin, S.; Genxia, W. Remote Sensing Technology’s Applied Research and Development Direction in Land-Use and Land-Cover Change (LUCC). In Proceedings of the 2012 2nd International Conference on Remote Sensing, Environment and Transportation Engineering, Nanjing, China, 1–3 June 2012; pp. 1–4. [Google Scholar]
- Wang, X.; Dong, X.; Liu, H.; Wei, H.; Fan, W.; Lu, N.; Xu, Z.; Ren, J.; Xing, K. Linking land use change, ecosystem services and human well-being: A case study of the Manas River Basin of Xinjiang, China. Ecosyst. Serv. 2017, 27, 113–123. [Google Scholar] [CrossRef]
- Cao, L.; Naylor, R.; Henriksson, P.; Leadbitter, D.; Metian, M.; Troell, M.; Zhang, W. China’s aquaculture and the world’s wild fisheries. Science 2015, 347, 133–135. [Google Scholar] [CrossRef] [PubMed]
- Naylor, R.; Fang, S.; Fanzo, J. A global view of aquaculture policy. Food Policy 2023, 116, 102422. [Google Scholar] [CrossRef]
- Jiang, Q.; Bhattarai, N.; Pahlow, M.; Xu, Z. Environmental sustainability and footprints of global aquaculture. Resour. Conserv. Recycl. 2022, 180, 106183. [Google Scholar] [CrossRef]
- Luo, J.; Pu, R.; Ma, R.; Wang, X.; Lai, X.; Mao, Z.; Zhang, L.; Peng, Z.; Sun, Z. Mapping long-term spatiotemporal dynamics of pen aquaculture in a shallow lake: Less aquaculture coming along better water quality. Remote Sens. 2020, 12, 1866. [Google Scholar] [CrossRef]
- Sun, Z.; Luo, J.; Gu, X.; Qi, T.; Xiao, Q.; Shen, M.; Ma, J.; Zeng, Q.; Duan, H. Policy-driven opposite changes of coastal aquaculture ponds between China and Vietnam: Evidence from Sentinel-1 images. Aquaculture 2023, 571, 739474. [Google Scholar] [CrossRef]
- Chen, B.; Huang, B.; Xu, B. Multi-source remotely sensed data fusion for improving land cover classification. ISPRS J. Photogramm. Remote Sens. 2017, 124, 27–39. [Google Scholar] [CrossRef]
- Li, R.; Gao, X.; Shi, F.; Zhang, H. Scale Effect of Land Cover Classification from Multi-Resolution Satellite Remote Sensing Data. Sensors 2023, 23, 6136. [Google Scholar] [CrossRef] [PubMed]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Huang, D.-M.; Wei, C.-T.; Yu, J.-C.; Wang, J.-L. A method of detecting land use change of remote sensing images based on texture features and DEM. In Proceedings of the International Conference on Intelligent Earth Observing and Applications, Guilin, China, 23–24 October 2015; pp. 613–618. [Google Scholar]
- Wang, H.; Zhao, H.; Li, W. Land-use Classification of Zhanghe River Basin Using the Maximum Likelihood and Decision Tree Method. In Proceedings of the 11th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Xiamen, China, 19–21 August 2014; pp. 322–327. [Google Scholar]
- Li, Y.; Wu, H. A Clustering Method Based on K-Means Algorithm. In Proceedings of the International Conference on Solid State Devices and Materials Science (SSDMS), Macao, China, 1–2 April 2012; pp. 1104–1109. [Google Scholar]
- Papa, J.P.; Papa, L.P.; Pereira, D.R.; Pisani, R.J. A Hyperheuristic Approach for Unsupervised Land-Cover Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2333–2342. [Google Scholar] [CrossRef]
- Heydari, S.S.; Mountrakis, G. Effect of classifier selection, reference sample size, reference class distribution and scene heterogeneity in per-pixel classification accuracy using 26 Landsat sites. Remote Sens. Environ. 2018, 204, 648–658. [Google Scholar] [CrossRef]
- He, T.; Sun, Y.-J.; Xu, J.-D.; Wang, X.-J.; Hu, C.-R. Enhanced land use/cover classification using support vector machines and fuzzy k-means clustering algorithms. J. Appl. Remote Sens. 2014, 8, 083636. [Google Scholar] [CrossRef]
- Shakya, A.; Biswas, M.; Pal, M. Parametric study of convolutional neural network based remote sensing image classification. Int. J. Remote Sens. 2021, 42, 2663–2685. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Pal, M.; Foody, G.M. Feature Selection for Classification of Hyperspectral Data by SVM. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2297–2307. [Google Scholar] [CrossRef]
- Duan, Y.; Li, X.; Zhang, L.; Chen, D.; Ji, H. Mapping national-scale aquaculture ponds based on the Google Earth Engine in the Chinese coastal zone. Aquaculture 2020, 520, 734666. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, D.; Tan, W.; Yu, G.; You, J.; Lv, B.; Wu, Z. RCSANet: A full convolutional network for extracting inland aquaculture ponds from high-spatial-resolution images. Remote Sens. 2020, 13, 92. [Google Scholar] [CrossRef]
- Zhang, M.; Dong, J.; Gao, Y.; Liu, Y.; Zhou, C.; Meng, X.; Li, X.; Li, M.; Wang, Y.; Dai, D. Patterns of phytoplankton community structure and diversity in aquaculture ponds, Henan, China. Aquaculture 2021, 544, 737078. [Google Scholar] [CrossRef]
- Wang, W.; Chen, J.; Fang, L.; Yinglan, A.; Ren, S.; Men, J.; Wang, G. Remote sensing retrieval and driving analysis of phytoplankton density in the large storage freshwater lake: A study based on random forest and Landsat-8 OLI. J. Contam. Hydrol. 2024, 261, 104304. [Google Scholar] [CrossRef]
- Gu, Z.; Zhang, Z.; Yang, J.; Wang, L. Quantifying the influences of driving factors on vegetation EVI changes using structural equation model: A case study in Anhui province, China. Remote Sens. 2022, 14, 4203. [Google Scholar] [CrossRef]
- Pôças, I.; Calera, A.; Campos, I.; Cunha, M. Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches. Agric. Water Manag. 2020, 233, 106081. [Google Scholar] [CrossRef]
- Bhangale, U.; More, S.; Shaikh, T.; Patil, S.; More, N. Analysis of surface water resources using Sentinel-2 imagery. Procedia Comput. Sci. 2020, 171, 2645–2654. [Google Scholar] [CrossRef]
- Li, L.; Su, H.; Du, Q.; Wu, T. A novel surface water index using local background information for long term and large-scale Landsat images. ISPRS J. Photogramm. Remote Sens. 2021, 172, 59–78. [Google Scholar] [CrossRef]
- Duan, M.; Song, X.; Liu, X.; Cui, D.; Zhang, X. Mapping the soil types combining multi-temporal remote sensing data with texture features. Comput. Electron. Agric. 2022, 200, 107230. [Google Scholar] [CrossRef]
- Wu, H.; Lin, A.; Xing, X.; Song, D.; Li, Y. Identifying core driving factors of urban land use change from global land cover products and POI data using the random forest method. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102475. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, X. Improving land cover classification in an urbanized coastal area by random forests: The role of variable selection. Remote Sens. Environ. 2020, 251, 112105. [Google Scholar] [CrossRef]
- Abdi, A.M. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GIScience Remote Sens. 2020, 57, 1–20. [Google Scholar] [CrossRef]
- Quan, Y.; Hutjes, R.W.; Biemans, H.; Zhang, F.; Chen, X.; Chen, X. Patterns and drivers of carbon stock change in ecological restoration regions: A case study of upper Yangtze River Basin, China. J. Environ. Manag. 2023, 348, 119376. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Pal, S.; Liou, Y.-A.; Rahman, A. Land-use land-cover classification by machine learning classifiers for satellite observations—A review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef]
- Duran, Z.; Ozcan, K.; Atik, M.E. Classification of photogrammetric and airborne lidar point clouds using machine learning algorithms. Drones 2021, 5, 104. [Google Scholar] [CrossRef]
- Jiang, W.; Zhang, M.; Long, J.; Pan, Y.; Ma, Y.; Lin, H. HLEL: A wetland classification algorithm with self-learning capability, taking the Sanjiang Nature Reserve I as an example. J. Hydrol. 2023, 627, 130446. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Usman, M.; Ejaz, M.; Nichol, J.E.; Farid, M.S.; Abbas, S.; Khan, M.H. A Comparison of Machine Learning Models for Mapping Tree Species Using WorldView-2 Imagery in the Agroforestry Landscape of West Africa. ISPRS Int. J. Geo-Inf. 2023, 12, 142. [Google Scholar] [CrossRef]
- Ge, G.; Shi, Z.; Zhu, Y.; Yang, X.; Hao, Y. Land use/cover classification in an arid desert-oasis mosaic landscape of China using remote sensed imagery: Performance assessment of four machine learning algorithms. Glob. Ecol. Conserv. 2020, 22, e00971. [Google Scholar] [CrossRef]
- Islam, M.R.; Nahiduzzaman, M. Complex features extraction with deep learning model for the detection of COVID19 from CT scan images using ensemble based machine learning approach. Expert Syst. Appl. 2022, 195, 116554. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Hu, S.; He, W.; Zhou, B.; Peng, J.; Wang, K. The area prediction of western North Pacific Subtropical High in summer based on Gaussian Naive Bayes. Clim. Dyn. 2022, 59, 3193–3210. [Google Scholar] [CrossRef]
- Mao, W.; Lu, D.; Hou, L.; Liu, X.; Yue, W. Comparison of machine-learning methods for urban land-use mapping in Hangzhou city, China. Remote Sens. 2020, 12, 2817. [Google Scholar] [CrossRef]
- Ghayour, L.; Neshat, A.; Paryani, S.; Shahabi, H.; Shirzadi, A.; Chen, W.; Al-Ansari, N.; Geertsema, M.; Pourmehdi Amiri, M.; Gholamnia, M. Performance evaluation of sentinel-2 and landsat 8 OLI data for land cover/use classification using a comparison between machine learning algorithms. Remote Sens. 2021, 13, 1349. [Google Scholar] [CrossRef]
- Abbas, Z.; Jaber, H.S. Accuracy assessment of supervised classification methods for extraction land use maps using remote sensing and GIS techniques. IOP Conf. Ser. Mater. Sci. Eng. 2020, 745, 012166. [Google Scholar] [CrossRef]
- Xia, Z.; Guo, X.; Chen, R. Automatic extraction of aquaculture ponds based on Google Earth Engine. Ocean. Coast. Manag. 2020, 198, 105348. [Google Scholar] [CrossRef]
GLCM | Description |
---|---|
Mean | Reflects the degree of regularity of the texture. |
Variance | Measures the dispersion of the gray-level distribution to emphasize the visual edges of land cover patches. |
Homogeneity | Measures the local gray-level homogeneity of an image. |
Contrast | Reflects the total amount of local gray-level changes in an image. |
Dissimilarity | Similar to contrast, if the local contrast is higher, the dissimilarity is also higher. |
Entropy | Measures the amount of information contained in an image, representing the degree of non-uniformity or complexity of textures within the image. |
Angular Second Moment | Measures the uniformity of the image gray-level distribution, reflecting the degree of uniformity of the image gray-level distribution and the coarseness of the texture. |
Correlation | Measures the linear relationship of gray levels, describing the degree of similarity between elements in rows or columns. |
Mean | Reflects the degree of regularity of the texture. |
Schemes | Feature Variables |
---|---|
Scheme 1: spectral feature | Blue band, green band, red band, NIR band, SWIR1 band, SWIR2 band |
Scheme 2: spectral feature +index feature | Blue band, green band, red band, NIR band, SWIR1 band, SWIR2 band, EVI, MNDWI |
Scheme 3: spectral feature + texture feature | Blue band, green band, red band, NIR band, SWIR1 band, SWIR2 band, PC1, PC2, PC3, PC4, PC5 |
Scheme 4: index feature + texture feature | EVI, MNDWI, PC1, PC2, PC3, PC4, PC5 |
Scheme 5: spectral feature + index feature + texture feature | Blue band, green band, red band, NIR band, SWIR1 band, SWIR2 band, EVI, MNDWI, PC1, PC2, PC3, PC4, PC5 |
Model | OA (%) | Kappa | PA (%) | Recall (%) | F1 |
---|---|---|---|---|---|
KNN scheme 1 | 84.93 | 0.80 | 84.69 | 84.93 | 0.85 |
KNN scheme 2 | 85.26 | 0.80 | 84.99 | 85.26 | 0.85 |
KNN scheme 3 | 85.51 | 0.81 | 85.36 | 85.51 | 0.85 |
KNN scheme 4 | 85.74 | 0.81 | 85.59 | 85.74 | 0.86 |
KNN scheme 5 | 85.83 | 0.81 | 85.68 | 85.83 | 0.86 |
GNB scheme 1 | 59.68 | 0.48 | 60.68 | 59.68 | 0.58 |
GNB scheme 2 | 60.57 | 0.49 | 64.34 | 60.57 | 0.61 |
GNB scheme 3 | 58.01 | 0.45 | 59.79 | 58.01 | 0.55 |
GNB scheme 4 | 59.44 | 0.46 | 58.22 | 59.44 | 0.56 |
GNB scheme 5 | 60.90 | 0.50 | 65.83 | 60.90 | 0.61 |
ANN scheme 1 | 69.74 | 0.59 | 67.79 | 69.74 | 0.68 |
ANN scheme 2 | 70.85 | 0.60 | 69.72 | 70.85 | 0.68 |
ANN scheme 3 | 75.57 | 0.67 | 74.66 | 75.57 | 0.75 |
ANN scheme 4 | 76.50 | 0.68 | 75.76 | 76.50 | 0.76 |
ANN scheme 5 | 76.00 | 0.67 | 74.93 | 76.00 | 0.75 |
RF scheme 1 | 92.51 | 0.90 | 92.43 | 92.51 | 0.92 |
RF scheme 2 | 92.28 | 0.90 | 92.20 | 92.28 | 0.92 |
RF scheme3 | 95.92 | 0.95 | 95.91 | 95.92 | 0.96 |
RF scheme 4 | 92.03 | 0.89 | 91.98 | 92.03 | 0.92 |
RFscheme 5 | 95.66 | 0.94 | 95.65 | 95.66 | 0.96 |
XGBoost scheme 1 | 91.62 | 0.92 | 91.62 | 91.62 | 0.92 |
XGBoost scheme 2 | 92.01 | 0.89 | 91.93 | 92.01 | 0.92 |
XGBoost scheme 3 | 96.07 | 0.95 | 96.05 | 96.07 | 0.96 |
XGBoost scheme 4 | 91.32 | 0.88 | 91.27 | 91.32 | 0.91 |
XGBoost scheme5 | 96.15 | 0.95 | 96.14 | 96.15 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, G.; Bai, X.; Peng, Y.; Li, Y.; Zhang, C.; Liu, Y.; Liang, J.; Fang, L.; Chen, J.; Men, J.; et al. Aquaculture Ponds Identification Based on Multi-Feature Combination Strategy and Machine Learning from Landsat-5/8 in a Typical Inland Lake of China. Remote Sens. 2024, 16, 2168. https://doi.org/10.3390/rs16122168
Xie G, Bai X, Peng Y, Li Y, Zhang C, Liu Y, Liang J, Fang L, Chen J, Men J, et al. Aquaculture Ponds Identification Based on Multi-Feature Combination Strategy and Machine Learning from Landsat-5/8 in a Typical Inland Lake of China. Remote Sensing. 2024; 16(12):2168. https://doi.org/10.3390/rs16122168
Chicago/Turabian StyleXie, Gang, Xiaohui Bai, Yanbo Peng, Yi Li, Chuanxing Zhang, Yang Liu, Jinhui Liang, Lei Fang, Jinyue Chen, Jilin Men, and et al. 2024. "Aquaculture Ponds Identification Based on Multi-Feature Combination Strategy and Machine Learning from Landsat-5/8 in a Typical Inland Lake of China" Remote Sensing 16, no. 12: 2168. https://doi.org/10.3390/rs16122168
APA StyleXie, G., Bai, X., Peng, Y., Li, Y., Zhang, C., Liu, Y., Liang, J., Fang, L., Chen, J., Men, J., Wang, X., Wang, G., Wang, Q., & Ren, S. (2024). Aquaculture Ponds Identification Based on Multi-Feature Combination Strategy and Machine Learning from Landsat-5/8 in a Typical Inland Lake of China. Remote Sensing, 16(12), 2168. https://doi.org/10.3390/rs16122168