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Abstract: Inland aquaculture ponds, as an important land use type, have brought great economic
benefits to local people but at the same time have caused many environmental problems threatening
regional ecology security. Therefore, understanding the spatiotemporal pattern of aquaculture ponds
and its potential influence on water quality is vital for the sustainable development of inland lakes.
In this study, based on Landsat5/8 images, three types of land features, namely spectral features,
index features, and texture features, and five machine learning algorithms, namely random forest
(RF), extreme gradient boosting (XGBoost), artificial neural network (ANN), k-nearest neighbor
(KNN), and Gaussian naive Bayes (GNB), were combined to identify aquaculture ponds and some
other primary land use types around a typical inland lake of China. The results demonstrated
that the XGBoost algorithm that integrated the three features performed the best among all groups
of the five machine learning algorithms and the three features, with an overall accuracy of up to
96.15%. In particular, the texture features provided additional useful information besides the spectral
features to allow more accurately separation of aquaculture ponds from other land use types and
thus improve the land use mapping ability in complex inland lakes. Next, this study examined the
tendency of aquaculture ponds and found a segmented increase mode, namely sharp increase during
1984–2003 and then slow elevation since 2003. Further positive correlation detected between the
area of aquaculture ponds and the phytoplankton population dynamics suggest a likely influence of
aquaculture activity on the lake water quality. This study provides an important scientific basis for
the sustainable management and ecological protection of inland lakes.

Keywords: aquaculture pond; land use classification; machine learning; spatiotemporal pattern;
water quality

1. Introduction

Land use and cover change (LUCC) is currently a hot area of global environmental
change, which closely links human society and natural ecological processes and has a
profound impact on human survival and development [1,2]. Aquaculture ponds, one of
the important land use types, serve as one of the main sources of animal protein and are
increasingly contributing to food security in Asia’s populous inland cities. Specifically,
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China’s aquaculture production accounted for approximately 60% of the world total until
2020 [3,4]. As the size of ponds has increased considerably, intensive aquaculture has caused
serious destructive effects on local environments, such as the decrease in water quality,
the decline in biodiversity, and the loss of services provided by aquatic ecosystems [5–7].
Therefore, understanding the expansion pattern of aquaculture ponds in inland lakes and
its influences on local environments is of great importance to the healthy development of
human–natural ecosystems.

In previous studies, scholars have devoted themselves to improving the accuracy of
land use classification from two aspects, namely, the incorporation of multi-source features
and the development of new classification algorithms. Multi-source features, mainly
including band reflectance, remote sensing indices, and texture characteristics, and the rich
fusion of these features can provide comprehensive surface information and thus enhance
the ability of land use mapping. For example, Chen et al. (2017) [8] jointly employed
Landsat-8 OLI, MODIS, HJ-1A, and ASTER DEM data to perform land cover classification
in Beijing by integrating temporal, spectral, angular, and topographic information, which
achieved a 4.53% higher overall accuracy (OA) than using only OLI data. Li et al. (2023) [9]
deeply explored the scaling effect of image spatial resolution on land cover classification
from the perspectives of hybrid image element decomposition and spatial heterogeneity
based on GF-2, SPOT-6, Sentinel-2, and Landsat-8, and showed that GF-2 and SPOT-6
had the best classification performance with an OA of up to 92.81%. In addition, Feyisa
et al. (2014) [10] proposed the innovative Automatic Water Extraction Index (AWEI), which
improved the classification accuracy (kappa = 0.98) of shaded and dark surface areas that
are usually difficult to classify correctly by normal methods in New Zealand. Huang et al.
(2015) [11] successfully integrated texture features and DEM data using the BP artificial
neural network and gained high accuracy in remote sensing image classification and land
use change detection (OA = 95.08%).

In terms of algorithms applied to land use classification, traditional classification
models such as the maximum likelihood method [12], the K-means method [13,14], and
the k-nearest neighbor algorithm (KNN) [15] dominated early research. However, with
the rapid development of pattern recognition and machine learning, some intelligent algo-
rithms such as support vector machine (SVM) [16] and neural networks [17] have gradually
come to the forefront, presenting higher accuracy and effectiveness than the traditional
parametric methods in land use classification. Tree-based models, especially those equipped
with learning methods such as random forest (RF) [18] and Extreme Gradient Boosting
Tree (XGBoost) [19], have attracted widespread attention for their excellent performance
and ease of use. In addition, feature selection plays a key role in improving classification
accuracy [20]. By removing irrelevant or redundant features, model performance could be
largely optimized without losing important information. It has been proven that proper
feature selection has a significant impact on the final classification accuracy [21].

Inland lake aquaculture ponds are often overlooked or not included in the existing
land use classification system. This is mainly due to the special nature and complexity of
lake aquaculture ponds, which make them difficult to clearly delineate with traditional
land use types. As a way of utilizing waters, lake aquaculture ponds have their own unique
functions and characteristics, which are different from general land use types such as
water bodies or agricultural land. Specifically, aquaculture ponds often appear as regularly
shaped, isolated, and enclosed bodies of water [22,23]. The water quality of ponds is highly
affected by aquaculture activities, such as feed delivery and fish excretion, which lead to a
significant increase in the material circulation efficiency in the pond [24]. Therefore, a lot of
aquaculture ponds are easily covered by some plant vegetation and phytoplankton in the
growing season as an abundant nutrient supplement, which makes it hard to distinguish
them from land vegetation.

Traditional land use classification mainly focuses on distinguishable land utilization
modes, such as water bodies, agriculture, forests, and built-up areas, while it lacks a
finer categorization of water use modes in the land–water transition zone. Normally, in
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the existing land classification system, lake aquaculture ponds are often categorized as
an unspecified type or ignored. This fails to meet the needs of the scientific protection
and sustainable development of lake resources. To accurately evaluate the intensity of
aquaculture ponds, and to detect and quantify the distribution and change trends of
aquaculture ponds, we selected a typical inland lake with a long history of fish pond
culture in northern China to (1) implement different classifiers based on multilevel feature
fusion for LUCC mapping and change detection for the selected 10 years of Landsat data
from 1984 to 2022 and (2) explore the spatiotemporal pattern of aquaculture ponds and
other associated land use types and their potential impacts on local water quality.

2. Materials and Methods
2.1. Study Area

Nansi Lake (116◦34′–117◦21′E, 34◦27′–35◦20′N) is one of the most important freshwa-
ter lakes in North China (Figure 1), which is not only the main fishery base of Shandong
Province but also a critical intermediate lake on the east route of the South-to-North Water
Transfer Project. It is approximately 126 km long from north to south and 5–25 km wide
from east to west. The central part of the lake is slightly narrower, while the northern
and southern parts are broader, forming a teardrop shape. The average water depth in
the lake is 2 m. The study region belongs to a warm temperate semi-humid monsoon
climate zone with an average annual temperature of about 13.7 ◦C and an average annual
precipitation of 695.2 mm. More than 70% of the annual precipitation falls in the flood
season from June to September. Pit-pond culture is the dominant fishery type in Nansi Lake
and a vital part of the local economy. Aquaculture ponds constructed by setting up dike
banks near the shore are mainly distributed in the water of Nansi Lake. However, with the
continuous economic development, the land use structure of the lake area has undergone
significant changes in the past several decades. The explosive growth in local population
and economic development and the rapid expansion in aquaculture ponds have led to a
continuous decrease in the arable land and waters and unavoidably resulted in a certain
degree of ecological imbalance in this area.
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Figure 1. Geographical location and overview of Nansi Lake.

2.2. Data

Landsat TM/OLI (L2) images from 1984 to 2022 provided by the United States Ge-
ological Survey (USGS) were used in this study to carry out land cover classification. In
order to accurately separate aquaculture ponds from nearshore vegetation, we elaborately
selected a total of 10 winter cloud-free images to eliminate the effect of spectral convergence
caused by plants growing in the ponds during growing season. The acquisition dates of
these images were 7 February 1987, 27 January 1989, 24 December 1993, 5 February 1998,
31 January 2002, 20 December 2003, 26 January 2006, 29 November 2013, 10 December 2017,
and 5 December 2021, respectively. In order to comprehensively analyze the long-term
changes in LUCC around the lake, we set a 5 km buffer zone based on the vector extent
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of the lake. When determining the land cover types, we fully considered the actual land
use status in the Nansi Lake area, and the potential relationship between different land
use types and the dynamic changes in aquaculture ponds. Therefore, five land cover types
were identified in the current study, namely farmland, water, aquaculture pond, built-up
land, and others (primarily consists of forests and barens). In addition, the phytoplankton
density data derived from Wang et al. (2024) [25] were adopted to study the possible
influence of aquaculture activity on lake water quality, which allowed an RF-based model
to be developed to quantify the ecological status in Nansi Lake by means of Landsat-8 OLI
images and obtained a high prediction accuracy.

2.3. Samples Collection

In remote sensing image classification, sample quality is crucial to the final mapping
accuracy. Following the principle of full frame selection, all Landsat TM/OLI images
covering the study area were comprehensively visually interpreted. Special attention was
paid to the selection of representative pixels for each type of land use to ensure that the
samples could truly reflect the spectral characteristics and spatial distribution of each type
of feature. After strict screening and calibration, 11,489 sample points evenly distributed
throughout the study area were finally identified, including 1877 samples for farmland,
2649 samples for water, 3102 samples for aquaculture pond, 1122 samples for built-up land,
and 2739 samples for others. This approach fully considered the balance of the scale of
each LUCC type and thus could avoid classification bias due to excessive differences in
the number of samples. Then, we randomly divided them into training and test datasets
with an 8:2 ratio to ensure that the model could be adequately trained and its classification
performance effectively evaluated.

2.4. Classification Features

First, this study selected the three visible bands, the near-infrared band and the
two short-wave infrared bands, corresponding to the B1, B2, B3, B4, B5, and B7 bands of
Landsat5 TM and the B2, B3, B4, B5, B6, and B7 bands of Landsat8 OLI, as the direct features
to capture the difference among land use types in spectral characteristics. Second, we
considered the Enhanced Vegetation Index (EVI) and the Modified Normalized Difference
Water Index (MNDWI) as two other keys to enhance the discrepancy among the targeted
objects. The EVI could reduce the atmospheric effects and address the saturation issue
in the area of high vegetation coverage found in the traditional normalized difference
vegetation index [26,27]. The expression is as follows:

EVI = 2.5 × ρnir − ρred
ρnir + 6 × ρred − 7.5 × ρblue + 1

(1)

where ρnir, ρred, and ρblue are the atmospherically corrected reflectance values for the
near-infrared and red and blue bands, respectively.

MNDWI can eliminate the effect of terrain difference and solve the problem of noise
in water body identification [28,29]. The expression is as follows:

MNDWI = (Green − SWIR1)/(Green + SWIR1) (2)

where Green and SWIR1 are the reflectance values in the green band and short-wave
infrared band 1, respectively.

In addition, we also adopted the gray-level co-occurrence matrix (GLCM) method to
extract texture information by calculating the gray-level spatial relationship between pixels
for further improving the classification accuracy [30]. Texture features play a crucial role in
the recognition of ground object types, especially in distinguishing ground objects with
similar spectral features but different spatial features. For example, aquaculture pond and
water body are similar in spectral reflection, but their texture features, such as regularity,
roughness, and grain size, may differ significantly. By introducing texture features, we can
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more accurately depict the spatial structure of ground objects, thus improving the accuracy
of classification. In total, eight texture metrics were calculated, including mean, variance,
homogeneity, contrast, dissimilarity, entropy, angular second moment, and correlation.
These variables provide an effective tool for quantifying surface irregularities and are
essential for distinguishing different land cover categories (Table 1). To guarantee the
accuracy and effectiveness of the texture analysis, we used a window size of 3 × 3 to
traverse the entire image pixel by pixel and took the gray level of 64 to capture the detailed
texture information in the image. With the above settings, we successfully extracted
48 texture features from the original image. However, too many features may lead to an
increase in computational complexity and a decrease in classification performance. In
order to reduce the feature dimension and extract the most important information, we
performed principal component transform analysis on these texture features. Principal
component analysis (PCA) is a statistical tool that transforms the original features into
new, unrelated features through linear transformations. These new features are called
principal components. The purpose of PCA is to identify the most important features from
the data and aggregate them into a new, smaller set of features that explain the greatest
degree of variance in the data. By calculating the covariance matrix of the texture feature
matrix, PCA determines the direction that can maximize the variance in the data, that is,
the main direction of the data change. Each principal component is a linear combination of
the original features, with the first principal component explaining the largest variance in
the data, the second principal component explaining the largest portion of the remaining
variance, and so on. The first 5 principal components were selected for the subsequent land
use classification.

Table 1. Characteristics and description of selected GLCM.

GLCM Description

Mean Reflects the degree of regularity of the texture.

Variance Measures the dispersion of the gray-level distribution to
emphasize the visual edges of land cover patches.

Homogeneity Measures the local gray-level homogeneity of an image.

Contrast Reflects the total amount of local gray-level changes in an image.

Dissimilarity Similar to contrast, if the local contrast is higher, the dissimilarity
is also higher.

Entropy
Measures the amount of information contained in an image,
representing the degree of non-uniformity or complexity of
textures within the image.

Angular Second Moment
Measures the uniformity of the image gray-level distribution,
reflecting the degree of uniformity of the image gray-level
distribution and the coarseness of the texture.

Correlation Measures the linear relationship of gray levels, describing the
degree of similarity between elements in rows or columns.

Mean Reflects the degree of regularity of the texture.

2.5. Classification Algorithms

In this study, we employed two tree-based machine learning models, RF and XGBoost;
two classical models, KNN and Gaussian naive Bayes (GNB); and artificial neural network
(ANN) for land cover classification. The RF model is the most widely used classification
model in LUCC classification, with proven accuracy [31,32]. The XGBoost model stands
out in the field of machine learning due to its efficient processing of large-scale data [33,34].
ANN is one of the most commonly used non-parametric classification techniques, renowned
for its strong generalization capabilities [35]. KNN and GNB are both traditional machine
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learning algorithms that are computationally simple, run efficiently, and perform well in
land object identification with high homogeneity [36,37].

2.5.1. RF

RF is an integrated classifier based on decision trees, each of which is independently
generated with a user-defined number of features on which its node splits are based. The
selection of these features is randomized to warrant model diversity. The training data
and variables for each decision tree are generated through a bagging strategy, and the final
classification results are derived through majority voting [38]. In this study, we set the
number of trees (n_estimators) to 100 to ensure that the model had sufficient diversity; we
set the maximum number of features per tree (max_features) to the square root of the total
number of features to balance the complexity of the model and the risk of overfitting.

2.5.2. XGBoost

XGBoost, a remarkable machine learning algorithm based on the Gradient Boosting
Decision Tree framework, stands out due to its superior flexibility, high efficiency, and
outstanding performance in Kaggle machine learning competitions [19]. By introducing
a regularization mechanism, XGBoost is able to smooth the weights of the final learning,
effectively avoid the overfitting issue, and thus improve the learning accuracy. In addi-
tion, XGBoost is equipped with parallel and distributed computing capabilities, which
significantly accelerates the learning speed. In this study, we set the number of itera-
tions (n_estimators) to 100, the maximum depth of the decision tree (max_depth) to 10, and
learning_rate to 1.

2.5.3. KNN

KNN is an instance-based classifier for classification and regression [39]. It does not
rely on an explicit model training process, but instead finds the K closest training samples
to an unknown sample by measuring the distance of that sample from all samples in the
training set, and uses the category with the most votes as the prediction for the unknown
sample based on the category labels of the K samples [40]. After experimental validation,
K was set to 20 for ensuring that the model can make full use of the information from
neighboring samples when classifying, while avoiding the influence of noisy data on the
classification results.

2.5.4. GNB

GNB is a machine learning algorithm that uses probabilistic methods and relies on
Gaussian distributions. Its principle is based on Bayes’ theorem and the assumption of
conditional independence between features, i.e., the feature variables of each category obey
a normal distribution. By calculating the mean and variance of the feature variables of
each category, the algorithm can estimate the probability that an unknown sample belongs
to each category based on these statistics [41,42]. In our dataset, the distribution of most
features is approximately normal, which provides a reasonable basis for the application of
the GNB model (Figure S1). In this study, in GNB parameters, the prior was set to none
and var_smoothing was set to 1 × 10−9.

2.5.5. ANN

The ANN classification algorithm learns the relationship between input features
and output categories through a training process. During training, the network calcu-
lates outputs through forward propagation and then computes output errors through the
backpropagation algorithm, updating network weights based on these errors [43]. ANN
classification algorithms typically consist of an input layer, one or more hidden layers, and
an output layer, with each neuron using an activation function (Sigmoid, Tanh, ReLU, etc.)
to determine whether to activate, introducing non-linear factors that enable the neural
network to learn and model complex non-linear relationships [44]. In this study, we em-



Remote Sens. 2024, 16, 2168 7 of 15

ployed Multilayer Perceptron (MLP) as the neural network architecture, selected the logistic
function as the activation function, and chose the lbfgs optimizer to refine the weights.

2.6. Analysis

Based on spectral features, index features, and texture features, we constructed three
feature schemes (Table 2) and trained KNN, GNB, ANN, RF, and XGBoost classification
models, respectively.

Table 2. Experimental feature schemes.

Schemes Feature Variables

Scheme 1:
spectral feature Blue band, green band, red band, NIR band, SWIR1 band, SWIR2 band

Scheme 2:
spectral feature
+index feature

Blue band, green band, red band, NIR band, SWIR1 band,
SWIR2 band, EVI, MNDWI

Scheme 3:
spectral feature + texture feature

Blue band, green band, red band, NIR band, SWIR1 band, SWIR2 band,
PC1, PC2, PC3, PC4, PC5

Scheme 4:
index feature + texture feature EVI, MNDWI, PC1, PC2, PC3, PC4, PC5

Scheme 5:
spectral feature + index feature + texture feature

Blue band, green band, red band, NIR band, SWIR1 band, SWIR2 band,
EVI, MNDWI, PC1, PC2, PC3, PC4, PC5

In order to objectively and systematically evaluate the performance of different clas-
sification algorithms and feature schemes, we used a variety of statistical metrics for
quantitative analysis. Specifically, we calculated the confusion matrix of each model based
on the training and testing datasets to visualize the model’s classification effect on each
category of samples. On this basis, we further quantified the OA, which can directly reflect
the proportion of objects correctly classified by the model, providing us with an intuitive
performance measurement.

In addition, in order to evaluate the model performance more comprehensively, we
also introduced the Kappa consistency coefficient, which is an indicator describing the
degree of consistency between the model’s classification results and the actual situation.
Meanwhile, we further calculated the Producer Accuracy (PA) and recall to assess model
performance in terms of the prediction of positive examples of the classification results and
the recall of real positive examples.

Finally, we adopted the F1 score as a comprehensive evaluation metric, which com-
bines the information of precision and recall and can fully reflect the comprehensive
performance of the model in the classification task. Through the comprehensive analysis of
these metrics, we are able to more objectively and comprehensively assess the performance
of different classification algorithms and feature schemes in LUCC classification.

3. Results
3.1. Feature Selection and Feature Importance

In this study, feature importance was assessed for the three feature schemes using
RF (Figure 2). Among the 13 features assessed, the index feature EVI had the highest
importance score of 0.16, indicating that EVI played a key role in classification prediction.
The spectral features NIR and SWIR1 also exhibited high importance scores, reflecting their
effectiveness in distinguishing different LUCC types. For texture features, the importance
scores of the principal components PC1 and PC2 were relatively higher than PC3, PC4, and
PC5. In comparison, the effects of visible bands are relatively weaker than those of index
and texture features.
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Figure 2. Importance ranking of 13 feature variables.

3.2. Feature Profile Comparison

In order to legibly understand the gaps among the five targeted objects, we sys-
tematically compared their differences in spectral features, index features, and principal
components of texture features (Figure 3). In the visible light bands, the reflectance distri-
butions of the five objects were relatively similar and generally in the range of 0~0.2. This
indicated that the spectral characteristics of these classes did not differ too much in the
visible light bands, making it difficult to effectively distinguish them by only relying on the
spectral gaps in visible bands. In comparison, in the non-visible bands (NIR, SWIR1, and
SWIR2), the spectral properties of the five classes showed significant differences. Specifi-
cally, farmland and built-up areas had relatively higher reflectance in the NIR and SWIR
bands than aquaculture ponds, water, and others. Meanwhile, water in particular reflected
less than aquaculture ponds, which would be helpful to distinguish them. Regarding
index features, the highest EVI values and the smallest MNDWI values were detected
in farmland. The EVI and MNDWI value of aquaculture ponds lies between water and
built-up areas/others. As for texture profiles, only PC1 and PC2 exhibited obvious gaps
among the five classes, providing an effective basis for LUCC classification. In contrast, the
PC3-PC5 principal components largely overlapped with each other, suggesting that they
were useless for improving classification accuracy.
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3.3. Accuracy Comparation of Different Classification Models

The performance of classification models was explored in depth on the test data
(Table 3). Among the classifiers, the XGBoost and RF models exhibited better performance
in the classification task and reached higher accuracies of up to 96.15% and 95.92%, re-
spectively. In contrast, the GNB model performed the worst with an accuracy below 65%.
Among the three feature schemes examined, scheme 5 that incorporated texture features
outperformed all other schemes overall, especially the XGBoost classifier. In comparison,
scheme 3, which only included spectral and texture features, was slightly less effective
than scheme 5, indicating the significance of spectral features in the classification process.
scheme 4, which contained only index and texture features, had lower classification ac-
curacy than scheme 5, further confirming the critical role of spectral features in classifi-
cation tasks.

Table 3. Comparison of classification accuracy of different models.

Model OA (%) Kappa PA (%) Recall (%) F1

KNN scheme 1 84.93 0.80 84.69 84.93 0.85
KNN scheme 2 85.26 0.80 84.99 85.26 0.85
KNN scheme 3 85.51 0.81 85.36 85.51 0.85
KNN scheme 4 85.74 0.81 85.59 85.74 0.86
KNN scheme 5 85.83 0.81 85.68 85.83 0.86
GNB scheme 1 59.68 0.48 60.68 59.68 0.58
GNB scheme 2 60.57 0.49 64.34 60.57 0.61
GNB scheme 3 58.01 0.45 59.79 58.01 0.55
GNB scheme 4 59.44 0.46 58.22 59.44 0.56
GNB scheme 5 60.90 0.50 65.83 60.90 0.61
ANN scheme 1 69.74 0.59 67.79 69.74 0.68
ANN scheme 2 70.85 0.60 69.72 70.85 0.68
ANN scheme 3 75.57 0.67 74.66 75.57 0.75
ANN scheme 4 76.50 0.68 75.76 76.50 0.76
ANN scheme 5 76.00 0.67 74.93 76.00 0.75

RF scheme 1 92.51 0.90 92.43 92.51 0.92
RF scheme 2 92.28 0.90 92.20 92.28 0.92
RF scheme3 95.92 0.95 95.91 95.92 0.96
RF scheme 4 92.03 0.89 91.98 92.03 0.92
RFscheme 5 95.66 0.94 95.65 95.66 0.96

XGBoost scheme 1 91.62 0.92 91.62 91.62 0.92
XGBoost scheme 2 92.01 0.89 91.93 92.01 0.92
XGBoost scheme 3 96.07 0.95 96.05 96.07 0.96
XGBoost scheme 4 91.32 0.88 91.27 91.32 0.91
XGBoost scheme5 96.15 0.95 96.14 96.15 0.96

This study employed the XGBoost scheme 5 classification scheme to evaluate the
accuracy of land use types and presented the corresponding normalized confusion matrix
(Figure 4). Among the different land use types, built-up land had the lowest classification
accuracy, with PA and recall of 91.3% and 88.63%, respectively. In contrast, farmland had
the highest recall, reaching 97.19%, while the ‘other’ type had the highest PA, at 97.24%
(Figure 4b). Apart from built-up land, the correct classification ratio for other land use
types was generally higher than 0.9. The correct classification ratio for aquaculture ponds
was 0.93, which was relatively superior among all land use types. Further analysis of the
misclassification of aquaculture ponds revealed that the highest proportion of errors was
with water, amounting to 0.03 (Figure 4a). This indicates the high accuracy of XGBoost
scheme 5 in classifying most types of land use.

In terms of visualization, compared to scheme 1, scheme 2, and scheme 4, the patch
integrity of surface objects predicted under scheme 5 was significantly improved and the
confusion of categories was significantly reduced (Figure 5). Especially in the categorization
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of aquaculture ponds, scheme 5-based prediction significantly refined the continuity and
completeness of their distribution.
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3.4. Land Cover Changes in Nansi Lake

Based on the results predicted by the XGBoost classifier under scheme 5, this study
analyzed the development of the area of five land cover types around Nansi Lake between
1987 and 2021 (Figure 6b). Built-up land and aquaculture ponds have largely expanded
since 1987. Specifically, the area of built-up land extended from 120 km2 in 1987 to 296 km2

in 2021, while the area of aquaculture ponds surged from 48 km2 to 842 km2, with a sharp
increase during 1984–2003. On the contrary, the area of the ‘other’ type greatly shrank from
the dominant cover type to about 215 km2 by 2021. Farmland showed a slight expansion
tendency overall with a sudden drop around 2003. The area of lake bodies fluctuated
dramatically during the study period but no significant trends were found here. Spatially,
the distribution of aquaculture ponds after 2002 has shown a pronounced characteristic of
geographic clustering, primarily concentrated in the western and central regions of Nansi
Lake (Figure 6a).
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3.5. Relationship between Water Quality and the Expansion of Aquaculture Ponds

This study analyzed the potential impact of aquaculture pond expansion on water
quality, expressed through the amount of phytoplankton in Nansi Lake, by means of
correlation analysis (Figure 7). We found the phytoplankton abundance decreased after
2003 with the increase in the area of aquaculture ponds. Nonetheless, it showed a positive
correlation (R = 0.5) with annual fluctuation, suggesting that its synchronous relationship
with the water quality of the lake may be partially affected by aquaculture activity.
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4. Discussion

In this study, we performed land use classification with Landsat 5/8 images around
Nansi Lake by means of KNN, GNB, RF, and XGB algorithms under multilevel features. Our
results showed that the XGB algorithm, especially when combined with texture features,
achieved the highest classification accuracy of up to 96.15%. Compared with the existing
literature, the classification accuracy in this study is significantly improved. For example,
Talukdar et al. (2020) [35] used the RF algorithm to classify a riparian landscape in India
and obtained a lower classification accuracy with a kappa coefficient of 0.89. Similarly,
Abbas and Jaber (2020) [45] used WorldView-2 image and SVM algorithm to classify the
land use in Hilla City in Babylon, Iraq, and obtained an overall classification accuracy of
94.48% and a kappa coefficient of 0.9, which are still less than in the current study. Xia et al.
(2020) [46] extracted aquaculture ponds in Shanghai by integrating existing multi-source
remote sensing data on the Google Earth Engine platform and combining multi-threshold
connection component segmentation and random forest algorithm and reached an OA of
91.8%, which is still lower than the current study. This study not only confirms the key role
of multiple feature integration in improving classification results, but also highlights the
great potential of advanced machine learning algorithms in land use classification.

The key to achieving such a high classification accuracy in this study is the innovative
introduction of texture features and effective dimensionality reduction. Texture features
enable the model to better distinguish objects with similar spectra but large texture dif-
ferences, especially for specific surface object types such as aquaculture ponds. The PCA
method effectively reduced the information redundancy among features and improved the
classification ability. The first PCA component typically accounts for the largest variance in
the PCA analysis of texture data, while the second principal component explains the most
variance among the remaining components, and so on. The first five principal components
collectively represent approximately 99.99% of the shape information of all land cover
types and contributed more to distinguishing aquaculture ponds and farmlands with a
regular shape from others. The overall accuracy of RF scheme 4 is 92.03%, indicating that
satisfactory classification can be achieved even when using only index and texture principal
component features. This may be attributed to the EVI index, a vegetation index that inte-
grates information from the near-infrared, red, and blue bands, outperforming single-band
data in terms of classification performance. Similarly, the MNDWI, as a water body index,
effectively distinguishes water from other land use types by utilizing information from the
shortwave infrared and green bands. It is important to note that although index features
(EVI and MNDWI) are included in this study, their contribution to the final classification
accuracy when combined with spectral and texture features is not significant. However,
in the feature importance evaluation, these indicators scored higher. The reason may be
that the sufficiency of spectral information and its strong collinearity with index features
factually caused no significant increment in useful information in the final classification.
Nevertheless, the contribution of spectral features to the classification process remains
substantial. The overall accuracy of the RF classification model based on spectral features
reached 92.51%, highlighting the key role of spectral features in distinguishing different
land cover types. Particularly in the feature importance evaluation, the NIR band, which
scores highly, is greatly effective in differentiating vegetation types, while the SWIR band
demonstrates its unique ability in identifying water types.

From the perspective of land use change, this study revealed dramatic changes in land
feature type conversion in Nansi Lake. With the advancement of urbanization, natural
land types such as bare land and forest land have been gradually converted to other
uses. At the same time, the expansion of built land and aquaculture ponds reflects the
increasing demand for land due to population growth and urban expansion. It is worth
noting that since 2003, the expansion rate of aquaculture ponds in Nansi Lake has slowed
down, and at the same time, the water quality of Nansi Lake has also shown a gradual
improvement. This change may be closely related to the government’s policy of keeping
the lake natural, which forced a lot of farmers to reduce aquaculture activities to restore
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the integrity of the lake ecosystem. With the reduction in fertilizer application, a decrease
in phytoplankton density was detected. The contrary yearly trends of aquaculture ponds
and water quality are because the embankments of many aquaculture ponds are still there
despite no fishery activity under the strong management of local government. However,
we must also recognize the complexity of the relationship between aquaculture ponds and
changes in water quality in the lake region. The change in water quality is the result of
multiple factors, including climate, hydrology, land use, and human activities. Although
the change in aquaculture pond area has a certain impact on water quality, it is only one of
many factors affecting water quality changes. Therefore, to fully and deeply understand
the causes of water quality evolution, more comprehensive investigation is needed in
the future.

Despite the remarkable results of this study, there are still some limitations that need
to be noted. First, high-precision classification relies heavily on the accurate selection
of training and validation samples. In this study, we used visual interpretation to select
samples, which is inevitably affected by subjective factors. Different interpreters may
classify and categorize feature types in the same area differently according to their own
experiences and judgments, leading to misclassification of sample types and thus adversely
affecting the accuracy of the classification results. Meanwhile, due to the complexity of
local land use types, especially in the transition areas, the unclear boundaries of these
types often make it particularly difficult to accurately select high-purity pixels. Second, the
current studies mainly rely on traditional feature selection methods, which may not be able
to fully mine the potential information in the data. Future research could try to use deep
learning techniques to automatically extract and select the most discriminative features.

5. Conclusions

Aiming at the difficult problem of identifying aquaculture ponds in the Nansi Lake
region, this study integrated multi-level features into different machine learning algorithms
to achieve high-precision land use classification with the highest accuracy of 96.15%,
breaking through the limitations of traditional methods. This study shows that the land
use pattern in the region has greatly transformed, and natural land such as bare land and
forest land has largely been replaced by aquaculture ponds and built-up land. At the same
time, we found that phytoplankton density was correlated with the changes in the area
of aquaculture ponds, suggesting that the expansion of ponds and the reduction in local
farming strength may have changed the hydrological environment of the lake.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs16122168/s1, Figure S1: The data distribution presents the texture
features of five target objects prior to Principal Component Analysis (PCA). These texture features
are derived from eight texture attributes extracted from the six selected spectral bands using the Gray
Level Co-occurrence Matrix (GLCM) method. The attributes include Mean, Variance, Homogeneity,
Contrast, Dissimilarity, Entropy, Angular Second Moment, and Correlation.
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