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Abstract: Dofiana National Park is located in the southwest of the Iberian Peninsula, where water
scarcity is recurrent, together with a high heterogeneity in species and ecosystems. Monitoring carbon
assimilation is essential to improve knowledge of global change in natural vegetation cover. In this
work, a light use efficiency (LUE) model was applied to estimate gross primary production (GPP)
in two ecosystems of Doflana, xeric shrub (drought resistant) and seasonal marsh (with grasslands
dependent on water hydroperiod) and validated with in situ data from eddy covariance (EC) towers
installed in both ecosystems. The model was applied in two ways: (1) using the fraction of absorbed
photosynthetically active radiation (FAPAR) from Sentinel-2 and meteorological data from reanalysis
(ERAD), and (2) using Sentinel-2 FAPAR, reanalysis solar radiation (ERA5) and the Sentinel-2 land
surface water index (LSWI). In both cases and for both ecosystems, the error values are acceptable
(below 1 gC/m?) and in both ecosystems the model using the LSWI gave better results (R? of 0.8 in
marshes and 0.51 in xeric shrubs). The results also show a greater influence of the water status of the
system than of the meteorological variables in this area.

Keywords: LUE; LSWI; Donana National Park; Sentinel-2; ERA5

1. Introduction

The Dofiana National Park (DNP), located in the southwestern part of the Iberian
Peninsula, is one of the most important wetlands in Europe and is home to a great diversity
of ecosystems and species. It is estimated that more than 300 species of birds, 1300 species
of vascular plants, and 27 species of continental fish live in Dofiana [1].

The ecosystems of Dofiana play a key role in the carbon cycle, storing and releasing
large amounts of CO, through photosynthesis and respiration [2]. Within the animal
community, in addition to wild ungulates, there are native breeds of domestic livestock in
an extensive regime, such as the “retuerta” horse and the “mostrenca” cow, which graze
in these ecosystems, and thus accounting for carbon assimilation allows us to know the
availability of forage. This scenario makes carbon assimilation in Dofiana a very relevant
parameter to monitor.

Carbon assimilation is essential for understanding the underlying mechanisms of the
global carbon cycle [3] and is defined as a derived metric to study and manage biodiversity
change [4,5]. However, climate change is affecting plant functioning and altering plant
carbon fluxes, with a decrease in carbon assimilation that is particularly pronounced in
Mediterranean ecosystems such as the southwestern part of the Iberian Peninsula [6-8].

A commonly used indicator of carbon assimilation is gross primary production
(GPP) [9,10], which is the rate of carbon fixation per unit time and over a defined
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area [11-13]. In general, methods for measuring GPP and CO, fluxes have mostly been
developed and evaluated for arable land (e.g., [14-16]). Therefore, the application of these
methods in natural vegetation is the next challenge. This is particularly important in
Mediterranean ecosystems, where vegetation represents different layers, low vegetation
cover and many different species and plant functional types. Flux towers or eddy co-
variance (EC) towers provide the necessary measurements to estimate surface energy and
carbon fluxes in natural land cover and to calibrate and evaluate land surface models [17,18].
However, an EC only covers an area (footprint) that varies with the tower height, target
surface properties, and the wind direction and speed [19]. For regional scale assessment,
it is necessary to combine it with other data sources such as Earth observation imagery
to estimate GPP at both spatial and temporal scales [20,21]. There are several remote
sensing-based models for estimating GPP, which can be broadly classified into four types:
(1) statistical models, (2) light use efficiency (LUE) models, (3) process models integrated
with RS parameters, and (4) machine learning approaches [22]. Recently, LUE models have
experienced rapid development [23] and have been successfully applied to estimate GPP
in different ecosystems and climates using different sources of remote sensing imagery
(e.g., [24-26]). However, there are few studies on carbon assimilation by remote sensing in
the Dofiana ecosystems (e.g., [27-29]), and these are mostly focused on the Dofiana marshes.
Furthermore, there are no estimates for sparse xeric scrub, which are needed to improve
our knowledge of the role of sparsely vegetated areas in carbon assimilation [30].

LUE models are based on the work of Monteith [31,32] and assume that GPP is
proportional to the product of the absorbed photosynthetically active radiation (APAR)
by vegetation and the efficiency with which this radiation is converted into biomass.
APAR is usually calculated as the product of FAPAR and incoming photosynthetically
active radiation (PAR), which can be operatively derived from satellite data [33,34]. LUE
depends on environmental and physiological factors that may limit photosynthesis, such
as temperature, humidity, water stress, or nutrition. This means that there are several
ways to approach GPP estimation, with LUE applications focusing more on meteorological
variables [35] and others using water stress indices [36].

The objective of this paper is to analyze two parameterizations for LUE to estimate
the GPP with Sentinel-2 imagery in two different ecosystems in the Dofiana protected area:
(i) marshes, which are seasonal wetlands flooded in winter, and (ii) xeric Mediterranean
scrub adapted to drought, using the LUE model. Two LUE model approaches will be
applied, depending on how the light use efficiency is parameterized: (i) using meteoro-
logical data, and (ii) focusing on water availability. The results will be evaluated with
data collected by two flux towers (eddy covariance, EC) installed by the Singular Scientific
and Technological Infrastructure of the Doflana Biological Reserve (ICTS-DBR) in both
ecosystems from 2020 to 2022 for the xeric Mediterranean scrub, and 2021-2022 for the
Dofiana marsh.

2. Materials and Methods
2.1. Study Site, Instrumentation and Data Sources

The DNP, covering 53,700 ha, is a UNESCO Biosphere Reserve and Natural Heritage
and a Ramsar Site, located in the southwest of the Iberian Peninsula. It includes the Dofiana
Biological Reserve (DBR) of 6109 ha (Figure 1a), a core conservation area where ICTS-DBR
has established a scientific infrastructure providing long-term monitoring data and access
to the scientific community. Figure 1b shows the climogram of the area on a monthly scale.
It shows the accumulated precipitation as well as the averages of maximum, minimum
and mean temperatures. The average annual precipitation is 548.6 mm and the average
annual temperature is 18.4 °C, based on data from the DBR meteorological stations. How-
ever, there is a large interannual and seasonal variability in precipitation and temperature,
which affects the hydrological and ecological dynamics of the Dofiana ecosystems. Dif-
ferent ecosystems are represented in the DBR, such as lagoons, dunes, marshes, shrub
areas or forest areas of pine, juniper, or cork oak. The morphology of the area defines
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two distinct soil zones: sand (littoral and aeolian systems) and mud-clay (estuarine sys-
tem) [37]. Our study focuses on two Dofiana ecosystems: xeric Mediterranean scrub on
sandy soils and seasonal marsh on mud-clay soils (Figure 1a), two ecosystems with oppo-
site water dependencies but close enough to be exposed to the same climatic conditions. In
this study, similar time frames were chosen depending on the availability of EC data, from
July 2019 to December 2022 for xeric shrublands and from October 2020 to December 2022
for marshes.

Legend

Xeric shrubland Eddy Covariance Tower
Marshland Eddy Covariance Tower
D Donana Biological Reserve (DBR)
Xeric shrubland study area

Marshland study area

-- Maximum temperature
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Figure 1. (a) Location map of the Dofiana Biological Reserve (DBR) and the two flux towers.
(b) Climogram: average daily precipitation and temperature in the DBR during the study period.

The xeric Mediterranean scrub is a semi-arid ecosystem, which represents about 629 ha
of the DBR, dominated by xeric shrubs such as Rosmarinus officinalis, Halymium halymifolium,
and Halymium commutatum, growing on sandy soils with low organic matter and with
functional traits for drought [38,39]. The Dofiana marsh is a seasonal wetland that is flooded
in winter by rainfall and tributaries, forming an extensive floodplain (537.78 ha in the DBR),
mainly dominated by the helophytes Bolboschoenus maritimus, Schoenoplectus lacustris, Juncus
subulatus and Arthrocnemum macrostachyum, and the macrophytes Ranunculus peltatus, Rupia
drepanensis, Chara galiodes and Myriohpyllum alterniflorum.

In both ecosystems, the ICTS-DBR installed an EC system (Figure 1a) with a height of
4.75 m for the xeric shrubland (latitude: 37.020206, longitude: —6.554403) and 3.9 m for the
swamp (latitude: 36.998539, longitude: —6.434575). The sensors and variables used in this
study are listed in Table 1.
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Table 1. Sensor models installed in the eddy covariance systems, measured variables used and frequency.

Ecosystem Sensor Variable Frequency
CNR4 Kipp & Zonnen ! Incoming shortwave radiation 5 min
LI-7500 DS 2 Carbon and water storage 10 Hz
Xeric shrubland . o -
WindMaster 3D 3 Sonic temperature, threg dm.lensmnal 10 Hz
wind speed and direction
HMP155A 4 Air temperature and relative humidity 5 min
CNR4 Kipp & Zonnen ! Incoming shortwave radiation 5 min
LI-7500 DS 2 Carbon and water storage 10 Hz
Marshland . 1 :
Gill HS-50 3 Sonic temperature, threg d1rr}er1510nal 10 Hz
wind speed and direction
WXT520 Air temperature and relative humidity 5 min
1 OTT HydroMe. 2 LI-COR, Inc. 3 Gill Instruments Limited. * Vaisala Oy]J.

The remote sensing products used, along with their source, spatial resolution, and
number of images, are summarized in Table 2. The products used for this study are
described in detail in the following sections.

Table 2. Remote sensing products used in this work for the whole study period (July 2019 to December
2022), sources and number of images used.
Dataset Variable Source Spaflal Number of
Resolution (m) Images
Copernicus High Resolution
. FAPAR Vegetation Phenology and 10 257
Sentinel-2 ..
Productivity
Bands 8 and 12 Google Earth Engine 10 150
surface_solar_radiation_downwards_sum,
ERA5-Land  temperature_2m_min, temperature_2m, ECMWEF 11,132 1278

dewpoint_temperature_2m

2.2. LUE Model

An adaptation of the LUE model, which relates incident solar radiation to the photo-
synthetic activity of vegetation according to Equation (1) [31,32], was used.

GPP = FAPAR x PAR x ¢ (1)

where GPP (gC/m?) is the gross primary production, FAPAR (dimensionless) is the fraction
of photosynthetically active radiation absorbed by the plant, PAR (MJ/m?) is the photo-
synthetically active radiation, and ¢ (gC/M]) is the light use efficiency parameter. FAPAR
and PAR were estimated in the same way for both xeric shrubland and swamp ecosystems,
while two different methods were used for ¢ (see sections below).

2.2.1. FAPAR Estimation

A time series of 257 FAPAR scenes was selected from the high-resolution vegetation
phenology and productivity product of the Copernicus Land Monitoring Service (CMLS)
(https:/ /land.copernicus.eu/en/products/vegetation (accessed on 13 January 2023)) with
a spatial resolution of 10 m and a temporal resolution of 5 days. This product uses a
6S radiative transfer model in the canopy methodology implemented in the SNAP Tool-
box (SNAP—ESA Sentinel Application Platform v2.0.2, http:/ /step.esa.int (accessed on
12 January 2023)) to estimate FAPAR at 20 m spatial resolution. The methodology of [40] is
then applied to obtain a final product at 10 m spatial resolution [41]. This methodology
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was implemented to generate biophysical products such as leaf area, index, FAPAR and
fractional vegetation cover from multiple sensors. It consists mainly in generating a com-
prehensive database of vegetation characteristics and associated Sentinel 2 top of canopy
(TOC) reflectances. Later, neural networks are trained to estimate the canopy characteristics
from the TOC reflectances along with defined corresponding angles that determine the
observation configuration. For the massive download of all images for the entire study
period and their subsequent clipping to the DBR area, a Python package was created
(https://pypi.org/project/pyvpp (accessed on 19 October 2023)). Finally, the resulting
images were linearly interpolated pixel by pixel to produce a daily image.

2.2.2. PAR Estimation

The PAR estimate is based on the daily incoming shortwave radiation data using
a conversion factor from shortwave (400-2500 nm) to PAR (400-700 nm) of 0.48. This
coefficient was determined by [42] from measurements at several points around the globe.
The daily incoming shortwave radiation data were obtained from the ERA5 land reanalysis
at a spatial resolution of 11,132 m and were produced by replaying the land component
of the ECMWF ERAS climate reanalysis [43]. A total of 1278 daily aggregated periods
corresponding to the surface_solar_radiation_downwards_sum dataset were extracted
using the Google Earth Engine platform [44].

2.2.3. ¢ Estimation

The estimation of ¢ is based on the determination of a maximum ¢ value (€max), which
is reduced by environmental parameters/conditions. The value of emax (gC/M]) is specific
to each land cover and even to each species [45], with variations also depending on the
geographical area. In this case, a value of 3 g/M] was used for xeric shrublands, which is
similar to the values for woody cover in semi-arid zones [46,47], and a value of 2 g/M]J
was used for swamps, since the dominant species can be an intermediate value between
grasslands [48] and annual crops [49].

To reduce emax to these maximum values at both sites, two approaches were applied
using meteorological variables and a water stress index.

¢ Reduction with Meteorological Variables

The value for emax is modified according to the meteorological variables that reduce
the efficiency of the system, the daily minimum air temperature (Tmin), and the vapor
pressure deficit (VPD) according to Equation (2) [50].

€= gmax X Tmin_sc x VPD_sc 2)

where ¢ is the light use efficiency parameter, emayx is its maximum value defined in the
previous section, and Tmin_sc and VPD_sc (dimensionless) are simple linear functions
between 0 and 1 derived from the daily values of Tmin and VPD (Figure 2). These linear
functions are obtained using threshold values, where the minimum and maximum values
for Tmin are 0 and 1 of the scalar Tmin (increasing function), respectively; and the mini-
mum and maximum values for VPD correspond to 1 and 0 of the scalar VPD (decreasing
function), respectively.

Upper and lower thresholds for both variables were taken from the Biome-Property-
Look-Up-Table (BPLUT) [50], using open shrubland cover (—8 and 8.8 °C for Tmin; and
0.65 and 4.8 kPa for VPD) for xeric shrubland and grassland cover (—8 and 12.02 °C for
Tmin; and 0.65 and 5.3 kPa for VPD) for marshland.
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Figure 2. Scheme of linear equations for the approach using meteorological variables.

Tmin was obtained from the ERA5-Land, 1278 daily aggregated arrays corresponding
to the temperature_2m_min dataset.
VPD was obtained using Equation (3).

VPD = (es — a) 3)

where VPD is the vapor pressure deficit (kPa), es is the saturated vapor pressure (kPa)
obtained from Equation (4), while ea is the actual vapor pressure (kPa) obtained from
Equation (5):

es =(0.611 x exp ((17.27 x Tmed)/(237.3 + Tmed))) 4)

where Tmed is the mean air temperature (°C) obtained from the ERA5-Land, 1278 daily
aggregated arrays corresponding to the temperature_2m dataset.

ea=es X RH 5)
where RH is the relative humidity (%) obtained from Equation (6):
RH = exp((17.269 x Td)/(273.3 + Td) — (17.269 x Tmed)/(237.3 + Tmed))  (6)

where Td is the dew point temperature (K) obtained from the ERA5-Land, 1278 daily
aggregated arrays corresponding to the dewpoint_temperature_2m dataset.

¢ Reduction with a Water Index

For this reduction, the Land Surface Water Index (LSWI) [51] (Equation (3)) was used
as a water availability index. This dimensionless index was previously applied to evaluate
moisture content in vegetation as well as to evaluate soils associated with humidity in
semi-arid ecosystems [52]. It is computed using Sentinel-2 bands B8 (near infrared, NIR:
835.1 nm for S2A, 833 nm for S2B) and B12 (shortwave infrared 2, SWIR2: 2202.4 nm for
52A, 2185.7 nm for 52B) according to Equation (7).

LSWI = (B8 — B12)/(BS + B12) 7)

where B8 and B12 are NIR and SWIR2 bands from Sentinel-2.

This index was calculated for 150 granules of Sentinel-2 images, corresponding to
all available images in the study area with less than 15% of cloud coverage for the whole
study period of the atmospherically corrected bottom of the atmosphere product (Level 2A)
available from the European Space Agency. LSWI was resampled to 10 m and extracted in
the DBR area using Google Earth Engine. The resulting images were linearly interpolated
pixel by pixel in order to obtain a daily image.
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Once a daily image of LSWI was obtained, the index was standardized to values
between 0 and 1 to obtain a scalar LSWI (LSWI_sc) using Equation (8), similar to [53], and
it was used to estimate the final value of ¢ using Equation (9).

LSWI sc = (1 + LSWI)/2 )

where LSWI_sc is the scalar land surface water index and LSWI is the land surface
water index.
€ = €max X LSWI_sc 9)

where ¢ (gC/M)]) is the light use efficiency parameter, emax (gC/M]) is its maximum value
defined in Section 2.2.3. above and LSWI_sc is the scalar land surface water index.

2.3. Evaluation Procedure

The EC towers installed in both ecosystems were used to evaluate the model. High-
frequency data (10 Hz in Table 1) were processed using the express mode of the EddyPro
software (version 7.0.9 LI-COR, Lincoln, NE, USA) to generate 30-min averaged mea-
surements of net ecosystem exchange (NEE), sensible heat (H), and latent heat (LE). The
processing included several steps: correction for anemometer tilt according to [54]; de-
spiking, which involved identifying and removing short-term outliers in the time series,
often caused by electronic spikes during precipitation; identifying periods of low signal
variation relative to the instrumental resolution, common in weak winds and stable con-
ditions; and detecting relatively short periods where the time series remained constant,
indicating potential problems [55]. To calculate the GPP, the measured NEE had to be
partitioned. A diurnal flux partitioning algorithm [56] was used in this study through
the R language package REddyproc [57]. Friction velocity (u*) filtering during periods
of low turbulent mixing was also used: the minimum value was estimated according
to Papale et al. (2006) [58] and applied to detect NEE saturation with increasing u* [59].
Finally, in REddyProc, a gap filling of the eddy covariance and meteorological data is
performed with methods similar to Falge et al. (2005) [60], taking into account the co-
variation of the fluxes with meteorological variables and the temporal autocorrelation
of the fluxes, as described by Reichstein et al. (2005) [61]. Finally, the EC footprint was
estimated according to Hsieh et al. (2000) [62], with the crosswind extension of Detto et al.
(2006) [63], to evaluate the 2D contribution of each point in the ground to the turbulent
fluxes recorded by the EC system. The footprint calculation was performed using a Python
package (https:/ /github.com/hectornieto/footprint-analysis (accessed on 24 May 2024)).

In order to compare the GPP data of the EC towers with the images resulting from the
LUE models, the daily GPP and footprint data were obtained from the 30-min data. The
daily footprint was resampled to the resolution of the images (10 m).

The 10 m resolution daily footprints were applied to the LUE model images, and then
the EC and model data were compared using the coefficient of determination (R?) of the
linear regressions to indicate the precision of the estimates relative to the observations, the
root mean squared error (RMSE) and the normalized root mean squared error (NRMSE) to
measure error differences, and the mean bias error (MBE) to indicate cumulative offsets
between measured and observed values. These metrics were applied at both daily and
monthly scales.

Finally, to obtain a spatial visualization of the results, the LUE model that yielded the
best result was spatially applied, with a spatial resolution of 10 m for both ecosystems for
each hydrological year (which ranges from October 1 to September 3 of the following year
in the study area [64]). The terrestrial vegetation map of Dofiana [65] was used to delineate
these ecosystems.
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3. Results
3.1. Xeric Shrubland

Figure 3a shows the temporal dynamics of the GPP in this ecosystem, obtained from
the eddy covariance system and from the LUE models for the period from July 2019 to
December 2022 at the daily scale. Cyclical behavior can be observed, with the maximum
values occurring at the end of spring and the minimum at the beginning of fall, which is
well reflected in the LUE models, although both show an advance in the maximum values.
Regarding the interannual behavior, there is a general increase in GPP, ranging from a
maximum of about 5 gC/m?days ! in 2020 to 7 gC/m?days~! in 2022.

Xeric Shrublands

(a)

9 r - - - - - T T T - - - T T

1 0/1 9 01/20 04/20 07/20 1 0/20 01/21 04/21 07/21 1 0/21 01/22 04/22 07/22 10/2201/23

Date
(b) & (©) 8 Rz= 051
. - RMSE =0.43
we R = °/ NRMSE = 0.07
< : € |MBE=068 ..
5 [ 'S 4 v ‘.ll.-) s &
= 2 .
E/ a, .
o ok g
o O 2f =
o - MBE—‘0-16 0 LA
o 2 4 6 8 6 2 4 6 8

GPP(gC/m?) EC GPP(gC/m?) EC

Figure 3. (a) Temporal dynamics of the GPP for xeric shrublands from July 2019 to December 2022 at
daily scale. Black line: GPP from eddy covariance data (EC) system, red line: GPP estimated with the
LUE model using meteorological data from ERA5-Land (ME), blue line: GPP estimated with the LUE
model using a water availability index (WA). Validation presented in 1:1 graphs of the data EC vs.
LUE models in xeric shrublands in the study period: (b) ME; (c) WA.

The values given by the LUE model using meteorological data from ERA5-Land
(hereafter ME) showed a similar but noisier trend, while the values given by the LUE model
using a water availability index (hereafter WA) showed a general underestimation in the
first two years studied (2019-2021), but a better fit in 2022.
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These trends are evident in Figure 3b,c, which show the 1:1 plots of both models with
respect to the EC data throughout the study period, together with R?2, RMSE, NRMSE and
MBE. ME showed more scattered values resulting in R? of 0.31, RMSE of 1.01 gC/m? and
NRMSE of 0.13. On the other hand, the WA gave a better fit (R?> = 0.51) and lower error
(RMSE =0.43 gC/ m? and NRMSE = 0.07) despite the underestimation mentioned above.
This underestimation of the WA resulted in a higher bias, with relatively high MBE values
(—0.68 gC/mz) compared to those of ME (—0.16 gC/mz).

When the results were aggregated on a monthly basis (Table 3), there was an improve-
ment in both LUE models, showing better R* and RMSE, especially in WA, where the
RMSE drops to only 0.21 gC/m? and the R? reaches 0.74, while the MBE and NRMSE
remain constant.

Table 3. Results of the metrics in xeric shrubland using monthly aggregates for ME and WA. RMSE

and MBE given in gC/m?.

LUE Model Maetric Value

ME R? 0.36

RMSE 0.73

NRMSE 0.19
MBE -0.19

WA R2 0.74

RMSE 0.21

NRMSE 0.06
MBE —0.55

Finally, using the LUE model that gave the best results, WA, the annual GPP accumu-
lated by hydrological year in the xeric shrubland zone of the DBR, is presented in Figure 4.
Several differences can be observed, from the firebreak area (redder values) without assim-
ilation to the denser shrub areas (blue). It should be noted that although the maximum
values in GPP increase, especially in 2021/2022, in the EC validation zone, at the spatial
level it does not show this trend.

500 1000 1500 2000 m

gC/m?
1500

Figure 4. Hydrological year maps of accumulated GPP in xeric shrublands using the LUE-WA model.
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3.2. Marshland

The temporal dynamics of GPP in the marshland ecosystem for the period between
October 2020 and December 2022 at the daily scale are shown in Figure 5a, both for the EC
data and for those obtained by both LUE models. In this ecosystem, a more pronounced
cycle is observed than in the case of xeric shrublands, more like a grassland ecosystem,
with maximum values at the end of spring and almost zero at the beginning of winter. In
the period analyzed, a significant decrease in the maximum values of carbon assimilation
was observed, from about 8 g/m? in 2021 to 5 g/m? in 2022. In this case, both LUE models
slightly underestimate, which is more noticeable at the end of summer and beginning
of fall.

Marshland

+EC‘
8k MEH
WA“
71 |
’\6.
>
o4t
o
O
3.
2.
1t
04/21 07/21 10/21 01/22 04/22 07/22 10/22 01/23
Date
(b) (c)
8 8 T T :
R2=0.67 R2=0.82 gk
we RMSE =0.64 = RMSE = 0.44 :
=°INRMSE=0.10 /- " = °INRMSE = 0.06
e |[MBE=-0.35 7 '/ “e IMBE=-0.39 .
o4 G4 C e
> 2 S ' 7
& &
O2n O 2.
0 Bt 0
0 2 4 6 8 6 8
GPP(gC/m?) EC GPP(gC/m?) EC

Figure 5. (a) Temporal dynamics of the GPP for marshland from October 2020 to December 2022 at
daily scale. Black line: GPP from the eddy covariance (EC) system, red line: GPP estimated with
the LUE model ME, blue line: GPP estimated with the LUE model WA. Validation presented in 1:1
graphs of the data EC vs. LUE models in xeric shrublands in the study period: (b) ME; (c) WA.
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Both LUE models slightly underestimate, with this more pronounced in late summer
and early fall (Figure 5). Despite this underestimation, both LUE models produce better
results for marshlands than for xeric shrublands (shown in the 1:1 plots and their errors in
Figure 5b,c). R? is high for both approaches, although better in WA (0.82 and 0.67 for WA
and ME, respectively). RMSE and NRMSE showed a similar pattern, but with lower values
for WA, 0.43 gC/m? and 0.06 compared to 0.64 gC/m?2 and 0.1 for ME. Finally, the MBE
showed similar values, consistent with the slight underestimation (—0.35 gC/m? for ME
and —0.39 gC/ m? for WA).

Table 4 shows the results using the monthly aggregates. The results improve in both
LUE models when using monthly averages, much more clearly than in xeric shrublands,
lowering the RMSE values and reaching very high R? values, reaching up to 0.93 in the
case of WA. The MBE and NRMSE remain constant with similar values compared to the
daily scale.

Table 4. Results of the agreement and error metrics in marshland using monthly aggregates for ME
and WA RMSE and MBE given in gC/m?.

LUE Model Metric Value
ME R? 0.86
RMSE 0.40
NRMSE 0.09

MBE -0.35
WA R? 0.93
RMSE 0.40
NRMSE 0.06

MBE —041

Figure 6 shows the annual accumulated GPP using the LUE-WA model. In this case, a
decrease in carbon assimilation from the hydrological year 2020/2021 to 2021/2022 can be
seen very clearly.

2021/2022

2000 3000m

gCim2
1500

Figure 6. Hydrological year maps of accumulated GPP in marshland using the LUE-WA model.
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4. Discussion
4.1. GPP Dynamics

The study of the xeric shrubland and marsh ecosystems within the DBR provides
valuable insights into the dynamics of these environments and provides an example of
the variability of this natural reserve. In both ecosystems, cyclical behavior was observed,
with peaks centered at the end of spring, which is common in Mediterranean environ-
ments [66]. However, in the case of the xeric shrublands (Figure 3a), the decrease from
maximum to minimum values is more gradual and extends over a longer period than in the
marshes (Figure 5a). In fact, higher than expected values were observed in this ecosystem,
being 2-3 gC/m? higher than those of the 500 m spatial resolution product of MODIS
(MOD17A2HGEF) or those of other similar ecosystems [67,68]. This is because xeric shrub-
lands are adapted to drought conditions, while swamps are not, which is also reflected in
the slight increase in GPP during the study period in xeric shrublands, while there was a
strong decrease in swamps, The study area is experiencing a long and intense drought, par-
ticularly dramatic in the last two hydrological years (2020/2021 and 2021/2022), with total
annual precipitation below 400 mm (Figure 1b), which also negatively affects the marshland
due to the faster response of the herbaceous species present in this ecosystem [69].

4.2. LUE—Models Validation

The correct application of LUE models is limited by several factors, such as uncertainty
in the input data, since they are derived from remote sensing, or by the specific implementa-
tion of the model itself [70]. Both application areas have been considered sufficiently large
and homogeneous for the proper use of remote sensing. However, the spatial heterogeneity
of the xeric shrublands in terms of cover and different species, as well as the temporal
heterogeneity in the swamp, could negatively influence the results.

It is also worth mentioning that in both ecosystems, GPP was used as a comparator
of carbon assimilation without considering autotrophic respiration. There are two main
reasons for this: EC does not discriminate respiration and adding it would introduce
more uncertainty through different estimation methods, and LUE models are specifically
designed for estimating GPP [70].

4.2.1. LUE-Models Validation in Xeric Shrublands

In this type of ecosystem, the GPP values estimated by both models were acceptable,
but showed some variation. The main reason for the difficulty in estimating GPP in this
ecosystem on a daily scale is its own structure. The high heterogeneity of species as well as
the variability in the ratio of vegetation cover to bare ground resulted in noisy footprint
calculations [62]. The footprint area depends on the wind speed and direction of the day,
thus marking the study area [71], and producing maximum distance variations between
10 and 200 m in this area.

The WA model gave better results than the ME, both in terms of error and agreement
(Figure 3), with an acceptable R? and a low error (despite showing a higher bias), improving
the results obtained for a nearby juniper ecosystem also in Dofiana, although at a higher
spatial resolution [72]. The problem with this model is the general underestimation of
the first two years. This did not occur in 2022, so it seems that the WA model improves
its behavior in drought periods, adapting better to the extreme behavior of this type of
vegetation. Furthermore, the use of monthly aggregates reduces the daily variability,
yielding further improvement results for WA (Table 4).

The heterogeneity in GPP values is also reflected in the map of GPP accumulated
in the area (Figure 4), demonstrating that the WA model captures this variability in the
study area.

4.2.2. LUE-Models Validation in Marshland

In this type of ecosystem, the results with both LUE models were very satisfactory
(Figure 5). In both LUE models, there was a slight underestimation, which could be due to
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low FAPAR values due to the effect of water in the pixel [34] during the periods when the
marsh is flooded (ranging from 0.15 to 0.4).

The ME showed similar results to other studies in grasslands, such as those in [73,74].
On the other hand, WA showed the best results of this study, with very high correlation
values (R? = 0.82 at the daily scale and 0.92 at the monthly scale), RMSE below 0.5 gC/m?
lower than other studies in the area (e.g., [29]), and the lowest NRSME in this study despite
the underestimation mentioned above. This improvement corroborates studies such as [75]
or [76], which show how the results in GPP estimation are improved using satellite water
indices in grasslands, especially in dry years.

Regarding the spatial application of the WA model in marshes (Figure 6), it reflects
the decrease in GPP from 2021 to 2022 and shows that this type of ecosystem has a much
more homogeneous spatial distribution.

5. Conclusions

The study of xeric shrubland and marshland ecosystems within the Dofiana Biological
Reserve provided valuable insights into the dynamics of these environments and an exam-
ple of the GPP variability of this natural reserve. There were some differences in the rate
and extent of decline from maximum to minimum GPP values, reflecting the adaptation
of xeric shrublands to drought conditions and the vulnerability of marshlands, especially
during periods of prolonged drought.

In xeric shrublands, the high heterogeneity in species and vegetation cover /bare soil
ratio posed a challenge, leading to a noisy temporal evolution in daily GPP estimates,
which is well compensated by monthly aggregates. Despite a general underestimation
in the first two years, the WA model improved its performance in 2022, suggesting an
improved adaptability to extreme vegetation behavior during accumulated drought.

In wetlands, both LUE models gave satisfactory results, with a slight underestimation
possibly due to low FAPAR values during flooded periods. The ME was in line with
expectations for grasslands, while the WA model showed superior performance, with
the highest correlation values and low RMSE due to a faster response to drought by the
herbaceous species present in this area.

In general, for both ecosystems and LUE models, higher estimated GPP values result
in greater MBE as the underestimation becomes more apparent. Nevertheless, the results
of this study suggest that the WA model is a useful tool for estimating GPP in both xeric
shrubland and marshland ecosystems with a very low and similar NRMSE (0.07 for xeric
shrubland and 0.06 for marshland), suggesting that the more limiting water is for the plant,
the better the model works.
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