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Abstract: The timely and precise detection of forest fires is critical for halting the spread of wildfires
and minimizing ecological and economic damage. However, the large variation in target size and
the complexity of the background in UAV remote sensing images increase the difficulty of real-time
forest fire detection. To address this challenge, this study proposes a lightweight YOLO model
for UAV remote sensing forest fire detection (LUFFD-YOLO) based on attention mechanism and
multi-level feature fusion techniques: (1) GhostNetV2 was employed to enhance the conventional
convolution in YOLOv8n for decreasing the number of parameters in the model; (2) a plug-and-
play enhanced small-object forest fire detection C2f (ESDC2f) structure was proposed to enhance
the detection capability for small forest fires; (3) an innovative hierarchical feature-integrated C2f
(HFIC2f) structure was proposed to improve the model’s ability to extract information from complex
backgrounds and the capability of feature fusion. The LUFFD-YOLO model surpasses the YOLOv8n,
achieving a 5.1% enhancement in mAP and a 13% reduction in parameter count and obtaining
desirable generalization on different datasets, indicating a good balance between high accuracy and
model efficiency. This work would provide significant technical support for real-time forest fire
detection using UAV remote-sensing images.

Keywords: attention mechanism; feature fusion; forest fire; lightweight network; UAV remote
sensing images

1. Introduction

Forest fires are a type of natural disaster with high frequency and devastating
power [1–3], and they profoundly impact human life, socio-economics, and natural ecosys-
tems worldwide [4]. Forest fires consume vast forest resources, lead to biodiversity loss,
and generate significant greenhouse gas emissions, accelerating global climate change [5,6].
Moreover, population growth, urbanization, and certain human activities [7], such as illegal
logging and changes in land cover, significantly increase the risk and intensity of forest
fires. Thus, the timely and precise detection of forest fires is paramount for the protection
of forest ecosystems.

Given that forest fires spread rapidly in environments rich in oxygen [8] and with
swift air currents [9], prompt detection becomes critically important. Traditional forest fire
detection primarily relies on manual patrols [10] and remote sensing technology [11,12].
While manual patrols can directly assess fire situations, this method is resource-intensive,
time-consuming, covers limited areas, and carries high risks. The advancement of remote
sensing technology offers convenience for efficient and rapid forest fire detection. Thermal
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infrared sensors are commonly applied to detect forest fires by capturing variations in the
intensity of infrared radiation emitted from high-temperature areas (such as fire sources) in
forest regions [13]. Satellite images with high temporal resolution, such as Himawari-9 [14]
and MODIS [15], enable continuous and extensive monitoring of forest fires over a wide
area. However, the limited spatial resolution of them significantly impairs the ability to
detect small forest fires. The utilization of Unmanned Aerial Vehicle (UAV) remote sensing
technology [16] enables the capture of images with much higher spatial resolution. More-
over, its versatility and agility make it highly effective in complex landscapes. Despite the
use of advanced UAV remote sensing technologies, human participation remains essential
in determining the presence of forest fires. This process also requires a substantial amount
of verification effort. Hence, to tackle these challenges, real-time fire detection methods
employing computer vision and UAV technology have been implemented, enhancing the
accuracy and efficiency of forest fire detection [17].

In the initial stages, traditional machine learning methods relied extensively on fea-
ture engineering to discern characteristics linked to forest fires. These features were then
paired with appropriate machine-learning models to enable the detection of forest fire
occurrences. For example, Yang et al. [18] introduced an enhanced support vector machine
model, PreVM, by enhancing the approach to L1 regularization. This effectively resolves
the problem of non-paired instances of forest fire characteristic samples. Maeda et al. [19]
utilized environmental characteristics and the sun zenith angle as features and a random
forest classifier to identify forest fires, resulting in a notable improvement in the accuracy
of fire identification. Nevertheless, conventional approaches primarily detect feature sets
by means of manual selection and feature design, significantly depending on expert knowl-
edge, and the process of selecting features can be time-consuming. Moreover, it cannot
guarantee accurate identification of the optimal feature sets. Therefore, deep learning
algorithms [20,21] have a distinct advantage in automatically extracting elaborate feature
representations from raw data [22].

Deep learning [23–27] is a machine learning technology that uses artificial neural
networks to mimic the cognitive processes of the human brain. It is used to analyze data,
recognize patterns, and make judgments [28]. The ongoing advancement of deep learning
has made the identification of forest fires in many areas a central focus of research. From a
computer vision perspective, forest fire detection using deep learning techniques mainly
falls into two categories: two-stage detection methods [29] and one-stage detection meth-
ods [30–32]. In the context of forest fire detection, the two-stage object detection method
consists of two phases: the initial phase involves identifying potential areas where fires may
be present, and the following phase focuses on improving the accuracy of fire classification
and adjusting the bounding box regression for these areas (e.g., [33,34]). Nevertheless, the
major disadvantage of the two-stage object detection method is its reliance on significant
computer resources. The limited speed of both training and inference hinders the ability to
identify forest fires in real-time. To address this issue, the YOLO series [35] of one-stage
object detection models are commonly employed. The distinctive feature lies in employing
anchor boxes for predicting the position and category of targets. YOLO series models ex-
hibit faster detection speeds in comparison to two-stage models. They employ direct target
detection in photos, bypassing the need to generate candidate zones, making them exten-
sively utilized in forest fire detection. Attention mechanisms [36], which draw inspiration
from human biological systems, enable neural networks to selectively focus on pertinent
information when handling vast quantities of input. As a result, they are widely used in
combination with YOLO neural networks. For example, Luo et al. [37] proposed a YOLOX
algorithm that integrates the Swin Transformer architecture, convolutional block attention
module, and slim neck structure for forest fire detection. This algorithm demonstrates
superior detection precision and enhanced capability for accurately recognizing locations
even in complex conditions, achieving an mAP value of 92.26%. Nevertheless, it is notable
for its extensive parameterization and heightened demand for computational resources,
which hampers its suitability for real-time forest fire detection. Xue et al. [38] addressed
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the issue of low recognition accuracy for complex background forest fires, proposed an
FCDM model based on YOLOv5. It improved the detection capability for different types of
fires by modifying the bounding box loss function and introducing the convolutional block
attention mechanism, with ground fire detection rates of 83.1% and crown fire detection
rates of 90.6%. Chen et al. [39] introduced an LMDFS model based on YOLOv7. They
improved the smoke feature extraction capabilities by incorporating a coordinate attention
mechanism and a content-aware reassembly feature upsampling technique. The accuracy
showed a 5.9% improvement in comparison to the baseline model (YOLOv7). However, it
still has limitations when faced with irregular forest fire images or forest fire problems that
involve tiny targets (i.e., small forest fires).

Despite significant advancements in algorithm development, the use of UAV images
for forest fire detection continues to encounter many obstacles: (1) The motion of UAVs
in various mountainous and forested settings amplifies the intricacy of the background
in the images. This intricacy is intensified by elements such as vegetation, unpredictable
meteorological circumstances, variations in illumination, and the existence of clouds, fog,
and smoke; (2) It is crucial to use a network with a more complex structure that can extract
an optimal number of features. However, this is a notable obstacle in terms of detecting
forest fires in real time. Thus, to tackle these difficulties, this study proposes a lightweight
UAV remote-sensing forest fire detection algorithm, called LUFFD-YOLO. This model is
primarily designed to detect UAV-based images with red, green, and blue spectral bands.
It successfully achieved a trade-off between model efficiency, gained by minimizing the
number of parameters, and retained high accuracy in detecting forest fires. The main
contributions of this paper are as follows:

(1) Innovatively, the LUFFD-YOLO model adopts the GhostNetV2 structure to optimize
the conventional convolutions of the YOLOv8n backbone layer, resulting in a more
efficient and streamlined network design. This significantly reduces the model’s
complexity and computational requirements.

(2) This study proposes a plug-and-play enhanced small-object forest fire detection C2f
(ESDC2f) module that utilizes the Multi-Head Self Attention (MHSA) mechanism to
boost the detection capability for small objects and compensate for the loss caused
by lightweight in LUFFD-YOLO model. It greatly enhances the capability to extract
features from various subspaces of UAV images, hence increasing the accuracy of
forest fire detection.

(3) A hierarchical feature-integrated C2f (HFIC2f) model, using the SegNeXt attention
mechanism, has been proposed to effectively tackle the problem of low accuracy in
detecting forest fire objects against complicated backgrounds.

The following sections of this paper are organized as follows: Section 2 outlines the
datasets and introduces both the YOLOv8 model (as a baseline) and the LUFFD-YOLO
model. Sections 3 and 4 detail the experimental design and case analysis, respectively.
Finally, Section 5 provides conclusions and highlights future research avenues.

2. Materials and Methods
2.1. Datasets

This study performs a comprehensive evaluation of the LUFFD-YOLO model on a
large public forest fire UAV remote sensing dataset (M4SFWD), a comprehensive remote
sensing dataset for large-scale forest fires (FLAME), and a manually constructed UAV-based
forest fire dataset (SURSFF). The images in the dataset are captured with the red, green,
and blue spectral bands.

The M4SFWD dataset [40] is a large-scale forest fire remote sensing dataset captured
from drone perspectives. This dataset includes a range of terrain types, meteorological
circumstances, light intensities, and varying quantities of forest fire occurrences. This
dataset includes 3974 images and its label categories include fire and smoke. The collection
contains images of various sizes, including 1480 × 684 and 1280 × 720, to cater to different
scenarios. Some images in the collection have excessively large aspect ratios, making them



Remote Sens. 2024, 16, 2177 4 of 21

unsuitable for direct use in training. Therefore, during the model training and testing
processes, all images were resized to a uniform size of 640 × 640 pixels. The dataset is
thoroughly analyzed and all instances of fire and smoke are interpreted. In order to fulfill
the experimental prerequisites, the dataset was divided into training, validation, and test
sets with an 8:1:1 distribution ratio, resulting in 3180, 397, and 397 images, respectively.

The FLAME dataset was created and released by researchers from Northern Arizona
University in partnership with other organizations [41]. The collection comprised 3281 high-
resolution aerial images of diverse stages and intensities of forest fires recorded by UAV. In
this study, we divided the dataset into training, validation, and test sets in an 8:1:1 ratio to
evaluate the performance of our model.

To further verify the effectiveness of the LUFFD-YOLO model, a small UAV remote
sensing forest fire (SURSFF) dataset was constructed in this study. The dataset is sourced
from two main categories: the first category includes forest fire images captured from UAV
viewpoints, collected using web scraping techniques from different platforms; the second
category consists of relevant UAV forest fire images obtained from pre-existing forest fire
datasets. A total of 110 real-scene UAV images of forest fires were collected with various
scales, shapes, and sizes. To mitigate the risk of model overfitting due to the limited dataset
size, we employed a series of data augmentation techniques, as illustrated in Figure 1. These
techniques included horizontal flipping (Figure 1b), achieved by mirroring the images
horizontally using ImageOps.mirror; mosaic data augmentation (Figure 1c), where images
were partitioned into four quadrants, each subjected to a random rotation between 0 and
360 degrees and subsequently reassembled to form a mosaic; random directional rotation
(Figure 1d), wherein images were rotated by a randomly selected angle within the range of
0 to 360 degrees; noise addition (Figure 1e), in which random noise values ranging from 0
to 50 were applied to each pixel with a random factor, with the resulting pixel values being
clipped to the range of 0 to 255. The ultimate dataset was split into 440 training images and
110 validation images, maintaining a ratio of 4:1. The fire category in the expanded dataset
was labeled using LabelImg.
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Figure 1. Data augmentation operation: (a) original image; (b) a horizontal flip operation based
on the original image; (c) a Mosaic data enhancement operation; (d) a random rotation operation;
(e) random noise addition to the original image.

2.2. Methods
2.2.1. The YOLOv8 Network Architecture

YOLOv8 [42] is a recent addition to the YOLO family, designed specifically for object
detection. Depending on the depth and width of its network, it can be categorized into five
different frameworks: YOLOv8n, YOLOv8l, YOLOv8s, YOLOv8x, and YOLOv8m. Given
the real-time demands of forest fire detection, this study adopts the lightweight YOLOv8n
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model as the baseline and enhances it. The YOLOv8n architecture consists of four main
components: the input layer, backbone layer, neck layer, and output layer, as depicted in
Figure 2.
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networks; Conv2d-convolution with 2-dimension; SPPF-spatial pyramid pooling fusion.

The primary task of the input layer is to receive raw remote-sensing images of forest
fires and process them with a series of data augmentation operations to meet the model
training requirements. These operations include hue adjustment, image scaling, and the
application of Mosaic data augmentation, among others. The principle of Mosaic data
augmentation is to randomly select regions from four different images, and then combine
these regions into a new image after random cropping and scaling.

The backbone layer is designed to extract essential features from the image, compris-
ing convolution (Conv) layers, CSPDarknet53, 2-Stage feature pyramid networks (C2f),
and spatial pyramid pooling fusion (SPPF) modules. The Conv module processes data
through convolution operations, batch normalization (BN), and sigmoid linear unit(SiLU)
activation functions. The C2f module improves gradient propagation and augments the
information flow in the feature extraction network through the integration of cross-layer
connections. Unlike the spatial pyramid pooling (SPP) module used in previous YOLO
versions, the SPPF module utilizes three consecutive pooling operations to reduce compu-
tational complexity while still integrating multi-scale information, thereby expanding the
receptive field.

The core function of the neck layer is to achieve cross-dimensional integration of
functional features. Through the feature pyramid networks (FPN) and path aggregation
network (PAN) structures, it can efficiently merge feature maps of different levels, en-
suring the precise preservation of spatial information. This layer enables the model to
focus more on target feature information, significantly improving the model’s detection
performance [43].
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The task of the output layer is to produce the final object detection results. It leverages
the detailed feature maps produced by the neck layer to determine bounding box positions,
category probabilities, and other essential information for each feature map. Furthermore,
the output layer employs Non-Maximum Suppression (NMS) [44] technology to remove
duplicate detections, maintaining accurate prediction results.

2.2.2. The Proposed LUFFD-YOLO Network

• Lightweight optimization.

Given the importance of promptly detecting fires to prevent their rapid spread, the
efficiency of fire detection is a critical factor to consider when evaluating fire detection
algorithms. The backbone network of the YOLOv8n model extensively uses convolu-
tion operations to increase the number of channels, thereby enlarging the receptive field.
However, this increases the model’s parameter count and computational cost, which is
not conducive to real-time forest fire detection tasks. The main idea behind designing
lightweight network structures is to improve the efficiency of detection by adopting more
efficient convolutional networks through improving convolution methods. Therefore, this
study optimizes the backbone network of YOLOv8n by replacing the standard convolutions
in the original network with GhostNetV2 [45] modules, thereby constructing a lightweight
feature extractor. While there is a slight decrease in detection accuracy, there is a significant
reduction in the model’s parameters and computational requirements.

GhostNetV2 combines the decoupled fully connected (DFC) attention mechanism
with Ghost modules [46] to maintain performance as much as possible while keeping the
structure lightweight. The DFC attention mechanism utilizes dynamic filter capsules to
weigh features, highlighting important features and suppressing unimportant information.
This mechanism dynamically shifts the model’s attention to various features, enhancing its
accuracy. From a lightweight perspective, the DFC attention mechanism decomposes the
attention map into two fully connected layers and gathers features along the horizontal and
vertical directions separately. By separating the horizontal and vertical transformations,
the attention module’s computational complexity is reduced to O

(
H2W + HW2

)
, where

W is the width of the feature map and H is the height of the feature map, significantly
improving the model’s computational efficiency. The specific implementation formulas are
shown as Equations (1) and (2).

a′hw =
H

∑
h′=1

FH
h,h′w ⊙ zh′w, h = 1, 2, · · · , H, w = 1, 2, · · · , W, (1)

ahw =
W

∑
w′=1

FW
w,hw′ ⊙ a′hw′ , h = 1, 2, · · · , H, w = 1, 2, · · · , W, (2)

where a′hw and ahw are the generated attention map of the vertical and horizontal direction
⊙ is element-wise multiplication, W is the width of the feature map; H is the height of
the feature map; F is the learnable weights in the fully connected (FC) layer. FH and FW

are transformation weights of the vertical and horizontal direction, respectively. Feature
Z ∈ RH×W×C can be seen as HW tokens zi ∈ RC, i.e., Z = {z11, z12, · · · , zHW}.

GhostNetV2 is primarily divided into configurations with strides of 1 and 2, as shown
in Figure 3. In the setup employing a stride of 1, GhostNetV2 incorporates the Inverted
bottleneck design from GhostNet alongside the DFC attention mechanism, running concur-
rently with the initial Ghost module. Subsequently, the Ghost module and DFC attention
mechanism are multiplied elementwise to implement the function of enhancing and ex-
panding the features, as illustrated in Figure 4. The enhanced features are subsequently
input into the second Ghost module to generate the output features. This process maxi-
mizes the capture of long-distance dependencies between pixels at various spatial locations,
thereby improving the module’s expressive capability.
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In the configuration with a stride of 2 of the GhostNetV2 structure, depth-wise separa-
ble convolution is additionally introduced. Following the parallel module of Ghost and
DFC attention mechanism, the features are immediately down-sampled to reduce the spa-
tial size of the feature map. This design, while reducing computation and memory usage,
also increases the receptive field, facilitating the capture of a broader range of contextual
information and minimizing gradient loss. Subsequently, the feature dimension is restored
through the Ghost module to ensure consistency with the input.

• Optimization of small forest fire detection using attention mechanisms.

In the context of forest fire monitoring, the presence of small forest fires frequently
serves as an indication of fires in their first stages, making it crucial to notice them promptly.
Due to its overly simplistic lightweight network structure, the extraction of feature and
location information is constrained, hindering the attainment of high accuracy in detecting
small forest fires. Thus, this study takes inspiration from attention mechanisms and
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incorporates the Multi-Head Self Attention (MHSA) mechanism [47] into the C2f structure
of the backbone network to introduce the ESDC2f module, as depicted in Figure 5. This
module enables the model to learn diverse features in different representational subspaces
while fully considering the contextual information of image sub-environments, thereby
enhancing the accuracy of small forest fire detection.
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Traditional self-attention mechanisms can directly calculate the dependencies between
elements within a sequence, effectively capturing the global information of images. How-
ever, the information processing capability and perspective of self-attention mechanisms
are limited; they learn features only from a single representational subspace. This limits
the model’s ability to capture different dimensional features of the input data. Therefore,
MHSA efficiently captures feature information from different subspaces by using multiple
self-attention mechanisms in parallel to process the input data. MHSA first passes the
input image features to multiple independent self-attention heads simultaneously. In each
head, the model calculates the Query (Q), Key (K), and Value (V) transformations of the
input data. Subsequently, each head calculates attention weights based on the similarity
between queries and keys. This operation is implemented through a dot product operation
followed by a softmax function. The resulting attention weights indicate the importance
of each element to other elements within the data. These weights are then used to weight
the corresponding values to generate weighted outputs. Finally, the outputs produced by
all heads are concatenated and passed through another linear transformation to form the
final output. The formulas for Q, K, and V transformations, and the calculation of attention
weights are shown as Equations (3)–(6).

Q = WqX, (3)

K = WkX, (4)

V = WvX, (5)

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
· V, (6)

where Q, K, V are the Query, Key, and Value transformations of the input data X; Wq, Wk,
and Wv correspond to the weight matrices of Q, K, and V, respectively; Softmax is used to



Remote Sens. 2024, 16, 2177 9 of 21

convert the attention scores into a probability distribution. It ensures that the scores are
positive and sum up to 1; KT is the transpose of the Key matrix; dk (the dimensionality of
the keys) is its scaling factor.

• Optimization of forest fire feature extraction capability.

Due to the complexity of forest environments, there can be extreme variations in
lighting conditions within forested areas, such as direct sunlight or shadows. Additionally,
the diversity of natural landscapes within forests, including variations in tree species,
shrubs, and terrain, compound the difficulty of distinguishing forest fires from their natural
background. This complexity undeniably imposes more stringent accuracy demands on
models designed for forest fire detection. The YOLOv8n model employs the C2f structure in
its neck layer to merge semantic information from various layers and scales, enhancing de-
tection performance through efficient feature extraction and cross-layer connections. While
this design enhances detection performance, it also increases the model’s computational
complexity and parameter count. Moreover, its ability to fuse features from different levels
remains insufficient. Therefore, this study introduces the SegNeXt Attention [48] mecha-
nism into the traditional C2f of YOLOv8n, proposing the new and efficient plug-and-play
HFIC2f module, as shown in Figure 6. This module can automatically emphasize flame
features against complex backgrounds and suppress background noise. It also effectively
integrates features from different levels, ensuring that while capturing the global shape of
forest fires, it can also precisely identify the edges and details of the fires.
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The SegNeXt attention mechanism improves the model’s capacity to process spatial
relationships and complex backgrounds in image data by incorporating a multi-scale at-
tention mechanism; its encoder-decoder utilizes a hierarchical progressive approach for
image processing, as depicted in Figure 6. During the encoding phase, the input image
undergoes gradual down sampling. This is achieved through convolutional and pooling
layers, which systematically reduce the image’s spatial dimensions. Concurrently, the fea-
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ture information is enriched and abstracted, enabling the model to glean deeper semantic
meaning. Then, the introduced MSCA (Multi-Scale Contextual Attention) module enhances
the model’s perception of target features by weighting feature maps to highlight important
areas and suppress irrelevant backgrounds for more precise target localization and recogni-
tion. MSCA comprises three components: depth-wise convolution for aggregating local
information, multi-branch depth-wise dilated convolution for capturing multi-scale context,
and 1 × 1 convolution for modeling inter-channel relationships. The specific mathematical
representation is shown as Equations (7) and (8).

Att = Conv1×1

(
3

∑
i=0

Scalei(DW-Conv(F))

)
, (7)

Out = Att ⊗ F. , (8)

where Att and Out are the attention map and output, respectively; F represents the input
feature; ⊗ is the element-wise matrix multiplication operation; DW-Conv denotes depth-
wise convolution; Scalei is the identity connection, i ∈ {0, 1, 2, 3}, denotes the ith branch.

In the decoding phase, the model gradually restores the spatial resolution of the
image through a series of up sampling operations and convolutional layers, utilizing deep
features obtained during the encoding phase. Feature fusion techniques are used at this
stage. They integrate deep semantic information from the encoding phase with high-
resolution features from the decoding phase, enhancing the detail of reconstructed feature
maps. During this process, the unique cross-layer connections of SegNeXt Attention ensure
that even in cases of rich image details or complex backgrounds, the model can effectively
determine the target areas. Finally, through the high-resolution feature maps output by the
decoder, the model generates accurate results, achieving efficient detection and recognition
of forest fires in complex backgrounds. Simultaneously, to ensure the decoder’s lightness,
features from the last three stages (stage2, stage3 and stage4 in Figure 6) are aggregated,
using a lightweight “hamburger” to further model the global context, maintaining high
computational efficiency while still being lightweight.

2.3. Experimental Setup and Accuracy Assessment

The experiment is performed on a 64-bit Windows 10 system, using Python and the
PyTorch 2.3.0 library for evaluation. The setup also includes an NVIDIA GeForce RTX
4090 graphics card with 24 GB of VRAM, offering substantial graphics processing power.
For consistent experimental procedures and comparable outcomes, this configuration will
be kept consistent throughout subsequent parts of the study.

To comprehensively and effectively evaluate forest fire detection models, four metrics
were employed: precision (P), recall (R), F1 score, and mean Average Precision (mAP).
Below are the respective calculation formulas (Equations (9)–(12)).

P =
TP

TP + FP
, (9)

R =
TP

TP + FN
, (10)

F1 =
2 · P · R
P + R

, (11)

mAP =

Q
∑

q=1
AP(q)

Q
, (12)

where TP denotes the number of true positives, representing the correctly detected forest
fires by the models. FP represents false positives, indicating instances where models
detect non-existent fires. FN stands for false negatives, referring to forest fires missed
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by the models. Precision (P) quantifies the proportion of actual forest fires accurately
detected, while recall (R) measures the proportion of correctly identified forest fires out
of all actual positive samples. The F1 score, the harmonic mean of precision and recall,
offers a balanced assessment of the model’s performance. Mean Average Precision (mAP) is
calculated by averaging the Average Precision (AP) across different categories, serving as a
comprehensive metric to evaluate a detection model’s performance over the entire dataset.

In addition, this study calculates the number of model parameters (including weights
and biases) and floating-point operations per second (FLOPs) to further measure the
complexity and computational requirements of a model. The number of FLOPs directly
determines the training and inference speed of the deep learning model. The more
FLOPs, the higher the computational demand of the model and the more stringent the
hardware requirements.

3. Results
3.1. Comparison between YOLOv8n and LUFFD-YOLO

To assess the efficacy of the proposed LUFFD-YOLO model, we performed a com-
parative study against the YOLOv8n model using the extensive public forest fire dataset
(M4SFWD). Figure 7a–c represents the discrepancies between the predicted bounding
boxes, classifications, and probability distributions compared to the true values. The closer
the curves are to zero, the smaller the difference from the true values. From Figure 7a–c, it
can be observed that the losses for LUFFD-YOLO are closer to zero, which indicates a better
training effect. The mAP50 value refers to the average precision of a model in correctly
identifying positive objects when the Intersection over the Union (IoU) threshold is set at
50%. The mAP50-95 value is the average of the mean Average Precision values calculated at
different IoU thresholds, typically from 50% to 95% in increments of 5%. From the curves
shown in Figure 7d–g, it is apparent that LUFFD-YOLO maintains higher values compared
to YOLOV8n across four different metrics—precision, recall, mAP50, and mAP50-95—as
the epochs progress.
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The experimental findings, depicted in Table 1, demonstrate that the LUFFD-YOLO
model surpasses the baseline model across all four evaluation metrics (precision, recall,
F1 score, and mAP), exhibiting enhancements of 4.2%, 7.2%, 5.7%, and 5.1%, respectively.
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This is primarily attributed to the newly designed backbone layer structure, ESDC2f, which
enhances the model’s capability to detect small-scale forest fires. The addition of the
HFIC2f structure in the neck layer improves the model’s ability to detect forest fires in the
presence of complicated backdrops accurately. The decrease in the number of parameters is
mainly attributed to substituting conventional convolutional layers with GhostNetV2. In
summary, the proposed LUFFD-YOLO model significantly enhances the accuracy of forest
fire detection while maintaining a lightweight design, which is of great significance for the
timely monitoring of forest fires.

Table 1. Comparison of the YOLOv8n and LUFFD-YOLO on the test data of the M4SFWD dataset.

Model Precision (%) Recall (%) F1 (%) mAP (%) Parameters (M)

YOLOv8n 77.6 75.6 76.6 82.1 3.0
LUFFD-YOLO 80.9 81.1 81.0 86.3 2.6

Figure 8 illustrates the forest fire detection results of YOLOv8n and LUFFD-YOLO
across different scenarios: (from left to right) low-light forest fire, dense forest small fire,
low-light snowfield, multi-target forest fire on an island, and high-brightness forest fire. The
detection accuracy of LUFFD-YOLO across various scenarios (Figure 8(c-1–5)) is superior
to that of YOLOv8n (Figure 8(b-1–5)).
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3.2. Ablation Experiment

To further assess the detection performance of the proposed LUFFD-YOLO model, we
conducted ablation studies to evaluate the individual impact of each enhancement step
(model lightweight, multi-head attention mechanism, SegNeXt Attention) on the model’s
performance. The accuracy metrics of the ablation experiment include precision, recall, F1,
mAP, and FLOPs.

Table 2 displays the ablation experimental results using the M4SFWD dataset un-
der different optimization measures. The results from Methods (1) indicated that when
optimizing the backbone network with GhostNetV2, the model’s FLOPs were reduced
by 14.8%. This reduction is mainly due to the introduction of a more efficient feature
generation mechanism by GhostNetV2, which generates original features using a minimal
number of basic convolution operations and then expands them into more features through
cost-effective operations, thereby reducing computational costs. Additionally, it further
enhances the model’s computational efficiency and performance through improved feature
reuse and feature fusion strategies.

Table 2. Results of ablation experiments on the M4SFWD dataset.

Name Models Precision (%) Recall (%) F1 (%) mAP (%) FLOPs (G)

YOLOv8n YOLOv8n (baseline) 77.6 75.6 76.6 82.1 8.1
Methods (1) YOLOv8n+GN 75.8 74.2 75.0 80.3 6.9
Methods (2) YOLOv8n+GN+ESDC2f 78.8 79.1 78.9 84.5 7.0

Methods (3) (ours) YOLOv8n+GN+ESDC2+HFIC2f 80.9 81.1 81.0 86.3 7.0

Note: GN-GhostNetV2; ESDC2f-enhanced small-object forest fire detection C2f; HFIC2f-hierarchical feature-
integrated C2f.

However, the lightweight structure can also lead to a slight decrease in detection
accuracy. To compensate for the accuracy loss caused by lightweighting, Method (2)
incorporates the ESDC2f structure into the backbone network, resulting in respective im-
provements in precision, recall, and mAP of 4.0%, 6.6%, and 5.2%, compared to Method (1).
Figure 9 presents the first eight feature maps of the same layer generated by Methods (1)
and Methods (2). It can be observed the feature maps generated by Methods (2), which
integrate the GhostNetV2 and ESDC2f structure into the backbone network, demonstrate
superior globality and extensibility compared to Methods (1), which solely incorporate the
GhostNetV2 structure. This suggests that the feature maps of Methods (2) exhibit greater
diversity and contain a more abundant amount of information. The primary enhancement
stems from the MHSA attention mechanism, enabling the model to capture varied features
across different representational subspaces while comprehensively considering contextual
information from image sub-environments. This contributes significantly to improving
the accuracy of forest fire detection. At the same time, it is observed that the model still
maintains a reduced computational cost after the addition of this structure. Methods (3)
demonstrate that upon adding the newly designed HFIC2f structure to the Neck layer on
top of Methods (2), the model’s precision, recall, and mAP metrics significantly increased
compared to the baseline model YOLOv8n, with increases of 4.3%, 7.3%, and 5.1%, respec-
tively. This is attributed to the module’s ability to better highlight flame features in complex
environments and reduce background noise. It effectively integrates features at different
levels, capturing both the overall shape of forest fires and precisely identifying the edges
and details of forest fires. LUFFD-YOLO ultimately adopts the structure from Methods (3)
to ensure optimal model performance, achieving a mAP of 86.3% on the M4SFWD dataset
with a computational cost of 7.0 G. Compared to the baseline model YOLOv8n, it maintains
high detection accuracy while being lightweight.

Additionally, we employed Grad-CAM for interpretative analysis of the model’s
improvement strategies. Figure 10 displays the heatmaps of forest fire detection on the
M4SFWD dataset using both the baseline YOLOv8n model and the proposed LUFFD-
YOLO model. The figure demonstrates that LUFFD-YOLO detects larger target areas
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for both high-brightness and low-light forest fires compared to YOLOv8n, as seen in
comparisons between Figure 10(b-1,2) with Figure 10(c-1,2). Moreover, in situations with
complex environments and irregularly sized targets, LUFFD-YOLO better focuses on the
positive sample areas of forest fires and smoke, effectively overcoming the problem of
missed detections (compared Figure 10(b-3,4) with Figure 10(c-3,4)). This indicates that the
introduction of the ESDC2f structure enables the model to more fully capture image features,
enhancing feature representation. Simultaneously, the introduction of the HFIC2f structure
significantly improves the model’s perception of targets against complex backgrounds. The
experimental results prove the effectiveness of the improvement measures.
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3.3. Verification Experiment

To verify the performance of the LUFFD-YOLO model, we compared the model
with four lightweight models: YOLOv3-tiny [49], YOLOv5 [50], YOLOv7-tiny [51], and
YOLOv8n using the new data (FLAME and SURSFF dataset). Table 3 shows that the
LUFFD-YOLO model achieved the best accuracy with the minimum parameters on both
the FLAME dataset (precision: 87.1%, recall: 87.5%, mAP: 90.1%, M: 2.6) and the SURSFF
dataset (precision: 88.9%, recall: 86.7%, mAP: 90.9%, M: 2.6). It shows that the mAP of
LUFFD-YOLO increased by 5.5%, 5.3%, 28.7%, and 3.1% on the FLAME dataset, and
by 5.2%, 2.2%, 4.3%, and 3.5% on the SURSFF dataset when compared to YOLOv3-tiny,
YOLOv5, YOLOv7-tiny, and YOLOv8n, respectively. For the FLAME dataset, the pre-
cision of the LUFFD-YOLO model increased by 3.8%, 4.7%, 16.9%, and 2.7%, and the
recall increased by 12.1%, 8.8%, 22.9%, and 5.8% comparing to YOLOv3-tiny, YOLOv5,
YOLOv7-tiny, and YOLOv8n, respectively. Similarly, for the SURSFF dataset, the precision
of LUFFD-YOLO increased by 6.3%, 2.1%, 4.5%, and 3.7%, and the recall increased by 6.1%,
2.0%, 4.5%, and 3.0% comparing to YOLOv3-tiny, YOLOv5, YOLOv7-tiny, and YOLOv8n,
respectively. It indicated that the LUFFD-YOLO model dramatically reduced both commis-
sion and omission errors when detecting forest fires. In addition, LUFFD-YOLO has the
smallest number of parameters, which makes it highly beneficial for real-time forest fire
detection tasks.

Table 3. Comparison of different models on the FLAME and SURSFF Datasets.

Dataset Model Precision (%) Recall (%) mAP (%) Parameters (M)

FLAME

YOLOv3-tiny 83.9 78.0 85.4 8.1
YOLOv5 83.2 80.4 85.6 47.1

YOLOv7-tiny 74.5 72.8 70.0 6.0
YOLOv8n 84.8 82.7 87.4 3.0

LUFFD-YOLO 87.1 87.5 90.1 2.6

SURSFF

YOLOv3-tiny 83.9 81.4 86.4 8.1
YOLOv5 87.2 84.9 88.9 47.1

YOLOv7-tiny 85.2 82.9 87.1 6.0
YOLOv8n 86.4 83.5 87.8 3.0

LUFFD-YOLO 88.9 86.7 90.9 2.6

Figure 11 visualizes the results of various models on the FLAME and the SURSFF
dataset. The numerical values of the predicted bounding boxes in the figure represent the
confidence scores of forest fires. Confidence is a value between 0 and 1 that indicates the
model’s certainty in the detected target’s presence. A confidence close to 1 suggests the
model is confident that the target object is contained within the box, whereas a confidence
close to 0 suggests the model believes the box likely does not contain the target. It can be
observed that LUFFD-YOLO maintains higher detection accuracy. This further indicates
that the model proposed in this article can better sustain detection performance through
network lightweight.
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Figure 11. Visual comparison of detection results between LUFFD-YOLO and four lightweight
models using the FLAME and SURSFF dataset: (a) YOLOv3-tiny; (b) YOLOv5; (c) YOLOv7-tiny;
(d) YOLOv8n; (e) LUFFD-YOLO. Note: The numerical values of the predicted bounding boxes in
the figure represent the confidence scores of forest fires. Confidence is a value between 0 and 1 that
indicates the model’s certainty in the detected target’s presence.

4. Discussion
4.1. The Advantages of the Proposed LUFFD-YOLO Model

This study proposes LUFFD-YOLO, a lightweight object detection model that achieves
a high level of accuracy while maintaining a good balance between its architecture and
detection performance. The baseline YOLOv8 model demonstrates exceptional perfor-
mance in the field of one-stage object detection. However, to attain optimal detection
performance, the YOLOv8 model employs a significant amount of convolutional opera-
tions, which include numerous inefficient computations. This undoubtedly increases the
model’s computational load, which hinders real-time detection tasks for forest fire targets.
Therefore, this study utilizes the GhostNetV2 architecture to enhance the conventional
convolutions in the backbone layer of the YOLOv8n model. This optimization enhances
computational efficiency and decreases the number of parameters, while still maintain-
ing good performance. Additionally, this study proposes a new structure, ESDC2f, with
the aid of the MHSA attention mechanism. This structure enables the model to learn
diverse features in different representational subspaces and fully consider the contextual
information of the image sub-environment, thereby enhancing the detection accuracy of
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different target scales. The ESDC2f structure significantly enhances the feature extraction
capabilities of the backbone layer, in comparison to the YOLOv8n model. Finally, drawing
inspiration from SegNeXt’s attention, a new structure, HFIC2f is proposed. It emphasizes
target features against complex backgrounds, suppresses noise, and enhances the model’s
ability to recognize forest fire-related features in complex environments. The addition of
the HFIC2f structure in LUFFD-YOLO has significantly improved the ability to integrate
features at various levels, as compared to the conventional neck layer of YOLOv8n.

4.2. Comparative Experiments of Different Models

Based on the M4SFWD dataset, the proposed one-stage LUFFD-YOLO model was com-
pared with traditional two-stage object detection models (Faster-RCNN [52] and SSD [53])
and lightweight one-stage object detection algorithms (YOLOv3-tiny [49], YOLOv5 [50],
YOLOv6s [54], YOLOv7-tiny [51]). Table 4 indicates that LUFFD-YOLO surpasses the
comparison algorithms across all performance metrics. Specifically, Faster-RCNN, which
extracts features from the entire image before region proposal, suffers from low precision
in forest fire detection owing to its intricate model structure, failing to satisfy real-time
detection needs (lowest F1 and a large number of parameters). Although the SSD model ex-
hibits higher detection accuracy (F1: 70.6%), its reliance on fixed-size anchor boxes restricts
its capability to capture the diversity and variability of forest fires. It also has the largest
number of parameters (560.6 M), indicating the lowest efficiency. The YOLOv3-tiny model,
by simplifying the network structure to reduce computational demands (parameters: only
8.1 M), compromises its ability to capture complex features of forest fires but provides a
moderate accuracy (F1: 72.0%). In contrast, YOLOv5, with its auto-learned anchor sizes
and PANet feature fusion technology, improves detection capabilities (F1: 72.9%; mAP:
79.3%) but its deep and complex network structure is unsuitable for real-time detection
tasks (parameters: 47.1M). The YOLOv6s model enhances feature fusion efficiency and
model convergence speed through the Rep-PAN structure and the decoupling strategy
of YOLOX’s detection head, providing an F1 of 73.5% with parameters of 17.2 M. The
YOLOv7-tiny model, adopting the efficient layer attention network structure, effectively
aggregates features at different levels, enhancing the network’s feature extraction capabil-
ity, while optimizing the computational process with the MaxPool2d structure to speed
up detection, yet the model’s weight size remains 6.0 M. The YOLOv7-tiny achieves the
highest accuracy and lowest parameters among the compared models (F1: 74.4%; mAP:
80.4%; parameters: 6.0 M). In comparison, LUFFD-YOLO not only optimizes detection
performance (F1: 81%; mAP: 88.3%) and achieves model lightweight (parameters: 2.6 M)
but also enhances the ability to recognize targets of varying sizes, offering a new effective
methodology for forest fire detection.

Table 4. Comparative experiments with different models on the M4SFWD dataset.

Model Precision (%) Recall (%) F1 (%) mAP (%) Parameters (M)

Faster-RCNN 69.4 68.3 68.9 76.8 120.4
SSD 70.6 70.5 70.6 77.5 560.6

YOLOv3-tiny 72.7 71.4 72.0 78.1 8.1
YOLOv5 73.1 72.7 72.9 79.3 47.1
YOLOv6s 74.2 72.9 73.5 79.9 17.2

YOLOv7-tiny 75.4 73.5 74.4 80.4 6.0
LUFFD-YOLO 80.9 81.1 81.0 88.3 2.6

4.3. Limitations and Future Work

While the LUFFD-YOLO model showcased notable advantages in forest fire detection
within this study, it still carries certain limitations. Firstly, the GHostNetV2 structure em-
ployed in this study uses cost-effective operations to reduce the model’s parameter count
and improve computational efficiency. However, these cost-effective operations have a
limited receptive field and can only capture local, fine-grained features, which limits the
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model’s feature extraction capability. In future research, the model architecture could be
further enhanced to improve the capability of extracting features from lightweight struc-
tures. For instance, it might be beneficial to disregard the connections between structures
in order to produce a more condensed model structure. Additionally, convolutional kernels
of various sizes can be utilized to effectively capture multi-scale features.

Secondly, small forest fires only occupy a limited number of pixels in the entire image,
resulting in a loss of clarity and definition in intricate characteristics such as shape, color,
texture, and so on. Additionally, small forest fires have a sparse feature representation and
a low signal-to-noise ratio, which means that their feature signals are readily overshad-
owed by background noise. Super-resolution technology-based methods provide robust
interpretability for small object detection. Thus, by utilizing super-resolution technology
to enhance the features of small targets and adopting higher quality features, we aim to
further improve the model’s perception ability for small target detection.

Finally, this study only focused on the UAV-borne RGB images, which means that
crucial information like the temperature of objects can not be captured. Thus, with the avail-
ability of UAV-borne thermal infrared sensors, a deep learning algorithm that integrates
RGB images with thermal infrared images should be developed in the future to improve
the detection of forest fires by incorporating temperature.

5. Conclusions

This study proposes a lightweight forest fire detection model, LUFFD-YOLO, for
UAV remote sensing data. The LUFFD-YOLO model improves the existing YOLOv8n
network by incorporating a set of optimizations: Initially, GhostNetv2 was utilized to
enhance the conventional convolution of YOLOv8n, resulting in a significant reduction in
the model’s parameter count. Second, the ESDC2f architecture, which utilizes the MHSA
attention mechanism, was proposed. This design enhances the backbone layer’s feature
extraction capability, thereby improving the accuracy of small forest fire detection. Third,
the HFIC2f structure was redesigned by using the SegNeXt attention mechanism to enhance
the integration of features from different layers, resulting in improved accuracy in detecting
wildfires in complicated backgrounds. The LUFFD-YOLO model shows improvements in
precision, recall, and mAP of 4.3%, 7.3%, and 5.1%, respectively, compared to the baseline
model YOLOv8n, with a reduction in parameter count of 13.3% and desirable generalization
on different datasets. This indicates that the model is able to balance between a high level
of accuracy in detecting forest fires and model efficiency, ensuring that it can work in real
time. However, while reducing the number of parameters in the backbone layer, the model
loses a considerable amount of feature information, and its performance in detecting small
target forest fires still has shortcomings. In the future, we will keep refining the model,
focusing on improving the feature extraction capability of the lightweight structure and the
ability to detect small target forest fires to achieve better forest fire detection performance.
This work will greatly aid real-time forest fire detection using UAV remote sensing images.
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