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Abstract: A novel Bayesian spatial distributional regression model is presented to predict forest
structural diversity in terms of the distributions of the stem diameter at breast height (DBH) in
the protection forests in Ebensee, Austria. The distributional regression approach overcomes the
limitations and uncertainties of traditional regression modeling, in which the conditional mean of
the response is regressed against explanatory variables. The distributional regression addresses the
complete conditional response distribution, instead. In total 36,338 sample trees were measured via
a handheld mobile personal laser scanning system (PLS) on 273 sample plots each having a 20 m
radius. Recent airborne laser scanning (ALS) data were used to derive regression covariates from the
normalized digital vegetation height model (DVHM) and the digital terrain model (DTM). Candidate
models were constructed that differed in their linear predictors of the two gamma distribution param-
eters. In the distributional regression approach, covariates can enter the model in a flexible form, such
as via nonlinear smooth curves, cyclic smooths, or spatial effects. Supported by Bayesian diagnostics
DIC and WAIC, nonlinear smoothing splines outperformed linear parametric slope coefficients, and
the best implementation of spatial structured effects was achieved by a Gaussian process smooth.
Model fitting and posterior parameter inference was achieved by using full Bayesian methodology
and MCMC sampling algorithms implemented in the R-package BAMLSS. With BAMLSS, spatial
interval predictions of the DBH distribution at any new geo-locations were enabled via straight-
forward access to the posterior predictive distributions of the model terms and by offering simple
plug-in solutions for new covariate values. A cross-validation analysis validated the robustness of
the proposed method’s parameter estimation and out-of-sample prediction. Spatial predictions of
stem count proportions per DBH classes revealed that regeneration of smaller trees was lacking in
certain areas of the protection forest landscape. Therefore, the intensity of final felling needs to be
increased to reduce shading from the dense, overmature shelter trees and to promote sunlight for the
young regeneration trees.

Keywords: protection forest; Bayesian regression model; spatial regression model; distributional
regression; diameter distribution modeling

1. Introduction

The forests of the Alps provide a wide range of ecosystem services. In addition to
offering wood production and a unique habitat for a diverse set of species, these forests
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protect people, buildings, and infrastructure from natural hazards such as snow avalanches,
rockfalls, and mudslides [1]. Forests that protect human infrastructure are declared as
“protection forests”, often through a public authority’s formal decree. In Austria, between
2009 and 2015, there were 20–70 severe rockfall events per year, resulting in 10 human
injuries and damage to settlement areas and infrastructure [2]. Given its mountains terrain,
∼15.7% (615,852 hectares, ha) of Austria’s total forest area offer some level of protective
function [3].

In an in situ rockfall experiment, Ref. [4] showed forest cover significantly reduced
velocity, rebound height, residual hazard of rockfall, and depending on the quality and
quantity of the forest structure, the number of rocks involved in a rockfall could be reduced
by 64%. To a large degree, the protective effect of a forest is a function of the forest’s vertical
and horizontal structure. Specifically, relevant structural measures are stem density, tree size
(i.e., diameter), and patch size (see, e.g., [1] and other references therein). To assess hazard
risk and support the decision making in forest management activities, Ref. [5] uses computer
simulation models informed with spatially explicit forest structural summary inputs. These
forest structure inputs were traditionally derived from aerial image analysis [6]. More
recently, however, laser imaging detection and ranging (LiDAR) data are being used
to support forest inventories [7], and offer improved accuracy and efficiency through
automation for mapping forest structures [8]. As demonstrated in [9], airborne LiDAR data
can even be utilized to segment individual trees and measure their diameters.

Mean tree diameter and total stem count are often inadequate at characterizing forest
structure, especially for structurally diverse settings. Building structural diversity through
silvicultural treatments is a common management objective that has been shown to enhance
biological diversity, carbon storage, and possibly climate resilience [10–12]. This desired
structural diversity is often produced by “plentering”, a highly intensive silvicultural
prescription designed to move homogeneous stands to an uneven age structure with
stratified crown layering [13]. The characterization of such structurally diverse forests
is best approached through the use of more detailed summaries of potentially complex
size-class distributions, which provide a more nuanced understanding of the forest’s
structure. The distribution of tree diameters is not only relevant for the management of
forest ecosystems, but can also serve as an indicator of the structural diversity and of the
quality of ecosystem services provided in urban regions [14].

Characterizing size-class distributions has traditionally been performed using either a
parameter prediction model (PPM) or a parameter recovery model (PRM) approach [15].
In PPM, a probability density function (pdf) is chosen to characterize the size-distribution
(e.g., diameter distribution), and the pdf parameters are then estimated separately for each
sample plot. Finally, the parameter estimates are regressed against covariates via regression
analysis. Using these regression equations with new values of the covariates achieves the
final pdf parameter predictions for independent sample plots [16]. In PRM, theoretical
moments of the pdf, e.g., the mean and dispersion parameters, are expressed dependent
on the pdf parameters. In these equations, the theoretical moments are then replaced by
their sample estimates. For a pdf with k parameters, a set of k equations is finally solved to
achieve the pdf parameter estimates.

The PRM is often used to avoid confounding problems, which can occur with PPM,
as similar pdfs can be achieved with different parameter combinations, making it difficult
to find unambiguously meaningful covariates. As consequence, the PPM equations can
usually explain only a little of the variation in the parameters and typically have a low R2. A
shortcoming of the traditional PPM and PRM approaches to modeling tree size distributions
is that they require separate model steps—estimating size distribution parameters happens
separately from the regression used to explain variability in those parameters. This can
easily produce ill-behaved prognoses of diameter distributions when new covariate data are
used. To make future predictions of diameter distributions more reliable and accommodate
temporal dependence among repeat measurements, a bivariate distribution modeling
was demonstrated in [16]. Ref. [17] proposed a non-parametric Bayesian approach to
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estimate diameter distributions that modeled each diameter class using a Poisson regression
informed using LiDAR covariates and random effects designed to accommodate correlation
among diameter classes and across spatial locations. While highly flexible, their proposed
approach was computationally demanding and required a greater degree of user input to
choose appropriate prior distributions and assess model convergence.

Here, we demonstrate and assess a different inferential approach aimed at overcoming
key limitations of previously proposed methods for characterizing size-class distributions.
Specifically, we apply recent advancements in distributional regression using generalized
additive models that facilitate joint estimation of shape and scale parameters in parametric
distributions. In particular, we use a generalized additive models for location, scale, and shape
(GAMLSS)-based approach, proposed by [18]. In a series of papers, Refs. [19–22] extended
the original maximum likelihood mode of inference for GAMLSS parameters to a Bayesian
approach using Markov chain Monte Carlo (MCMC), referred to as Bayesian additive models
for location, scale, and shape (BAMLSS). This Bayesian approach accommodate a richer set of
models and uncertainty quantification. Many proposed BAMLSS features have been made
available in user-friendly software [23].

Unlike within classical regression models, where the conditional mean of the response
is regressed against covariates, distributional regression addresses the complete conditional
response distribution, in that each distribution parameter is modeled in terms of covariates
and, potentially, random effects. Compared to maximum-likelihood-based GAMLSS, the
BAMLSS distributional regression supports a wider selection of distribution families, for
which the parameters are not necessarily directly related to the location, scale, and shape of
the given distribution but can form these measures indirectly via functional relationships.
Ref. [24] offers an excellent review of distributional regression approaches including
GAMLSS (and its Bayesian extensions) and the traditionally more conspicuous quantile
regression. The review underscores key advantages to GAMLSS approaches with regard to
modeling distribution parameters using versatile additive structure, nonlinear functions,
varying coefficients, and spatially and temporally structured random effects.

In this paper, GAMLSS spatial distributional regression models are used to quantify
forest structural diversity based on stand-level DBH distributions in a protection forest
landscape near Ebensee, Austria. Sample plot data were collected using a handheld mobile
personal laser scanning (PLS) and processed using automated software routines. Regression
covariates were derived from a digital vegetation height model (DVHM) and a digital
terrain model (DTM) provided by recent airborne laser scanning (ALS) campaigns.

2. Materials and Methods
2.1. Study Region and Model Data

The study area was located in the southern region of the federal state of Upper Austria,
near the village of Ebensee, and covers an area south of Traunsee lake (Figure 1). The
forest district Ebensee had a total area of 4898 hectares (ha) and was partitioned into
Q = 1237 forest stands. The average stand size was 3.96 ha, the minimum 0.14 ha, the
median 2.33 ha, and the maximum 89.99 ha.

Forest inventory data were collected on n = 273 sample plots, which were spatially
aligned in a regular 400 m × 400 m grid (Figure 1). Plot measurements were collected using
a handheld mobile PLS GeoSLAM ZEB Horizon (GeoSLAM Ltd., Nottingham, UK). The
180 plots in the study area’s eastern half were scanned in autumn 2021, and the remaining
93 plots, in the western half, were scanned in spring 2023. Position, diameter at breast
height (DBH), and height for the approximately 36,338 measurement trees were derived
from 3D point clouds collected on each 20 m radius plot centered on the n grid locations
using fully automated routines detailed in [25–29]. Stem volume was calculated using a
traditional stem-form function [30]. The mean DBH of the measured trees was 14.6 cm,
the standard deviation (SD) was 10.6, the minimum was equal to the pre-defined 5 cm
threshold, and the maximum DBH was 92.4 cm. For each plot, the growing stock timber
volume (GSV) was expressed in m3/ha (i.e., computed as the sum of tree volume scaled
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by the 7.958 fixed-area plot tree expansion factor). The mean GSV of the sample plots was
259.6 m3/ha, the SD was 177.9 m3/ha, and the minimum and maximum were 0.6 m3/ha
and 980.7 m3/ha, respectively.

47.76°N

47.78°N

47.80°N

47.82°N

47.84°N

13.70°E 13.75°E 13.80°E 13.85°E 13.90°E

Figure 1. Schematic map of the extent of the Ebensee forest district in Austria and the locations of
273 sample points.

The federal state of Upper Austria provided open access to a DTM and a DSM via
the open data platform https://data.ooe.gv.at [31,32]; both were available as 0.5 m × 0.5 m
resolution grids in the tagged image file format. The DTM and DSM were processed from
ALS data obtained in different flight campaigns conducted over the past several years. For
84% of the total forest district area, the ALS data were collected in 2021, for 11% in 2019,
and for the remaining 5% in 2017. A normalized DVHM was computed by subtracting the
DTM from the DSM.

2.2. Model Construction

A distributional regression model was built for the DBH distributions observed at the
n PLS forest inventory plots with the model form

yi|xi ∼ D(ϑ1(xi), . . . , ϑK(xi)), (1)

where yi is the DBH distribution vector at the ith plot, and D is a parametric density
distribution function with parameters ϑ1(xi), . . . , ϑK(xi) that depend on a set of plot specific
covariates xi.

The parameters are typically not directly generated by a regression predictor; rather,
they are often derived through a monotonically increasing response function, which maps
the predictor η

ϑl
i to the lth parameter via

ϑil = hl(η
ϑl
i ) . (2)

Assuming monotony and inverting the response function via the link function gl(·)
achieves the parameter predictor

η
ϑl
i = h−1

l (ϑil) = gl(ϑil) . (3)

https://data.ooe.gv.at
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The vector of covariates x′i =
(
z′i, ν′

i , s′i
)

optionally contains measures z′i having a linear
effect, ν′

i having nonlinear effects, and si representing generic geo-locations. Hence, the
structured additive predictor becomes

η
ϑl
i = z′iβ

ϑl +
Jl

∑
j=1

f ϑl
j (νi) + f ϑl

geo(si) , (4)

and is composed of linear covariate effects with parameters βϑl in the first summand,
smooth nonlinear functions f ϑl

j (·) in the second summand, and a spatial effect f ϑl
geo(·) at

geo-locations si in the third summand.
Distributional regression models were constructed with the gamma distribution as

the proper candidate for D. Trials were also made with the Weibull distribution, but the
Weibull distribution proved less flexible than the gamma distribution. Following [33], the
gamma distribution’s probability density function (pdf) considered here is defined by

fGA(y|µ, σ) =
y1/σ2−1e−y/(σ2µ)

(σ2µ)1/σ2 Γ(1/σ2)
, (5)

for y > 0, and with µ > 0 and σ > 0. Herein, E(Y) = µ and Var(Y) = σ2µ2. Linear
predictors (Equation (4)) were constructed for both parameters µ and σ.

The catalog of the possible covariates for zi and νi included summary statistics of the
DVHM across the pixels per sample plot area, such as the mean vegetation height (MVH),
its standard deviation (SDVH), and various percentiles of the distributions of the pixelated
vegetation heights. In addition, topographic metrics were derived from the DTM, i.e., the
elevation above sea level (ESL), and the average slope (SLO) and aspect (ASP) of the terrain.
Finally, the geo-locations of the sample plot centroids were used to index a spatial Gaussian
process (i.e., the f ϑl

geo(si) summand in (4)).
Various candidate models were tested that differed in their complexity, especially in

terms of smooth nonlinear models for the covariate effects versus simple linear parametric
coefficients, and with respect to the presence/absence of a structured spatial effect.

The model fitting and subsequent prediction was performed within a Bayesian in-
ferential framework and by using the R-package BAMLSS version 1.2-4 [22,23]. Smooth
nonlinear covariate effects (second summand in Equation (4)) were consistently modeled
with BAMLSS’s default thin-plate regression splines [34], and the spatially structured
effect for the continuously indexed sample plot location coordinates (third summand in
Equation (4)) were alternatively represented by a spatial Gaussian process model or by a
bivariate tensor product smooth. When a Gaussian process was chosen, a simplified form
of the Matern covariance function was applied, according to suggestions by [35]. Parameter
inference was derived from posterior distributions that were sampled via MCMC tech-
niques. Computations were performed on a multi-core processor workstation. On 7 cores,
5000 iterations were computed per core. From each of the 7 chains, the first 2000 iterations
were discarded as “burn-in”, and from the remaining 3000 iterations every 10th sample
was kept. This burn-in and thinning yielded approximately M = 2100 nearly independent
MCMC samples upon which parameter and predictive posterior inference was based. The
performances of the different candidate models were assessed by means of the deviance
information criterion (DIC) [36] and two varieties of the widely applicable information
criterion (WAIC1 and WAIC2) defined in [37]. For both, lower values of the DIC and WAIC
indicate an improved model fit.

2.3. Model Validation

The best candidate model, in terms of the DIC and WAIC, was validated in a 10-fold
cross-validation procedure. In this way, the total sample of n = 273 plots was randomly
split into 10 lots, each having approximately the same size, n/10. In each of the 10 iterations,
a different single lot was held back, and the model was fitted to the data from the remaining
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9 lots. The posterior predictive distributions of the parametric and non-parametric model
effects were then used to evaluate the posterior predictive distributions of µ and σ given
the independent regressor variables from the withheld lot. Summaries of these predictive
distributions were finally compared with their counterparts, which were derived from the
full-data model fit.

2.4. Prediction

Our primary interest was in stem diameter distribution prediction for each of the 1237 forest
stands delineated in Figure 1. For this purpose, the entire Ebensee forest district domain
was partitioned into 35.5 m × 35.5 m squared prediction pixels, where each pixel’s area
equals that of the 20 m radius sample plot. For each of the prediction pixels, the same set of
covariates was derived as was used in the candidate models. Then, given these prediction
pixel covariate values and centroid coordinates, posterior predictive distribution samples
were generated via composition sampling for each pixel’s µ and σ, and subsequently, their
gamma pdf-based stem diameter distribution.

To assess the protective function of the forest stands in terms of their structural
diversity, forest practitioners from the Austrian Federal Forest Service were especially
interested in the percentage shares of the stems that were allocated to broader diameter
classes: (1) small (DBH < 25 cm), (2) intermediate (25 cm ≤ DBH ≤ 50 cm), and (3) large
(DBH > 50 cm).

To produce such estimates, the gamma distribution function FGA(·) was evaluated
with the µ

(q)
j,m and σ

(q)
j,m estimates from each posterior sample m = 1, . . . , M for each pre-

diction pixel j = 1, . . . , Jq of the total Jq pixels within each forest stand, indexed by

q = 1, . . . , 1237 via (1) P(q)
j,m (DBH < 20 cm) = FGA(y = 20|µ(q)

j,m, σ
(q)
j ); (2) P(q)

j,m (20 ≤ DBH ≤

45 cm) = FGA(y = 45|µ(q)
j , σ

(q)
j )− FGA(y = 20|µ(q)

j , σ
(q)
j ); and (3) P(q)

j,m (DBH > 45 cm) =

1 − FGA(y = 45|µ(q)
j , σ

(q)
j ).

Complete posterior predictive distributions of the M aggregated estimates per forest
stand were generated by an area-weighting through

P(q)
m (·) = 1

∑
Jq
j=1 aj

Jq

∑
j=1

ajP
(q)
j,m (·) , (6)

with aj being the non-constant area of pixel j that falls into stand q, and that might be
reduced by stand border intersections.

3. Results
3.1. Candidate Models

In total, 15 candidate models were constructed that differed in their covariates and
in their constructions of the linear predictors for the µ and σ parameters of the gamma
distribution (Table 1). The covariate effects were either modeled through a linear trend that
was represented by a single parametric slope coefficient, or via non-parametric smoothing
splines. The effect of the terrain aspect (ASP) was throughout represented by a cyclic
version of a cubic regression spline smooth. The spatially structured effects were either
modeled by a bivariate tensor product smooth with the continuous x,y-coordinates of the
sample plots, or alternatively, by a Gaussian process.
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Table 1. Construction of the candidate models. Abbreviations of the covariates: MVH (mean vegetation height), SDVH (standard deviation of the vegetation
height), PX (Xth percentile of the vegetation height distribution), ESL (elevation above sea level), SLO (average terrain slope), ASP (aspect of the terrain), and
XY (geo-locations). “p” stands for a parametric effect and “s()” for a non-parametric smoothing spline. “s(cc)” indicates a cyclic version of a regression spline
smooth. Spatially structured effects are either modeled by assuming a Gaussian process “s(gp)” or via a tensor product smooth “te”. Diagnostics show the deviance
information criterion (DIC), two calculation variants of the widely applicable information criterion (WAIC1, WAIC2), and the associated effective number of model
parameters (edf, p1, p2). Lowest DIC and WAIC are in bold.

m_1 m_2 m_3 m_4 m_5 m_6 m_7 m_8 m_9 m_10 m_11 m_12 m_13 m_14 m_15

MVH p s s s s p p s s s s s s s s
SDVH p s s s s p p s s s s s s s s
P2.5 p s p p s s
P97.5 p s p p s s
ESL p s s s s p p s s s s s s s s
SLO s s s s s s s s s
ASP s(cc) s(cc) s(cc) s(cc) s(cc) s(cc) s(cc) s(cc) s(cc)
XY s(gp) te s(gp) te s(gp) te s(gp) te s(gp) te

DIC 231.268 229.278 228.321 228.087 227.304 230.008 230.235 228.347 228.460 227.577 227.630 227.214 227.236 226.486 226.526
edf 8.1 53.2 85.8 87.3 114.2 62.6 51.2 107.9 94.4 137.6 129.4 139.1 132.1 166.1 158.1
WAIC1 231.269 229.277 228.319 228.086 227.302 230.005 230.233 228.343 228.458 227.574 227.627 227.211 227.234 226.484 226.524
WAIC2 231.269 229.278 228.321 228.088 227.305 230.006 230.234 228.346 228.460 227.577 227.631 227.215 227.238 226.489 226.529
p1 8.4 52.7 83.9 85.7 112.2 60.0 49.7 104.3 91.9 134.5 126.9 135.9 129.9 163.8 156.6
p2 8.4 53.3 84.8 86.7 113.7 60.5 50.1 105.6 93.0 136.4 128.5 137.8 131.7 166.6 159.2
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The distributional regression framework provided high flexibility and generally en-
abled different specifications of the linear predictors for both the µ and σ parameters of a
single-distributional regression model. However, it was found that a unique specification of
both linear predictors worked well throughout all candidate models. Consequently, the two
linear predictors of the µ and σ parameters of each distributional regression model were
constructed with the same set of covariates and by using the same model representations
(parametric term vs. smoothing spline) for the respective covariate effects.

Comparisons of the model performances in terms of the DIC and two calculations of the
WAIC suggested that smoothing splines were more useful than the parametric linear trends;
see diagnostics in Table 1 for m_2 versus (vs.) m_1, m_5 vs. m_4, m_8 vs. m_6, m_9 vs. m_7,
m_14 vs. m_12, and m_15 vs. m_13. Our findings indicated that a spatially structured effect
consistently improved the model performance, although this was generally associated with an
increased number of effective model parameters (edf, p1, p2); compare m_6 and m_7 vs. m_1,
m_8 and m_9 vs. m_2, m_10 and m_11 vs. m_3, m_12 and m_13 vs. m_4, and m_14 and m_15
vs. m_5. When a spatially structured effect was considered, a Gaussian process was found
to be a superior alternative to a tensor product smooth; compare m_6 vs. m_7, m_8 vs. m_9,
m_10 vs. m_11, m_12 vs. m_13, and m_14 vs. m_15. Among all 15 candidate models, model
m_14 had a marginally lower DIC and WAIC, and hence, was considered as the “best” and
used for subsequent diameter distribution predictions.

3.2. Analysis and Inference of the Best Model

The effect curves of model m_14 (Figure 2) showed that the mean vegetation height
(MVH) and elevation above sea level (ESL) had positive effects on µ and σ parameters. The
slope of the terrain (SLO) as well as the 97.5th percentile of the pixelated vegetation height
measures (P97.5) had almost strictly negative effects on µ and σ. The standard deviation of
the vegetation height (SDMVH) had a strictly positive effect on µ. However, the effect of
SDMVH on σ behaved ambiguously for values below 10, had a negative effect between 10
and 13, and acted positively for values greater than 13. The cyclic effect of the topographic
aspect (ASP) on µ and σ had distinct local minima and maxima. The effect of the 2.5th
percentile of the pixelated vegetation heights (P2.5) was indistinct for values less than 10 m,
but for greater values, it had a positive effect on µ and on σ.

The quantile–quantile plot (qq-plot) in Figure 3 shows quantile residuals lay close to
the bisecting line between −2 and 3. This indicates the gamma distributional assumptions
are an accurate representation of the data, and that the distributional regression model
m_14 was correctly specified.

For the model data of the 273 sample plots, the posterior mean estimates from the M
MCMC samples of the µ parameter ranged between 2.93 and 35.62, and the 273 posterior
mean estimates of the σ parameter lay between 0.43 and 3.1 (Figure 4). The correlation
between the 273 posterior mean estimates for µ and σ was 0.42. The average relative standard
deviation (SD%) of the µ estimates was 5.0%, and the σ estimates had an SD% of 7.2%.

Empirical histograms and posterior distributional predictions of the DBH distributions
on the 273 model data sample plots are presented in Figures A1–A8 in the Appendix A.
These figures show the distributional predictions fit very well to the empirical histograms
across all sample plots.

To assess what influence the covariates simultaneously had on both distribution
parameters µ and σ, the gamma density was evaluated under ceteris paribus conditions for
grid values within the range of a single covariate, while the other covariates were kept fixed
at their respective median values (Figure 5). As MVH acted positively on the expectation as
well as on the variance in the gamma distribution, an increasing MVH flattened the density
and shifted the mass towards higher DBH values. Similar effects occurred for increasing
SDVH and ESL values. A completely opposite effect became obvious for an increasing
P97.5. More complex and nonlinear effects on the DBH distribution were observed for SLO,
ASP, and P2.5.
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Figure 2. Effect curves and 95% credible intervals of the “best” model m_14. Covariate effects on µ

are indicated by s(·).mu, and effects on σ by s(·).sigma.
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indicate the posterior mean, and the segments show 95% credible intervals.
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The results from the 10-fold cross-validation showed that the independent posterior
predictions of the µ and σ parameters were highly correlated with the predictions that were
achieved by the model fit to the full dataset; see Figure 6. Despite only a few outliers, the
correlation between the mean estimates of µ was 0.86, and the correlation was 0.81 for σ.
Hence, the final model m_14 was robust, although the effect curves show some signs of
“wiggliness”.
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Figure 6. Comparison of the µ and σ posterior estimates from the 10-fold cross-validation against the
posterior predictions with full-data model fits. Segments show 90% credible intervals.

3.3. Distributional Prediction

As noted previously, the Ebensee forest district domain was partitioned into 35.5 m
× 35.5 m pixels. For each of these prediction pixels, covariate data were derived from the
DVHM and the DSM in terms of the MVH, SDMVH, ESL, SLO, ASP, P2.5, P97.5, and the
pixel centroid coordinates. The MCMC samples from the posterior parameter distributions
for the covariate effects of model m_14 were then applied with these covariates to achieve
posterior predictive distributions of µ and σ for each prediction pixel. Consequently, the
gamma distribution was evaluated using these parameter estimates to produce predictions
of stem count proportions that fall into the DBH classes specified in Section 2.4. Finally, an
area-weighting scheme was applied to achieve aggregated predictions of these stem count
proportions throughout all prediction pixels per forest stand. As demonstrated in Figure 7,
the 95% credible intervals were relatively tight and the size class predictions became highly
precise across all forest stands.

Maps of these size class predictions (Figure 8) revealed that smaller tree sizes were
especially lacking in the central area of the Feuerkogel region located in the western part of
the forest district Ebensee, while these stands also possessed a relatively high proportion of
larger trees. As reported by the sample plot field crew, these sites were actually in a mature
state, and establishment of natural regeneration was hindered by the dense shelter of
larger mature trees. Appropriate silvicultural management activities are therefore needed
to restore the protection function in this area. The size class predictions were relatively
precise for both classification schemes and across all forest stands. The average standard
deviation was only 0.85 percentage points, and the maximum was 9.6. The SD was less
than 1.6 percentage points for 90% of the size class predictions, and 95% of the predictions
had an SD less than 2 percentage points (Figure 9).
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Figure 8. Spatial size class predictions (%) and standard deviation (% points) for the forest stands in
the forest district Ebensee using the classification (1) small (DBH < 25 cm), (2) intermediate (25 cm ≤
DBH ≤ 50 cm), and (3) large (DBH > 50 cm).
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Figure 9. Empirical cumulative distribution function (ecdf) of the size-class prediction standard
deviations (SDs).

4. Discussion

Posterior standard deviations of the DBH class predictions were low due to the
spatially dense network of PLS sample points. There are some areas of higher uncertainty
in the top corner of the eastern half of the district, which are characterized by irregular
forests on steep slopes, and due to rock faces no PLS sample points could be captured.
Also, the south-western ridge in the western half of the district, has higher errors, caused
by missing points due to inaccessibility and generally rough terrain at high altitudes with
less forest cover.

Spatially coherent diameter distribution predictions and subsequently derived proba-
bilistic maps of meaningful size classes provided useful tools to support forest management
decisions. In the Ebensee area, we found an overall high proportion of small-diameter
trees, which are essential to sustain the protective function, especially in that steep terrain.
Due to a dense forest road network in the forest district it is relatively easy to maintain
forest regeneration. Nevertheless, some regions might need additional active management,
especially in the central western half and in the center of the eastern half as well as in the
south-eastern corner. Therefore, the intensity of final felling needs to be increased to reduce
shading from the dense, overmature shelter trees and to promote sunlight for the young
regeneration trees. Predictions of the diameter distribution alone are still insufficient to
fully assess the forest’s protective function, and of special interest would be an assessment
of the structural change over time.

Our proposed methodology stands in stark contrast to the study of [38]. Whereas
in [38] the mean forest-stand-level DBH was modeled within a generalized regression
neural network, we have approached the complete conditional DBH distribution using a
Bayesian distributional regression model. The proposed modeling framework is flexible
and able to represent all the structural differences among the sample plots. However, forest
stands could theoretically possess a layered structure with an understorey of younger and
thinner trees growing under a shelter of older and thicker trees. These circumstances often
result in a multimodal DBH distribution. Practically, such a structure could be modeled
through a mixture of two or more different density functions. However, the methodology
so far provided by the BAMLSS package is restricted to a single density and does not allow
construction of composed mixture models. This limitation was practically irrelevant for
our study, because none of the sample plots showed clear signs of a strict multimodal DBH
distribution; compare Figures A1–A8 in the Appendix A.

In addition, any problems that could have been caused by BAMLSS’s limitation to
unimodal distributions were ameliorated by our approach to achieve the predictions at the
forest stand level. Thereby, the forest stands were partitioned into smaller prediction pixels.
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For each of the prediction pixels, the gamma distribution parameters were predicted, and
the density was evaluated. The forest-stand-level prediction of the DBH distributions was
finally achieved via an area-weighted aggregate of the pixel-level densities. In this way,
the final prediction of the DBH distribution at stand level was no longer restricted to a
unimodal parametric shape.

Forest inventory field work was conducted using a PLS to create “digital twins” of
the vegetation and the terrain on a 20 m radius plot. The field work was very efficient,
with approximately 12 min labor time per plot, including the set-up of the equipment
and the scanning process. By using fully automated routines, 133 trees were measured
on average per sample plot, with LiDAR-derived information on not only DBH, but also
other parameters such as height and crown base. This is in contrast to the traditional forest
inventory practice, in which measurements are conducted with optical and mechanical
instruments. Because these instruments have high labor costs, traditional forest inventories
use much smaller plot sizes than our 20 m radius plots, so that often not more than 10 trees
are measured per plot. With such small sample sizes, the distributional regression modeling
would have been hardly possible, and the novel PLS-supported forest inventory can be
regarded as key to successful DBH distribution modeling and prediction.

In contrast to the proposed distributional regression framework, the traditional PRM
approach is able to generate pdfs of stem diameters that lead to basal area sums, stem
counts, and volume aggregates that correspond with the sample plot observations. Indeed,
there is no guarantee that this likewise happens with the distributional regression approach.
In this study, an approach was presented to model and predict stem diameter distributions
in terms of a parametric probability density function. To produce a quantitative prediction
of the absolute stem count per DBH class, a further estimate of the total stem count per
area unit is needed. A possible approach to achieve such an estimate would be to couple
the proposed spatial distribution regression model with an extra spatial spatial regression
model that considers the tree count per hectare as response. An appropriate methodology
for the spatial regression modeling of the growing stock timber volume per area unit is
presented in [39] and could be adopted to model the number of trees per hectare. To date,
high-density ALS data are available for the complete Ebensee forest district domain and
will probably be maintained in the future, as the area is designated as a research zone
and has been of particular interest to the Austrian Federal Forest Service. In future work,
we will therefore also test an individual tree segmentation from the ALS canopy height
model using a methodology implemented in the R-package lidR by [40,41] that provides a
comparative approach to the spatial regression model of tree counts.

5. Conclusions

This study presented a method to estimate stem diameter distributions by linking
PLS and ALS data in the protection forest landscape Ebensee. The Bayesian distributional
regression framework was based on gamma distributions as implemented in the BAMLSS
R-package. The gamma distribution’s shape and scale parameters were modeled using
linear predictors dependent on covariates from the PLS and ALS data. BAMLSS offered the
modeling of nonlinear covariate effects by using penalized regression spline smoothers,
which proved more favorable than linear parametric slope coefficients. Including spatially
structured effects on both gamma parameters significantly enhanced the model perfor-
mance. Thereby, the modeling of a spatial Gaussian process outperformed a bivariate
tensor product smooth across the sample plot location coordinates.

A spatial wall-to-wall prediction of the gamma distribution was achieved by parti-
tioning the entire domain into prediction pixels with an area equal to the sample plot. The
DBH distributions were predicted at forest stand level via area-weighted aggregates of the
evaluated posterior predictive densities.

The proposed model framework can be easily adopted to other tasks when information
is required on forest structural diversity across broader forest landscapes. The latter aspect
might be of special interest to forestry enterprises charged with protection forest manage-
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ment. In such settings, estimating DBH distributions and other forest structure measures
can inform management decisions focused on sustaining protective forest characteristics.
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Figure A1. Histograms (grey bars) and posterior predictive distributions (red curves) of the DBH at
the sample plots (plot id in title).
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Figure A2. Histograms (grey bars) and posterior predictive distributions (red curves) of the DBH at
the sample plots (plot id in title).
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Figure A3. Histograms (grey bars) and posterior predictive distributions (red curves) of the DBH at
the sample plots (plot id in title).
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Figure A4. Histograms (grey bars) and posterior predictive distributions (red curves) of the DBH at
the sample plots (plot id in title).
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Figure A5. Histograms (grey bars) and posterior predictive distributions (red curves) of the DBH at
the sample plots (plot id in title).
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Figure A6. Histograms (grey bars) and posterior predictive distributions (red curves) of the DBH at
the sample plots (plot id in title).
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Figure A7. Histograms (grey bars) and posterior predictive distributions (red curves) of the DBH at
the sample plots (plot id in title).
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Figure A8. Histograms (grey bars) and posterior predictive distributions (red curves) of the DBH at
the sample plots (plot id in title).
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