Estimation of Infrared Stellar Flux Based on Star Catalogs with I-GWO for Stellar Calibration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stellar Observation Model
2.2. Dual-Band Thermometry
2.3. Improving the Grey Wolf Optimization Algorithm
Algorithm 1 I-GWO: Improved grey wolf optimizer for parameter estimation ( , ) |
|
3. Experimental Results and Analysis
3.1. Dual-Band Thermometry Band Selection
3.2. Selection of Optimization Algorithm
3.3. Selection of Bands Required for Emissivity and Observation Angle Estimation
3.4. Comparison of Estimation Methods
3.5. Analysis of Star Calibration Errors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, S.; Li, C.; Yang, X.; Zhang, K.; Yin, J. Infrared dim target detection method inspired by human vision system. Optik 2020, 206, 164167. [Google Scholar] [CrossRef]
- Guo, Q.; Chen, F.; Li, X.; Chen, B.; Wang, X.; Chen, G.; Wei, C. High-accuracy source-independent radiometric calibration with low complexity for infrared photonic sensors. Light Sci. Appl. 2021, 10, 163. [Google Scholar] [CrossRef] [PubMed]
- Price, S.D. Infrared irradiance calibration. Space Sci. Rev. 2004, 113, 409–456. [Google Scholar] [CrossRef]
- Mill, J.D.; Guilmain, B.D. The MSX mission objectives. Johns Hopkins APL Tech. Dig. 1996, 17, 4–10. [Google Scholar]
- Cohen, M.; Walker, R.G.; Jayaraman, S.; Barker, E.; Price, S.D. Spectral irradiance calibration in the infrared. XII. Radiometric measurements from the midcourse space experiment. Astron. J. 2001, 121, 1180. [Google Scholar] [CrossRef]
- Egan, M.; Price, S.; Kraemer, K. The Midcourse Space Experiment Point Source Catalog Version 2.3. In Proceedings of the American Astronomical Society, Seattle, WA, USA, 4–7 May 2003; Volume 203, p. 57-08. [Google Scholar]
- Reach, W.T.; Megeath, S.; Cohen, M.; Hora, J.; Carey, S.; Surace, J.; Willner, S.; Barmby, P.; Wilson, G.; Glaccum, W.; et al. Absolute calibration of the infrared array camera on the spitzer space telescope. Publ. Astron. Soc. Pac. 2005, 117, 978. [Google Scholar] [CrossRef]
- Krick, J.E.; Lowrance, P.; Carey, S.; Laine, S.; Grillmair, C.; Van Dyk, S.D.; Glaccum, W.J.; Ingalls, J.G.; Rieke, G.; Hora, J.L.; et al. Spitzer IRAC photometry of JWST calibration stars. Astron. J. 2021, 161, 177. [Google Scholar] [CrossRef]
- Xu, X.j.; Li, Z. A Chandra Study of the Stellar X-ray Emissivity of Globular Clusters in the M31 Bulge. Astrophys. J. 2018, 856, 77. [Google Scholar] [CrossRef]
- Basu, R.; Mitra, D.; Melikidze, G.I. Meterwavelength Single-pulse Polarimetric Emission Survey. V. Flux Density, Component Spectral Variation, and Emission States. Astrophys. J. 2021, 917, 48. [Google Scholar] [CrossRef]
- Katz, D.; Soubiran, C.; Cayrel, R.; Adda, M.; Cautain, R. On-line determination of stellar atmospheric parameters Teff, log g,[Fe/H] from ELODIE echelle spectra. I—The method. arXiv 1998, arXiv:astro-ph/9806232. [Google Scholar]
- Castelli, F.; Kurucz, R.L. New grids of ATLAS9 model atmospheres. arXiv 2004, arXiv:astro-ph/0405087. [Google Scholar]
- Rieke, G.; Blaylock, M.; Decin, L.; Engelbracht, C.; Ogle, P.; Avrett, E.; Carpenter, J.; Cutri, R.; Armus, L.; Gordon, K.; et al. Absolute physical calibration in the infrared. Astron. J. 2008, 135, 2245. [Google Scholar] [CrossRef]
- Rieke, G.; Lebofsky, M.; Low, F. An absolute photometric system at 10 and 20 microns. Astron. J. 1985, 90, 900–906. [Google Scholar] [CrossRef]
- Rebassa-Mansergas, A.; Gänsicke, B.; Schreiber, M.R.; Koester, D.; Rodríguez-Gil, P. Post-common envelope binaries from SDSS—VII. A catalogue of white dwarf-main sequence binaries. Mon. Not. R. Astron. Soc. 2010, 402, 620–640. [Google Scholar] [CrossRef]
- Wang, Y.-D.; Sun, X.-J.; Zhang, H.; Chen, F.-S. A new approach for extrapolating star flux using cross-matching multiple catalogues. J. Infrared Millim. Waves 2019, 38, 473–478. [Google Scholar] [CrossRef]
- Zhang, C.X.; Yuan, Y.; Zhang, H.W.; Shuai, Y.; Tan, H.P. Estimating stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization. Res. Astron. Astrophys. 2016, 16, 008. [Google Scholar] [CrossRef]
- Suzuki, N.; Fukugita, M. Blackbody stars. Astron. J. 2018, 156, 219. [Google Scholar] [CrossRef]
- Rrapaj, E.; Sieverding, A.; Qian, Y.Z. Rate of dark photon emission from electron positron annihilation in massive stars. Phys. Rev. D 2019, 100, 023009. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T.; Jin, P.; Yuan, Y.; Ouyang, X.; Marchesoni, F.; Huang, J. Extracting stellar emissivity via a machine learning analysis of MSX and LAMOST catalog data. Phys. Rev. D 2022, 106, 123035. [Google Scholar] [CrossRef]
- Di Carolo, F.; Savino, L.; Palumbo, D.; Del Vecchio, A.; Galietti, U.; De Cesare, M. Standard thermography vs free emissivity dual color novel CIRA physics technique in the near-mid IR ranges: Studies for different emissivity class materials from low to high temperatures typical of aerospace re-entry. Int. J. Therm. Sci. 2020, 147, 106123. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Engelke, C.W.; Price, S.D.; Kraemer, K.E. Spectral irradiance calibration in the infrared. XVI. Improved accuracy in the infrared spectra of the secondary and tertiary standard calibration stars. Astron. J. 2006, 132, 1445. [Google Scholar] [CrossRef]
- Chiu, C.Y.; Shih, P.C.; Li, X. A dynamic adjusting novel global harmony search for continuous optimization problems. Symmetry 2018, 10, 337. [Google Scholar] [CrossRef]
- Boissier, S.; Prantzos, N.; Boselli, A.; Gavazzi, G. The star formation rate in disc galaxies: Thresholds and dependence on gas amount. Mon. Not. R. Astron. Soc. 2003, 346, 1215–1230. [Google Scholar] [CrossRef]
- Decin, L.; Eriksson, K. Theoretical model atmosphere spectra used for the calibration of infrared instruments. Astron. Astrophys. 2007, 472, 1041–1053. [Google Scholar] [CrossRef]
- Price, S.; Paxson, C.; Engelke, E.; Murdock, T.; Kraemer, K. Air Force Research Lab Hanscom Afb Ma Space Vehicles Directorate. Absolute Infrared Calibration of Standard Stars by the Midcourse Space Experiment; Air Force Research Laboratory: Chestnut Hill, MA, USA, 2004. [Google Scholar]
- Chiu, C.-Y.; Shih, P.-C.; Li, X. Hybrid algorithm of particle swarm optimization and grey wolf optimizer for improving convergence performance. J. Appl. Math. 2017, 10, 337. [Google Scholar] [CrossRef]
- Qawqzeh, Y.; Alharbi, M.T.; Jaradat, A.; Sattar, K.N.A. A review of swarm intelligence algorithms deployment for scheduling and optimization in cloud computing environments. PeerJ Comput. Sci. 2021, 7, e696. [Google Scholar] [CrossRef]
- Alyu, A.B.; Salau, A.O.; Khan, B.; Eneh, J.N. Hybrid GWO-PSO based optimal placement and sizing of multiple PV-DG units for power loss reduction and voltage profile improvement. Sci. Rep. 2023, 13, 6903. [Google Scholar] [CrossRef] [PubMed]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Zhu, F.; Li, G.; Tang, H.; Li, Y.; Lv, X.; Wang, X. Dung beetle optimization algorithm based on quantum computing and multi-strategy fusion for solving engineering problems. Expert Syst. Appl. 2024, 236, 121219. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Shaheen, M.A.; Hasanien, H.M.; Alkuhayli, A. A novel hybrid GWO-PSO optimization technique for optimal reactive power dispatch problem solution. Ain Shams Eng. J. 2021, 12, 621–630. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Trojovská, E.; Trojovskỳ, P. Coati Optimization Algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems. Knowl.-Based Syst. 2023, 259, 110011. [Google Scholar] [CrossRef]
- Serenelli, A.; Rohrmann, R.D.; Fukugita, M. Nature of blackbody stars. Astron. Astrophys. 2019, 623, A177. [Google Scholar] [CrossRef]
- Cohen, M.; Walker, R.G.; Barlow, M.J.; Deacon, J.R. Spectral irradiance calibration in the infrared. 1. Ground-based and iras broad-band calibrations. Astron. J. 1992, 104, 1650–1657. [Google Scholar] [CrossRef]
- Infrared Processing and Analysis Center (IPAC), California Institute of Technology. Short Wavelength Spectrometer (SWS) Data Archive. Available online: https://irsa.ipac.caltech.edu/data/SWS/index.html (accessed on 1 April 2024).
- Wright, G.S.; Rieke, G.H.; Glasse, A.; Ressler, M.; Marín, M.G.; Aguilar, J.; Alberts, S.; Álvarez-Márquez, J.; Argyriou, I.; Banks, K.; et al. The mid-infrared instrument for JWST and its in-flight performance. Publ. Astron. Soc. Pac. 2023, 135, 048003. [Google Scholar] [CrossRef]
- Gasman, D.; Argyriou, I.; Sloan, G.; Aringer, B.; Álvarez-Márquez, J.; Fox, O.; Glasse, A.; Glauser, A.; Jones, O.C.; Justtanont, K.; et al. JWST MIRI/MRS in-flight absolute flux calibration and tailored fringe correction for unresolved sources. Astron. Astrophys. 2023, 673, A102. [Google Scholar] [CrossRef]
- JWST Documentation Team. JWST Mid Infrared Instrument. Available online: https://jwst-docs.stsci.edu/jwst-mid-infrared-instrument#gsc.tab=0 (accessed on 8 June 2024).
Band | Isophotal (m) | 50% Peak Intensity | Isophotal BW (m) |
---|---|---|---|
A | 8.28 | 6.8–10.8 | 3.36 |
B1 | 4.29 | 4.22–4.36 | 0.104 |
B2 | 4.35 | 4.24–4.45 | 0.179 |
C | 12.13 | 11.1–13.2 | 1.72 |
D | 14.65 | 13.5–15.9 | 2.23 |
E | 21.34 | 18.2–25.1 | 6.24 |
Algorithm | Parameter Setting | Mean Best Fitness | STD |
---|---|---|---|
PSO | , = 0.8 | ||
SCA | a = 2 | ||
GWO | |||
WOA | , b = 1 | ||
DBO | RDB = 6, EDB = 6, FDB = 7, SDB = 11 | ||
GWO-PSO | , = 0.8, | ||
COA | \ | ||
I-GWO |
Group Name | Constituent Bands |
---|---|
Group 1 | A, B1, C |
Group 2 | A, B1, D |
Group 3 | A, B1, E |
Group Name | A (%) | B1 (%) | B2 (%) | C (%) | D (%) | E (%) | Sum (%) |
---|---|---|---|---|---|---|---|
Group 1 | 0.00127 | 0.0521 | 0.00125 | 0.00119 | 0.288 | 1.28 | 1.62 |
Group 2 | 0.00126 | 0.0579 | 0.00121 | 0.265 | 0.00122 | 1.61 | 1.94 |
Group 3 | 0.00125 | 0.0303 | 0.00115 | 1.04 | 1.41 | 0.00126 | 2.48 |
Sirius | Vega | ||||||
---|---|---|---|---|---|---|---|
Wavelength (m) | Cohen () | Ours () | Error (%) | Wavelength (m) | Cohen () | Ours () | Error (%) |
2.208 | 0.959 | 2.208 | 0.615 | ||||
2.179 | 0.963 | 2.179 | 0.639 | ||||
3.781 | 0.447 | 3.781 | 0.709 | ||||
3.759 | 0.219 | 3.761 | 0.612 | ||||
4.77 | 0.764 | 4.769 | 0.601 | ||||
8.758 | 0.269 | 8.756 | 0.167 | ||||
10.472 | 0.340 | 10.472 | 0.212 | ||||
11.655 | 0.165 | 11.653 | 0.364 |
Arcturus | |||
---|---|---|---|
Wavelength (m) | SWS () | Ours () | Error (%) |
2.4 | 4.589 | ||
2.6 | 0.600 | ||
5.612 | 2.254 | ||
8.268 | 1.899 | ||
9.354 | 1.360 | ||
10.57 | 1.001 | ||
10.91 | 0.178 | ||
11.6 | 0.446 |
Method | Time(s) | Mean Error (%) | STD |
---|---|---|---|
Blackbody Method | 2.625 | 2.3325 | 1.5537 |
Emissivity Method | 2.582 | 1.1522 | 0.1937 |
Proposed Method | 0.059 | 0.2824 | 0.0169 |
Right Ascension (RA) | Declination (DE) | E (W/cm2) |
---|---|---|
9.19 | 44.49 | |
316.78 | −25.01 | |
59.51 | −13.51 | |
269.15 | 51.49 | |
345.94 | 28.08 |
RA | DE | (W/cm2) | (W/cm2) | Error (%) |
---|---|---|---|---|
258.76 | 36.81 | 3.3 | ||
10.13 | 56.54 | 4.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, Y.; Rao, P.; Zhou, Y.; Chen, X. Estimation of Infrared Stellar Flux Based on Star Catalogs with I-GWO for Stellar Calibration. Remote Sens. 2024, 16, 2198. https://doi.org/10.3390/rs16122198
Hong Y, Rao P, Zhou Y, Chen X. Estimation of Infrared Stellar Flux Based on Star Catalogs with I-GWO for Stellar Calibration. Remote Sensing. 2024; 16(12):2198. https://doi.org/10.3390/rs16122198
Chicago/Turabian StyleHong, Yang, Peng Rao, Yuxing Zhou, and Xin Chen. 2024. "Estimation of Infrared Stellar Flux Based on Star Catalogs with I-GWO for Stellar Calibration" Remote Sensing 16, no. 12: 2198. https://doi.org/10.3390/rs16122198
APA StyleHong, Y., Rao, P., Zhou, Y., & Chen, X. (2024). Estimation of Infrared Stellar Flux Based on Star Catalogs with I-GWO for Stellar Calibration. Remote Sensing, 16(12), 2198. https://doi.org/10.3390/rs16122198