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Abstract: As on-orbit space cameras evolve toward larger apertures, wider fields of view, and
deeper cryogenic environments, achieving absolute radiometric calibration using an all-optical path
blackbody reference source in orbit becomes increasingly challenging. Consequently, stars have
emerged as a novel in-orbit standard source. However, due to differences in camera bands, directly
obtaining the stellar radiance flux corresponding to specific camera bands is not feasible. In order
to address this challenge, we propose a method for estimating radiance flux based on the MSX star
catalog, which integrates a dual-band thermometry method with an improved grey wolf optimization
(I-GWO) algorithm. In an experiment, we analyzed 351 stars with temperatures ranging from 4000
to 7000 K. The results indicate that our method achieved a temperature estimation accuracy of less
than 10% for 83.5% of the stars, with an average estimation error of 5.82%. Compared with previous
methods based on star catalogs, our approach significantly enhanced the estimation accuracy by
75.4%, improved algorithm stability by 91.3%, and reduced the computation time to only 3% of that
required by other methods. Moreover, the on-orbit star calibration error using our stellar radiance flux
estimation method remained within 5%. This study effectively leveraged the extensive data available
in star catalogs, providing substantial support for the development of an infrared star calibration
network, which holds significant value for the in-orbit calibration of large-aperture cameras. Future
research will explore the potential applicability of this method across different spectral bands.

Keywords: stellar calibration; infrared star; star catalogs; grey wolf optimization

1. Introduction

Infrared remote sensing imaging systems are strategically important in the military
domain, such as in the space-based infrared system (SBIRS) and infrared search and
tracking (IRST) [1]. Accurate infrared radiometric calibration technology provides the basis
for accurate inversion of target radiation intensity, which is crucial for target classification
and identification in military contexts. Although the sensor is radiometrically calibrated
before a flight, the detector–response relationship changes after orbit due to environmental
changes, time drift, and so on [2]. Therefore, high-precision radiometric calibration in orbit
is essential. At present, most on-orbit infrared reference sources are blackbodies, which can
realize high-precision absolute and relative radiometric calibration. However, as on-orbit
space cameras evolve toward larger apertures, wider fields of view, and deeper cryogenic
technologies, the practicality of blackbodies is constrained by the limited resources in
orbit. This is particularly true for calibration of the full optical path and low-end detector
responses. Consequently, scholars have suggested employing stars as an all-optical absolute
radiometric calibration reference source. Stars offer advantages such as low radiation
values, long-term stability, and traceability [3]. The midcourse space experiment (MSX)
currently uses an internal blackbody combined with five standard stars (αLyr, αCma, αTau,
βGem, and αBoo) and reference spheres as the on-orbit reference source, with a calibration
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accuracy of roughly 2–5% [4–6]. Similarly, the infrared array camera (IRAC) is an infrared
camera system on the Spitzer Space Telescope which uses bright A-type stars as a reference
source for calibrations, with a calibration accuracy of 3% [7]. The James Webb Space
Telescope (JWST) leverages five spectroscopically modeled stars (including white dwarfs
and A and G stars) at the 1% level with a design calibration accuracy of about 5% [8].
However, due to the differences in observational wavelengths used in non-astronomical
fields, such as remote sensing and space-based target detection, compared with those used
in astronomy, there remains uncertainty in understanding the true flux density of stars.
Therefore, acquiring high-precision stellar flux data in nonstandard wavelengths is crucial
for the on-orbit calibration of space cameras.

Stellar radiative fluxes are mainly affected by stellar spectral model parameters, such as
the effective temperature, emissivity, and angular diameter, and can therefore be estimated
from the stellar spectral parameters [9–11]. Kurucz proposed a stellar spectral model that
fits the stellar spectral distribution using parameters such as the temperature, surface
gravity field, and metal abundance, with fitting errors in the range of 3–5% [12]. For
improved radiation flux accuracy, Rieke used interpolation for A-type and solar-type
stars in combination with the Kurucz model to obtain special information in the range of
1–25 µm, with an accuracy of approximately 2% [13,14]. Rebassa-Mansergas et al. used
the Sloan Digital Sky Survey (SDSS) with spectral template fitting to estimate the spectral
parameters, such as the stellar temperature and surface gravity [15]. Nonetheless, such
methods require a large amount of observational data, or they will limit the number of
calibrated stars by targeting only certain types of stars.

Recently, it has been proposed to leverage the vast amount of stellar information
in catalogs for flux estimation [16,17]. This type of method focuses on estimating stellar
spectral parameters from catalog information to construct stellar spectra. Zhang et al.
used the stochastic particle swarm optimization (SPSO) method to estimate the stellar
temperature and the observation angle [17]. However, due to the different compositions of
stellar atmospheres, stellar spectra have different emissivity values at different wavelengths,
resulting in spectra that are not identical to a blackbody, which can lead to certain estimation
errors [18,19]. Therefore, Zhang used stochastic particle swarm optimization to estimate the
stellar emissivity for stellar radiation flux estimation, and the accuracy of this method, based
on the MSX catalog, was approximately 5% [20]. Despite this, the extrapolation accuracy
of such methods still cannot meet the required accuracy of our on-orbit space camera
calibrations. In response, we further carried out a study on the estimation of stellar infrared
radiation fluxes based on stellar catalog information. Harnessing a wealth of observations
from existing catalogs, we expanded the infrared standard stellar network, enabling the
targeted selection of extensive stellar data for precise on-orbit radiometric calibrations.

The observation of stars in orbit is constrained by the detector’s field of view, which
only allows for the monitoring of celestial bodies within specific regions. The scarcity of
calibration stars fails to satisfy the demand for frequent calibrations, necessitating the de-
velopment of a method that can obtain a large number of calibration stars to support rapid
correction cycles and real-time performance evaluation. Incorporating more calibration
stars helps to mitigate the randomness associated with observations that depend on a lim-
ited number of stars. The star catalogs encompass diverse star types and luminosities. Fully
utilizing the information in catalogs for extrapolation can provide more possibilities for
the selection of calibration stars. Consequently, this study primarily investigates methods
for estimating stellar radiance flux, which are notably more efficient and cost-effective. It
leverages the rich data available in star catalogs to advance the calibration of instruments
in spaceborne platforms.

In order to further enhance the accuracy of estimating stellar radiation flux based
on the catalogs, we introduce a novel method that integrates a dual-band thermometry
approach with an improved grey wolf optimization (I-GWO) algorithm. The challenge
of estimating stellar spectral parameters from catalog information lies in the disparity
between the number of unknowns and the available equations, primarily due to emissivity
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variability across different wavelengths. This discrepancy often leads to reduced estimation
accuracy and instability. In order to mitigate this issue, we consider starting by reducing
the unknown quantities through the use of the catalog information to estimate the effective
stellar temperature using the dual-band thermometry method. The subsequent estimation
of the remaining spectral parameters is then performed using additional band information.
The choice of the optimization algorithm is also important in influencing the accuracy of
the parameter estimation. Thus, we used the I-GWO algorithm to estimate the specific
spectral band emissivity as well as the stellar observation angles. Furthermore, to enhance
computational efficiency, we introduced isophotal radiative flux reduction, which simplifies
the computational complexity. Consequently, the proposed method can effectively and
efficiently estimate the radiative flux of stars in specific spectral bands, providing support
for in-orbit radiometric calibration.

Our contributions can be summarized in four main areas. (1) We introduce a dual-
band thermometry method to accurately estimate stellar temperatures, providing a solid
foundation for any subsequent estimations of stellar radiative flux. (2) Utilizing a stellar
spectral model that incorporates emissivity, we propose using the I-GWO algorithm to
estimate spectral parameters such as the band emissivity and star observation solid angle.
(3) Substitution of full spectral band integration with isophotal radiative flux is carried out
to enhance computational efficiency. (4) We estimate the radiative flux of stars at specific
camera wavelengths and validate the accuracy of this method through in-orbit experiments,
supporting its applicability to in-orbit calibration.

2. Materials and Methods

In this study, the proposed method addresses the problem of estimating stellar flux
from two perspectives. Initially, it utilizes the dual-band thermometry method to estimate
the stellar temperature, which effectively reduces the number of unknown parameters,
thereby enhancing the stability and accuracy of emissivity and observation angle estima-
tions. Secondly, the I-GWO algorithm is used to find the optimal emissivity and observation
angle values. Moreover, our approach introduces isophotometric radiation flux instead
of whole-wavelength integration to improve computational efficiency. The flow of our
proposed method is shown in Figure 1.

2.1. Stellar Observation Model

Stellar spectral radiation models are frequently approximated using blackbody radia-
tion principles. However, this simplification does not account for the complex realities of
stellar atmospheres, where gases of varying pressures, densities, and chemical compositions
can introduce significant absorption or emission spectral lines in certain bands, diverging
from blackbody predictions [20]. In stellar spectra, two primary components are typically
observed: the continuum spectrum and the absorption lines or bands. The continuum
spectrum originates in the outermost layer of the stellar atmosphere, the photosphere,
while the absorption lines and bands are formed by the absorption of photons by atoms and
molecules in the stellar atmosphere [21]. Consequently, stellar spectral emission models
exhibit discrepancies with blackbody radiation, particularly in terms of band emissivity,
underscoring the need for more nuanced modeling approaches.

The observed stellar radiative flux is not only determined by the star’s temperature
but also significantly influenced by the observational solid angle subtended by the star.
In order to streamline the analysis and simplify the observational model, three primary
parameters are typically considered: the star’s temperature, the observing angle, and the
emissivity of the stellar surface. Utilizing the blackbody radiation model and Planck’s law,
a detector-based stellar observation model can be constructed:

Eλ(ελ, Ω, T) = ε(λ)× Ω × c1λ−5

exp
( c2

λT
)
− 1

(1)
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where Eλ(ελ, Ω, T) is the stellar radiation flux at a wavelength of λ, ελ is the emissivity at
λ, Ω is the stellar observation solid angle, T is the stellar temperature, and c1 and c2 are the
radiation constants. The star observation solid angle is Ω = πr2

R2 , where r represents the
radius of the star, and R signifies the distance from the star to the observation point. Given
the vast distances between stars and Earth, observed stars are typically treated as point-like
objects. Additionally, the relative distance between the detectors used for compiling star
catalogs and our detectors is negligible compared with their distance to the stars. This
means that the star observation solid angle is consistent, thereby allowing us to use the
information in star catalogs to estimate the star observation solid angles of stars.

Figure 1. Flowchart of our proposed method.

In order to estimate the radiation flux of a star within a specific target band, it is
essential to first determine the star’s temperature, emissivity, and observation angle using
the known radiation intensity data available in catalogs. These parameters serve as the
foundation for accurately estimating the radiation intensity within the target band.

Stellar infrared fluxes are typically expressed in Jansky (Jy) units in stellar catalogs.
The Jansky is a quite small unit specifically designed to measure the flux density of celestial
objects in astronomical observations. It is generally denoted by Fv, and we can convert Fv
into the wavelength-based radiation intensity Fλ:

Fλ = Fv × 10−26× c
λ2 , 1 Jy = 10−26 W·m−2·Hz−1 (2)
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where c is the speed of light and λ is the wavelength. To improve computational efficiency
and computational accuracy, we calculated the isophotal radiation fluxes in the catalog
based on isophotal wavelengths. The isophotal wavelength is defined as follows [22]:

F(λiso) =

∫
λF(λ)S(λ)dλ∫

λS(λ)dλ
(3)

where λiso is the isophotal wavelength, S(λ) is the system’s relative spectral response (RSR),
and F(λ) is the spectral energy distribution of the target (star). Therefore, the radiative
information in the catalog can be expressed by the stellar observation model as follows:

Fλiso = Fv×10−26 × c
λiso

2 = Eλiso

(
ελiso , Ω, T

)
(4)

Each catalog gives the corresponding isophotal wavelengths, and the isophotal wave-
lengths corresponding to the MSX catalog bands are shown in Table 1. Table 1 presents
the isophotal wavelengths (Isophotal λ) for each band in the MSX catalog, along with
the wavelength range, where the radiation intensity reaches 50% of its peak (50% peak
intensity) and the corresponding isophotal bandwidth (Isophotal BW).

Table 1. MSX spectral bands.

Band Isophotal λ (µm) 50% Peak Intensity Isophotal BW (µm)

A 8.28 6.8–10.8 3.36
B1 4.29 4.22–4.36 0.104
B2 4.35 4.24–4.45 0.179
C 12.13 11.1–13.2 1.72
D 14.65 13.5–15.9 2.23
E 21.34 18.2–25.1 6.24

The primary challenge in estimating stellar spectral parameters lies in the variability
of emissivity across different bands, making the problem of parameter estimation similar
to solving an underdetermined system of equations. Generally, there are three distinct
absorption bands in stellar spectra in the infrared wavelength band, which are the CO
overtone absorption band (2.2–3.0 µm), the CO fundamental absorption band (4.0–6.7 µm),
and the SiO fundamental absorption band (7.3–11.0 µm) [23]. In response to these spec-
tral features, we divided the MSX catalog bands corresponding to the stellar infrared
spectral feature regions into three regions based on the infrared stellar spectral proper-
ties: region I for band A (6.8–10.8 µm), region II for band B1 (4.22–4.36 µm) and band
B2 (4.24–4.4 µm), and region III for band C (11.1–13.2 µm), band D (13.5–15.9 µm), and band
E (18.2–25.1 µm). This is assuming that the stellar emissivity is consistent within each band
region. In order to obtain the emissivity in each region, one band in each region needs to be
selected as the input.

2.2. Dual-Band Thermometry

The difficulty in estimating stellar spectral parameters from catalog data arises from
the imbalance between the number of unknown variables and the limited number of
available equations. In order to mitigate this challenge and enhance the accuracy and
stability of parameter estimation, we propose utilizing a dual-band thermometry approach
to determine stellar temperatures, which can reduce the number of unknown variables.
This dual-band thermometry method operates as follows [21]. Assuming that the true



Remote Sens. 2024, 16, 2198 6 of 20

temperature of the space target is T, the infrared irradiance in any two different infrared
bands is

R(T) =
Eλ1iso

Eλ2iso

=

ελ1iso
c1

λ1iso
5

1
exp

(
c2

λ1iso T

)
−1

ελ2iso
c1

λ2iso
5

1
exp

(
c2

λ2iso T

)
−1

=
λ2iso

5

λ1iso
5

exp
(

c2
λ2isoT

)
− 1

exp
(

c2
λ1isoT

)
− 1

(5)

where Eλ1iso and Eλ2iso are radiation fluxes in the catalog and ελ1iso and ελ2iso are the stellar
emissivity at λ1iso and λ2iso, respectively. By assuming that the emissivity remains con-
sistent across both bands, we acknowledge that while the emissivity of stars may vary
slightly between different bands, these variations are not significantly disparate. This
assumption allows us to simplify the model, thereby facilitating a more streamlined tem-
perature estimation process that still achieves relatively high accuracy. We emphasize that
this simplification is made to enhance the practicality of the model without substantially
compromising its effectiveness in providing reliable temperature estimates for further
stellar radiative flux calculations.

2.3. Improving the Grey Wolf Optimization Algorithm

For the problem of parameter estimation using an optimization algorithm, we establish
a corresponding objective function:

Fitness
(
ελi , Ω

)
=

1
n

n

∑
i=1

∣∣Eλi − Eλi

(
ελi , Ω, T

)∣∣
Eλi

(6)

where Eλi is the radiation flux of a star at λi in the star catalog, Eλi

(
ελi , Ω, T

)
is estimated

by the optimization algorithm, and n is the number of selected bands. The goal of this
study is to find the optimal band emissivity ελi as well as the stellar observation solid
angle Ω by minimizing the fitness function. Considering the nonlinear characteristics of
the fitness function, we developed an improved grey wolf optimization (I-GWO) algorithm,
which incorporates periodic parameter enhancement for optimal estimation. This method
substantially improves the robustness and accuracy of the estimation process, offering
significant advantages over traditional approaches.

Grey wolf optimization (GWO) was proposed by Mirjalili et al. in 2014, and it primarily
mimics the predation process of grey wolf packs in nature [22]. The algorithm is based
on a mathematical model of the social hierarchy of wolves, with stalking, encirclement,
and attacking during hunting. Among them, the social hierarchy can be divided into four
levels: alpha (α), beta (β), delta (δ), and omega (ω). The hierarchical guidance mechanism
prioritizes α, β, and δ as the individuals closest to and second in and second out from the
target point, respectively, and the remaining individuals are named ω so that the position
update of ω is guided by α, β, and δ to complete the predation process.

The mathematical model of the process of encircling prey is as follows:

X(t + 1) = Xp(t)− A × D (7)

D =
∣∣C × Xp(t)− X(t)

∣∣ (8)

where t is the number of iterations, Xp is the position of the prey, X is the location of
the grey wolves, and A and C are the coefficients of the vector. The following are the
calculations of coefficients A and C:

A = a × (2 × rand1 − 1), a = 2 − t × 2
Maxiter

(9)

C = 2 × rand2 (10)
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where a linearly decreases from 2 to 0 as the number of iterations increases, t is the current
iteration number, and Maxiter is the maximum iteration number, while Rand1 and rand2
are random numbers in the range [0,1].

After obtaining the position model, the next step is to perform a position update of ω
for α, β, and δ:

Dj =
∣∣Ci × Xj(t)− X(t)

∣∣, i ∈ 1, 2, 3 j ∈ α, β, δ (11)

X(t + 1) =
∑3

i=1 Xi

3
, Xi = Xj(t)− Ai × Dj (12)

Although GWO has outstanding estimation performance, it also still suffers from the
problem of falling into a local optimum for some complex problems. The GWO method
is analyzed as a global search for potential prey when A ≥ 1 and a local search when
A < 1, where A in the GWO method is determined by the parameter a. Therefore, parameter
a is the key to balancing the abilities of global search and local exploitation. While the
linearly decreasing strategy, as described in the previous, provides a foundational approach
to parameter tuning, it is not the most efficient one. Chiu et al. found that the periodic
dynamic tuning strategy had better results [24], and thus we introduced a parameter-tuning
strategy based on the periodic variation of the cos function:

a = 1 + cos(
2πt

Maxiter
) (13)

The two parameters’ dynamic tuning strategies are shown in Figure 2.

Figure 2. Adjustment of parameters for different strategies.

In our method, the other algorithmic parameters were set as follows. The population
size was defined to be 30; the maximum number of iterations was set to 500; and the spatial
dimension, which corresponds to the number of variables in the fitness function, was set
to 4. Furthermore, the optimization process also involves the expected search range for
estimated parameters. The expected range for the observation angle parameter was set
to 1.0 × 10−26–1.0 × 10−10 [20], and the range for the emissivity of bands was set between
0.9 and 1.0 [25]. These ranges determine the search boundaries for the grey wolf popu-
lation. Algorithm 1 specifically illustrates the process by which the improved grey wolf
optimization algorithm searches for the optimal solution.
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Algorithm 1 I-GWO: Improved grey wolf optimizer for parameter estimation ( ελ, Ω)

1: Input: f itness( ελ, Ω); number of wolves n = 30; dimensions d = 4; max iterations
MaxIter = 500.

2: Initialization: Xi = [ ελi , Ωi]; set iteration counter t = 1;
Generate initial wolf pack positions X0

i for i = 1 to n, ελi ∈ [0.9, 1],

Ω ∈
[
10−26, 10−10

]
;

Calculate fitness for each wolf (F(i)) and identify alpha (Xα), beta (Xβ), and delta (Xδ)
positions.

3: while t <= MaxIter do
4: for each wolf i = 1 to n do
5: Update the position of the wolf based on Xα, Xβ, and Xδ positions.
6: Calculate the fitness of the new position (F(i)).
7: end for
8: Update Xα, Xβ, and Xδ wolves based on the best fitness values found.
9: t=t+1;

10: end while
11: Output: Best solution found [ελ, Ω] = Xα

3. Experimental Results and Analysis

As can be seen in Section 2, the factors affecting the accuracy of the radiation flux
estimation in the target band were mainly the accuracy of the dual-band thermometry and
the estimation accuracy of the optimization algorithm. In order to verify the effectiveness
and stability of the proposed method for radiation flux estimation, we experimentally
analyzed these influencing factors separately. Meanwhile, we also compared the proposed
method with other extrapolation methods based on star catalogs to prove the effectiveness
of the method. In the experimental section, the best-performing data groups in all tables
are highlighted in bold to facilitate quick identification by readers.

3.1. Dual-Band Thermometry Band Selection

In dual-band thermometry, the accuracy of temperature estimation largely depends
on the chosen bands. Given the assumption of consistent emissivity, it is crucial to identify
band combinations that are affected the least by emissivity variations to determine the most
suitable bands for the dual-band thermometry method. Here is the method for calculating
the error of temperature estimation:

Terror =
|Tcal − Treal |

Treal
× 100% (14)

where Tcal is the calculated stellar temperature and Treal is the true stellar temperature.
For the simulation experiment, the emissivity ratio (εratio) range was set between 0.95

and 1.05, and the simulated temperature estimation for stars was set in the range from
3000 K to 13,000 K. In the simulation, we assumed that the emissivity of the star was
equal in two bands, and we calculated the temperature estimation errors under different
temperature and emissivity ratio conditions:

εratio =
ελ1

ελ2

(15)

where ελ1 is the first band’s emissivity and ελ2 is the second band’s emissivity.
Figure 3a–k illustrates the distribution of temperature estimation errors under varying

conditions. These charts were derived from simulations where we varied the emissivity
ratios and temperatures of the stars. Each subfigure corresponds to a specific wavelength
pair used in the dual-wavelength temperature estimation method. In this experiment, we
found that when the emissivity ratio was not equal to one, using the dual-wavelength
temperature estimation method introduced certain errors. However, selecting different
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wavelength pairs could mitigate the impact of emissivity ratio variations on temperature
estimation errors. In Figure 3a–d,j–k, it is evident that when the chosen wavelength
pairs were closer, variations in the emissivity ratio had a more significant impact on the
temperature estimation results. Conversely, in Figure 3e–h, it can be seen that the impact of
emissivity ratio variations was relatively smaller.

Figure 3. Temperature estimation errors versus emissivity ratios for different temperature stars in
different band combinations.

Therefore, selecting bands with certain wavelength differences not only achieved
a higher temperature estimation accuracy but also effectively mitigated the influence
of emissivity variability on the results, thereby enhancing the accuracy and stability of
temperature estimates. The main reason for this result is that the selection of bands with
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a wide range of wavelengths captured the radiative properties of the object over a wider
range of temperatures, thus providing more information about the temperature.

In addition, it was observed that the error in temperature estimation tended to increase
as the temperature itself rose. However, within the infrared band, the predominant calibra-
tion stars—comprising K-type, A-type, and G-type stars, as well as cold DA-type white
dwarfs—had temperatures below 10,000 K [26]. As a result, the temperature estimation
error for these types of stars remained relatively modest, mitigating potential inaccuracies
in the calibration processes.

In order to further prove the effectiveness of the dual-band temperature measurement,
we selected 351 stars from the MSX catalog with temperatures ranging from 4000 K to
7000 K for temperature estimation. These stars include a range from cooler K-type stars
to hotter F-type stars, representing a diverse sample in terms of stellar properties. This
selection allows for a comprehensive validation of our temperature estimation methods
across different stellar types and conditions. The results of the temperature estimation
are shown in Figures 4 and 5. The estimation errors were calculated by comparing our
estimated temperatures with the temperatures of the stars investigated in [20]. An analysis
of Figure 4 reveals that the combination of band B with other bands, compared with other
combinations, achieved the highest estimation accuracy, particularly the combination of B1
with either the C or D bands.

Figure 4. Temperature estimation errors versus different band combinations.

In Figure 5a, the gray area represents an error margin of 10%. It is observable that
the majority of the red dots are located within this gray area, outnumbering the blue dots
significantly. This indicates that the estimated stellar temperatures using the proposed
method predominantly fell within an error margin of less than 10%, demonstrating greater
efficacy than the stochastic particle swarm optimization (SPSO) method [20]. Additionally,
a statistical analysis of the error results depicted in Figure 5b reveals that 83.5% of the errors
were less than 10%, with an average error of 5.82%. The estimation error here, in addition
to the error in the dual-band thermometry, also included a systematic error of 3% in the
MSX star catalog [27]. Furthermore, compared with the temperature estimation based on
the SPSO method, our approach achieved an overall accuracy improvement of 10.8%.

Finally, to demonstrate that the error in temperature estimation does not significantly
impact subsequent radiative flux estimates, we conducted further experiments on these
351 stars. We estimated the radiative flux in band E using the fluxes in bands A, B, and C
and compared these estimates with the actual fluxes in band E from the MSX star catalog.
The results in Figure 5c show an average estimation error of 1.6054%.
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Figure 5. Temperature estimation results for 351 stars from the MSX catalog. (a) The Teff from different
methods versus the Teff from the reference. (b) Histogram of Teff estimation error. (c) Histogram of
flux estimation error.

3.2. Selection of Optimization Algorithm

In order to evaluate the effectiveness and stability of the I-GWO method in estimating
spectral parameters, it was compared with seven advanced and well-known metaheuristic
algorithms: particle swarm optimization (PSO) [28,29], the grey wolf optimizer (GWO) [30],
the whale optimization algorithm (WOA) [31], dung beetle optimization (DBO) [32], the
sine cosine algorithm (SCA) [33], hybrid GWO-PSO [34], and the Coati optimization
algorithm (COA) [35]. In this experiment, to ensure uniform experimental conditions, all of
the optimization algorithms used operated within the same decision variable boundaries of
the target function. Specifically, the emissivity range was set between 0.9 and 1 [36], and the
observation angle varied from 1 × 10−26 to 1 × 10−10 [20]. In order to ensure the fairness
and comparability of the experiments, the initial population size for all algorithms was
uniformly set to 30, and the maximum number of iterations was fixed at 500. Additionally,
to minimize the impact of randomness on the experimental outcomes, each algorithm
underwent 100 repeated estimations. Subsequently, the average best fitness values and
standard deviations (STDs) of these estimations were calculated.

Table 2 details the parameter settings for the various optimization algorithms and
displays the results from these 100 experiments. The PSO parameters include the inertia
weight (ω), cognitive coefficient (c1), and social coefficient (c2); the dung beetle optimization
(DBO) algorithm includes the following parameters: rolling dung beetle (RDB), spawning
dung beetle (EDB), foraging dung beetle (FDB), and stealing dung beetle (SDB); the con-
vergence parameter (a) in GWO, the WOA, the SCA, and I-GWO balances the local and
global components, facilitating both exploration and exploitation; and GWO-PSO involves
parameters such as the convergence parameter (a), inertia weight (ω), cognitive coefficient
(c1), and social coefficient (c2). Additionally, the COA method only required the setting of
some common parameters, as mentioned earlier.

As depicted in Figure 6a, while several methods exhibited approximately the same
convergence speed for this problem’s estimation, the PSO algorithm notably failed to align
with this trend. However, the I-GWO method stood out with a lower best fitness value,
indicating superior performance. Furthermore, Table 2 demonstrates the stability of the
I-GWO method, as evidenced by the minimized standard deviation across 100 calculations.
These results reinforce the proposed method’s reliability and effectiveness in achieving
precise estimations.
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Table 2. Parameter settings and 100 experimental results for different optimization algorithms.

Algorithm Parameter Setting Mean Best Fitness STD

PSO c1 = c2 = 2, ω = 0.8 1.39 × 107 2.68 × 107

SCA a = 2 1.29 × 104 3.28 × 104

GWO a = 2 × (1 − t
tmax ) 1.90 × 10−4 7.10 × 10−5

WOA a = 2 × (1 − t
tmax ),

b = 1 1.30 × 10−2 4.38 × 10−3

DBO RDB = 6, EDB = 6,
FDB = 7, SDB = 11 7.03 × 10−3 6.92 × 10−3

GWO-PSO c1 = c2 = 2, ω = 0.8,
a = 2 × (1 − t

tmax )
9.91 × 10−4 3.59 × 10−4

COA \ 2.49 × 10−2 2.10 × 10−2

I-GWO a = 1 + cos( 2πt
Maxiter

) 3.23 × 10−6 2.05 × 10−6

Figure 6. (a) Convergence curves with different algorithms. (b) Convergence curves with different
numbers of bands.

3.3. Selection of Bands Required for Emissivity and Observation Angle Estimation

In addition to selecting a band for effective temperature estimation, it is crucial to
choose appropriate bands for estimating other spectral parameters, such as the emissivity
ελi and observation angle Ω. In order to investigate a reasonable number of bands and
optimize parameter estimation, a comparative analysis of different numbers of band inputs
(three, four, and five bands) was carried out in this study. Figure 6b displays the conver-
gence curve of the MSX catalog for estimating the spectral parameters using the inputs of
different numbers of bands. It reveals that the smallest value for best fitness was obtained
when the inputs used three bands, indicating that a combination of three bands is most
effective for parameter estimation.

Furthermore, selecting the appropriate combination of these three bands is crucial.
Therefore, we propose the following combination plans, as detailed in Table 3, which are
based on the MSX catalogs and the characteristics of the stellar spectral features in the
infrared band.
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Table 3. Different combination plans.

Group Name Constituent Bands

Group 1 A, B1, C
Group 2 A, B1, D
Group 3 A, B1, E

The proposed combination plans for estimating spectral parameters, which are predi-
cated on the assumption that the emissivity remains constant within the same infrared spec-
tral feature region, facilitated the construction of stellar infrared spectra. From these spectra,
the stellar radiation fluxes across the remaining wavelength bands were computed. These
computed fluxes were then compared with the observed values from the catalog to deter-
mine the estimation errors. The formula for calculating the radiation flux estimation error is
as follows:

Ferror =
|Fcal − Fcat|

Fcat
× 100% (16)

where Fcal is the calculated stellar radiation flux and Fcat is the stellar radiation flux in
the catalog.

In order to evaluate the effectiveness of the three mentioned combination plans, we
randomly selected 1000 stars from the MSX catalog for analysis. The comparative results
of the estimation errors for each combination are presented in Table 4. The accuracy
of estimating radiation fluxes for unknown bands was assessed to evaluate the three
combination plans. The unknown bands shared by Group 1 and Group 2 were B1 and E.
According to the data in Table 4, the estimation accuracy of Group 1 for band E was 1.28%,
and that of Group 2 was 1.61%, which shows that the estimation accuracy of Group 1 was
better than that of Group 2 as a whole. Meanwhile, the unknown bands common to both
Group 1 and Group 3 were B1 and D. Notably, Group 1 achieved an estimation accuracy of
0.288% for band D, which was significantly superior to the accuracy of Group 3 at 1.41%.
In addition, when considering the six bands together, Group 1 has the smallest overall
estimation error. Based on the above analysis, we identified the combination of bands A,
B1, and C as the optimal choice for estimating stellar spectral parameters.

Table 4. Estimation errors of individual bands for different combination plans.

Group
Name A (%) B1 (%) B2 (%) C (%) D (%) E (%) Sum (%)

Group 1 0.00127 0.0521 0.00125 0.00119 0.288 1.28 1.62
Group 2 0.00126 0.0579 0.00121 0.265 0.00122 1.61 1.94
Group 3 0.00125 0.0303 0.00115 1.04 1.41 0.00126 2.48

Furthermore, to further validate the effectiveness of our approach, we selected Vega,
Sirius, and Arcturus for extrapolative estimation, as these stars have been observed multiple
times. The comparative data for Sirius and Vega came from Cohen [16,37], while the
comparative data for Arcturus came from SWS [38]. As can be seen in Tables 5 and 6, it is
evident that the results derived from our method were in tremendous agreement with the
experimental measurements, with a maximum error of 4.589%. This error encompassed
not only our estimation inaccuracies but also the systematic discrepancies between the
MSX star catalog and the observations by ISO. These results affirm the consistency of our
method with empirical data and underscore the reliability of the extrapolation technique.
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Table 5. Sirius and Vega flux measurements and errors.

Sirius Vega

Wavelength
(µm) Cohen (Fλ) Ours (Fλ) Error (%) Wavelength (µm) Cohen (Fλ) Ours (Fλ) Error (%)

2.208 1.392 × 10−13 1.405 × 10−13 0.959 2.208 3.940 × 10−14 3.916 × 10−14 0.615
2.179 1.463 × 10−13 1.477 × 10−13 0.963 2.179 4.139 × 10−14 4.113 × 10−14 0.639
3.781 1.806 × 10−14 1.798 × 10−14 0.447 3.781 5.162 × 10−15 5.125 × 10−15 0.709
3.759 1.843 × 10−14 1.839 × 10−14 0.219 3.761 5.263 × 10−15 5.231 × 10−15 0.612
4.77 7.350 × 10−15 7.294 × 10−15 0.764 4.769 2.107 × 10−15 2.094 × 10−15 0.601

8.758 6.776 × 10−16 6.758 × 10−16 0.269 8.756 1.955 × 10−16 1.958 × 10−16 0.167
10.472 3.332 × 10−16 3.321 × 10−16 0.340 10.472 9.631 × 10−17 9.651 × 10−17 0.212
11.655 2.178 × 10−16 2.174 × 10−16 0.165 11.653 6.308 × 10−17 6.331 × 10−17 0.364

Cohen (Fλ) is from Cohen [16,37].

Table 6. Arcturus flux measurements and errors.

Arcturus

Wavelength (µm) SWS (Fλ) Ours (Fλ) Error (%)

2.4 4.186 × 10−13 4.378 × 10−13 4.589
2.6 3.327 × 10−13 3.307 × 10−13 0.600

5.612 1.890 × 10−14 1.933 × 10−14 2.254
8.268 4.297 × 10−15 4.379 × 10−15 1.899
9.354 2.700 × 10−15 2.737 × 10−15 1.360
10.57 1.719 × 10−15 1.702 × 10−15 1.001
10.91 1.507 × 10−15 1.504 × 10−15 0.178
11.6 1.179 × 10−15 1.184 × 10−15 0.446

SWS (Fλ) is from ISO [38].

3.4. Comparison of Estimation Methods

In order to prove the validity and stability of the proposed method, the proposed
method was compared with two mainstream catalog-based methods: the method based
on blackbody estimation (Blackbody Method) [17] and the method considering emissivity
(Emissivity Method) [20]. In this experiment, 1000 stars in the MSX catalog were randomly
selected as experimental objects, and the A, B1, and C bands were used as inputs to estimate
the flux of these stars in band D.

As shown in Figure 7 and Table 7, when compared with other star catalog-based
estimation methods, our approach achieved a 75.4% improvement in estimation accuracy
and a 91.3% enhancement in estimation stability. This not only attests to the efficacy of our
approach across various star types but also highlights its capability to achieve high accuracy.
At the same time, the results in the fifth column of Table 7 show that the processing time
required by our method constituted merely 3% of the time required by other methods. This
result indicates that using the isophotometric flux method is faster than other methods,
such as integrating over the whole band, while ensuring the accuracy of the estimation.

Table 7. Estimation results for D band of different methods.

Method Time(s) Mean Error (%) STD

Blackbody Method 2.625 2.3325 1.5537
Emissivity Method 2.582 1.1522 0.1937
Proposed Method 0.059 0.2824 0.0169
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Figure 7. Estimation results for D band of different methods.

3.5. Analysis of Star Calibration Errors

The star calibration process primarily utilizes stars as reference sources to perform
absolute radiative calibration across the entire optical path for large-aperture cameras. As
illustrated in Figure 8a, stellar radiation enters and passes through the optical system before
reaching the detector’s imaging system for imaging. Figure 8b depicts the process of star
calibration, with the radiative calibration formula expressed as follows:

DNstar = k × Lstar + b (17)

where DNstar represents the digital number value of the star in the image, Lstar is the
calibrated star’s radiative flux, k is the calibration gain coefficient, and b is the calibration
offset coefficient. Therefore, the calibration error in star calibration encompasses not only
the uncertainties in the absolute flux of the reference source stars but also includes the
errors in the extraction of star energy and the transmission error of standard luminance.

The estimation error for star radiative flux using the star catalogs proposed in this
study primarily consisted of the systematic errors of the MSX star catalog σc ( 3%) [27]
and the estimation model error σs (<1%). The star extraction error σe mainly arises from
non-uniformities in the pixel response due to the camera manufacturing process. If a
star is imaged in different positions on the camera, then this can lead to inconsistencies
in the output, approximately ranging from 3% to 5%. The uncertainty σt in the transfer
of standard luminance is due to the influence of stray light, spot uniformity, and other
factors during the radiative transfer process, generally amounting to 1.5%. The accuracy
of absolute stellar radiative calibration can be calculated using the root mean square of
the sum of the squares of the aforementioned uncertainties, as per Equation (18), which
theoretically achieves an accuracy within 6.1%:

σtotal =
√

σc2 + σs2 + σe2 + σt2 (18)
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Figure 8. (a) Star radiative transfer processes. (b) The flow of star calibration.

In order to further validate the effectiveness of the proposed method in practical appli-
cations, this study conducted calibration experiments on five selected stars (as indicated
in Table 8) using an on-orbit camera, where these stars demonstrated an extrapolation
accuracy of less than 1% within the camera’s spectral band (8–12 µm). Figure 9 illustrates
the calibration outcomes, where the vertical axis represents the camera’s digital number
(DN) response and the horizontal axis denotes the stellar radiative flux (E). It was observed
that the calibration curve achieved a fitting accuracy (R²) of 0.9995, demonstrating a high
level of precision.

Table 8. Catalog of calibration stars (W/cm2).

Right Ascension (RA) Declination (DE) E (W/cm2)

9.19 44.49 2.137 × 10−16

316.78 −25.01 3.902 × 10−16

59.51 −13.51 1.501 × 10−15

269.15 51.49 2.131 × 10−15

345.94 28.08 5.270 × 10−15

Moreover, using the derived calibration curve to estimate the radiative flux of two
additional stars with known flux values revealed that the calibration error was less than
5% (Table 9). These experimental outcomes not only prove the effectiveness of the stellar
calibration method but also highlight its significance in enhancing the accuracy of stellar
radiative flux estimation.
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Figure 9. Stellar calibration curve.

Table 9. Inversion results of stellar calibration.

RA DE Ereal (W/cm2) Einv (W/cm2) Error (%)

258.76 36.81 6.648 × 10−16 6.87 × 10−16 3.3
10.13 56.54 8.894 × 10−16 9.31 × 10−16 4.7

4. Discussion

This study introduced a novel method for estimating stellar radiative flux based
on infrared star catalogs, demonstrating (through experimental validation) significant
improvements in estimation accuracy, stability, and computational efficiency over existing
star catalog-based techniques. Specifically, when compared with other star catalog-based
estimation methods, our approach achieved a 75.4% improvement in estimation accuracy
and a 91.3% enhancement in estimation stability, and the computation time was reduced to
merely 3% of that required by alternative methods. These advancements were primarily
attributed to the introduction of dual-band thermometry and enhancements to the grey
wolf optimization algorithm. Concurrently, the application of our method to estimating the
radiative flux of three well-known calibration stars (Sirius, Vega, and Arcturus) yielded
a radiative flux error less than 5%, thus also providing evidence of our method’s efficacy.
Furthermore, error analysis revealed that the calibration accuracy of the star radiative fluxes,
as established by the proposed method, was within 6.1%. Additionally, the results from the
on-orbit experiments demonstrate that the star calibration error remained below 5%.

The dual-band thermometry effectively reduced the number of parameters which
needed to be estimated, thereby increasing the overall accuracy of the estimates. Ad-
ditionally, by analyzing the characteristics of the optimization objective function and
incorporating parameters that varied periodically, we refined the grey wolf optimization al-
gorithm by using a periodic variation parameter to more precisely locate optimal solutions,
avoiding local minimums and further enhancing the accuracy and stability of parameter
estimation. Moreover, by adopting the concept of an isophotal wavelength in place of
traditional integration methods, we significantly increased the computational efficiency
without sacrificing accuracy.

Despite the progress achieved, there remains room for improvement in the accuracy
of radiative flux estimates across specific spectral bands. As indicated by the extrapolation
results in Table 6, the error in some bands was still nearly 5%, mainly due to the assumption
of uniform emissivity within certain spectral regions, as well as systematic errors from
the star catalogs. On one hand, using higher-precision star catalogs for estimates could
be beneficial. On the other hand, higher-resolution stellar emissivity as a function of the
wavelength needs to be established to improve estimation accuracy further. For example,
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the stellar emissivity at a higher wavelength resolution can be estimated by selecting the
spectral data provided by the JWST as input data [39–41].

For on-orbit radiometric calibration, despite individual stars having data biases, using
the radiative data of a large sample of stars and performing statistical averaging can
significantly enhance the overall calibration accuracy.

In summary, the method proposed in this study for estimating the stellar infrared
radiation flux using infrared star catalogs demonstrated superior performance in terms
of accuracy, stability, and computational efficiency, providing an effective tool for stellar
calibration research. However, further investigation into the variability of stellar emissivity
across different spectral bands will be a focal point of future work.

5. Conclusions

We investigated the spectral characteristics of stars and a camera observation model
and then proposed a method to estimate the infrared radiation flux of stars based on
existing infrared star catalog data. The proposed method introduces dual-band thermometry
with I-GWO algorithms for estimating the stellar parameters which, when combined with
observational models, can achieve the estimation of stellar radiative fluxes in any infrared
spectral band. The temperature estimation experiments, which were conducted using MSX
catalog observational data, demonstrated that the proposed method achieved an accuracy
better than 10% for 83.5% of the stellar temperature estimates within the 4000–7000 K range,
with an average error of 5.82%. In addition, the proposed method significantly enhanced the
accuracy of radiative flux estimates based on stellar catalog methods. When compared with
previous catalog-based methods, our approach achieved a 75.4% improvement in estimation
accuracy, with the algorithm’s stability improving by 91.3%. The validation of our method’s
effectiveness was confirmed through comparative analyses with well-known calibration
star data, which revealed that our estimation errors remained below 5%. Additionally, the
incorporation of isophotal radiation significantly increased the computational efficiency by
96.9%. Through employing the approach outlined in this study, a multitude of benchmark
sources with precision exceeding 1% can be provided for stellar calibration, offering a
broader array of options for the in-orbit calibration of space cameras. The proposed method
offers new possibilities for star calibration. The experimental results indicate that using
this method for on-orbit star calibration can achieve a star calibration error within 5%.
Furthermore, this method is capable of not only estimating the emissivity of stars within
catalog bands but also calculating the effective temperatures of stars, presenting a novel
pathway for the exploration of infrared stellar characteristics. Therefore, this approach holds
value in remote sensing applications and scientific research.
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