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Abstract: The accurate estimation of forest aboveground biomass (AGB) in areas with complex terrain
is very important for quantifying the carbon sequestration capacity of forest ecosystems and studying
the regional or global carbon cycle. In our previous research, we proposed the radiometric terrain
correction (RTC) process for introducing normalized correction factors, which has strong effectiveness
and robustness in terms of the backscattering coefficient of polarimetric synthetic aperture radar
(PolSAR) data and the monadic model. However, the impact of RTC on the correctness of feature
extraction and the performance of regression models requires further exploration in the retrieval of
forest AGB based on a machine learning multiple regression model. In this study, based on PolSAR
data provided by ALOS-2, 117 feature variables were accurately extracted using the RTC process, and
then Boruta and recursive feature elimination with cross-validation (RFECV) algorithms were used to
perform multi-step feature selection. Finally, 10 machine learning regression models and the Optuna
algorithm were used to evaluate the effectiveness and robustness of RTC in improving the quality
of the PolSAR feature set and the performance of the regression models. The results revealed that,
compared with the situation without RTC treatment, RTC can effectively and robustly improve the
accuracy of PolSAR features (the Pearson correlation R between the PolSAR features and measured
forest AGB increased by 0.26 on average) and the performance of regression models (the coefficient
of determination R2 increased by 0.14 on average, and the rRMSE decreased by 4.20% on average),
but there is a certain degree of overcorrection in the RTC process. In addition, in situations where the
data exhibit linear relationships, linear models remain a powerful and practical choice due to their
efficient and stable characteristics. For example, the optimal regression model in this study is the
Bayesian Ridge linear regression model (R2 = 0.82, rRMSE = 18.06%).

Keywords: forest AGB; PolSAR features; ALOS-2; radiometric terrain correction; machine learning;
linear regression model

1. Introduction

Forest aboveground biomass (AGB) is a core parameter for monitoring forest ecosys-
tems and assessing carbon sink capacity. Therefore, it plays an important role in quantifying
the carbon sequestration capacity of forest ecosystems and studying regional and global
carbon cycles [1,2]. However, it is challenging to accurately estimate forest AGB, especially
in regions with complex and variable topography, which increases the uncertainty of as-
sessments of forest ecosystem productivity. Accuracy is important for improving forest
resource status surveys [3,4]. Remote sensing technology, including optical remote sensing,
microwave remote sensing, and light detection and ranging (LiDAR), has become the most
practical way to estimate forest AGB because it is long-term, efficient, and economical
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for acquiring large-scale spatial distribution information about forests [5–7]. Among the
potential techniques, synthetic aperture radar (SAR) has been widely used for the dynamic
monitoring of forest AGB in large-scale areas due to its good performance in all weathers,
sustainable observation, and cloud penetration [8–10]. Although multi-source remote
sensing data can significantly improve the inversion accuracy of forest AGB [11–15], it is
still crucial to explore AGB estimation methods relying only on SAR data. Especially in
areas where optical remote sensing is limited due to frequent cloud and fog, SAR becomes
an irreplaceable and effective tool [16].

At present, there are four common technologies for forest AGB based on SAR data:
interferometric SAR (InSAR) [17], polarimetric SAR (PolSAR) [18,19], polarimetric inter-
ferometric SAR (PolInSAR) [20–22], and tomographic SAR (TomoSAR) [23,24]. PolSAR
technology is widely used in large-scale inversion of forest AGB because it does not rely
on interference technology and does not need to meet the strict requirements of repeated
orbit observation and accurate time synchronization. It has more relaxed data acquisi-
tion conditions and simplicity of data collection. In addition, the modeling methods for
estimating forest AGB based on PolSAR data can be divided into scattering mechanism
methods [25], machine learning methods [26–28], and deep learning methods [29–31].
Scattering mechanism methods (such as the water cloud model (WCM)) [32,33] can be
useful because with a simplified physical model it is difficult to describe the real scattering
characteristics of a forest with a complex structure. Therefore, the universal applicability of
this kind of model may be poor in a forest area with strong heterogeneity. For deep learning
methods, a large amount of labeled data are required for the model training. However, the
actual measurement of forest biomass is often costly and difficult, and so such models are
relatively poor in interpretation and prone to overfitting. Therefore, this study is based on
PolSAR data, using a flexible and more adaptable machine learning method to estimate
forest AGB.

The process of inversion of forest AGB by the machine learning method based on
PolSAR data includes three key stages: firstly, accurate extraction and derivation of PolSAR
feature parameters; secondly, selection of the optimal feature subset; and, finally, selec-
tion of the most suitable regression model and algorithm. Accurate extraction of PolSAR
features allows us to mine the information contained in the original data and generate
new features based on physical mechanisms or statistical methods. This enhances the
ability of the statistical model to reflect the complex relationship between forest AGB and
PolSAR features [34]. Backscattering coefficient and polarization decomposition param-
eters are the most commonly used PolSAR features in estimating forest AGB, with their
extraction theories having been extensively studied in literature [35–37]. However, due to
the side-view imaging principle of the SAR system and the characteristics of tilt distance
being inferred based on echo delay, the actual topographic relief and other factors can
cause serious interference to the scattered echo information received by SAR. This can limit
the accuracy and reliability of the features extracted from PolSAR data [38]. Therefore,
fully considering the influence of terrain and implementing effective terrain correction is
essential to improving the accuracy of PolSAR features. At present, the radiometric terrain
correction (RTC) process designed for PolSAR data is a relatively complete solution for
terrain correction [39], which includes polarization orientation angle correction (POAC),
effective scattering area correction (ESAC), and angular variation effect correction (AVEC).
We introduce normalized ESAC factors on the basis of RTC to further improve the RTC
process [40]. Although the RTC method has shown excellent performance in the correction
of backscattering coefficient and its effectiveness and robustness have been widely recog-
nized [41,42], there is a lack of in-depth research on the correction effect and quantitative
analysis of the polarization decomposition parameters of PolSAR data by RTC. In addition,
the effect of the fusion of the RTC process with different machine learning algorithms and
potential improvements need to be discussed further.

Feature selection is essential to achieve robust and high-precision estimation of forest
AGB based on PolSAR data [43–45]. The data and features determine the upper limit
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of machine learning, while models and algorithms only approach this upper limit [46].
The purpose of selecting the optimal feature subset is to remove invalid, redundant, and
interference-producing variables from many potential feature variables, and solve the
multicollinearity problem between the features synchronously. The aim is to select the
feature set with the greatest information value and prediction efficiency so as to improve
the efficiency and accuracy of the model construction [47–50]. At present, the methods of
feature selection are mainly divided into three categories: filter, wrapper, and embedded
algorithms [51,52]. In addition, a hybrid feature selection algorithm combining the advan-
tages of multiple feature selection methods through multi-step screening has also been
proposed [53–55].

The selection of appropriate statistical models can help to build models that accurately
reflect the complex relationship between AGB and remote sensing data, thus improving
the reliability and accuracy of carbon storage assessment. At present, according to the
different construction methods of statistical models and the characteristics of parameter
assumptions, regression models based on machine learning can be divided into two cate-
gories: parametric models and non-parametric models [5,56]. Non-parametric models can
flexibly adapt to various complex data structures without pre-setting the specific form of
the model, and thus show excellent adaptability and robustness. However, the parametric
model is still a competitive regression analysis tool because of its clear explanations and
high computational efficiency [57]. In addition, in the inversion of forest AGB based on
PolSAR characteristics, a widely accepted view is that forest AGB has the best correlation
with the backscattering coefficient of HV polarization channels, but there is no direct and
simple linear relationship between the two; in fact, a logarithmic function may be the more
appropriate relationship [58]. Moreover, our previous research focused on the potential
of RTC processes to improve the accuracy of forest AGB inversion based on univariate
models [40]. Therefore, this study will not focus on the construction of monadic linear
or nonlinear models, but instead will seek multivariate and high-level nonlinear model
structures that can capture this complex relationship.

This research aims to achieve three key tasks: (1) quantitatively evaluate the ability
of the RTC process to enhance the correlation between forest AGB and PolSAR features
(backscattering coefficient, polarization decomposition parameters, and related derived
features); (2) explore the effect of RTC on polarization decomposition parameters and
the underlying mechanism of action; and (3) evaluate the potential of the RTC process to
improve the performance of forest AGB inversion based on machine learning models, and
identify the optimal model by comparing the performance of different models.

2. Materials
2.1. Study Area

The study area is located in Saihanba Forest Farm (116◦53′~117◦43′E, 41◦55′~42◦35′N,
Figure 1) in the border area between the northern mountains of Weichang County, Hebei
Province, China, with an altitude of 1010 to 1940 m. The study area covers a wide range
of vegetation types, including deciduous coniferous forest, evergreen coniferous forest,
broad-leaved forest, scrubland, and grassland. Moreover, the topography of the study
area is complex, with the forest cover being a combination of flat woodlands and steep
hillsides with slopes up to 55.47◦. This variety of terrain conditions provides an ideal
natural laboratory for conducting comparative studies of complex terrain. In addition, the
study area has a large-scale artificial forest, covering an area of about 93,461 hectares, and
its large area of artificial forest is convenient for scientific researchers to collect real and rich
test data on the spot.
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Figure 1. Overview of study sites: (a) the location of Saihanba Forest Farm in relation to the provinces
and counties in China; (b) the spatial location of ALOS-2 data relative to Weichang County; (c) the
Pauli RGB image (R: |HH-VV|, G: |HV|, B: |HH + VV|) based on PolSAR data and the location of
the measured samples; the basemap is the optical image of Tianditu.

2.2. PolSAR Data and Pre-Processing

The PolSAR data used in this study are L-band full-polarization single-look complex
(SLC) data (Table 1) obtained by the Advanced Land Observing Satellite-2 (ALOS-2) (de-
veloped by the Japan Aerospace Exploration Agency (JAXA)) on 11 July, 25 July, and 8
August 2020. As the only platform currently equipped with a satellite-borne L-band SAR
sensor, ALOS-2’s four-polarization observation mode can significantly enhance its ability
to capture complex forest structures and scattering mechanisms. Moreover, compared with
C-band, L-band has stronger penetration and can more accurately reveal the details of the
forest internal structure, which is conducive to improving the accuracy of forest AGB.

Table 1. The main parameters of the PolSAR data.

Parameter Value Parameter Value

Data formats and processing level CEOS level 1.1 Observation mode HBQ
Observation date of scene center 27.8054◦ Radar wavelength 0.2424525 m

Length of range direction 49.8 km Range resolution 2.860844 m
Length of azimuth direction 69.3 km Azimuth resolution 2.642742 m

Orbit direction Ascending Range pixel 8392
Observation direction Right looking Azimuth pixel 26,105

Note: HBQ is High-sensitive mode Full (Quad.) polarimetry.

In this study, the Sentinel Application Platform (SNAP_v9.0.0) software developed by
the European Space Agency completed the pre-processing steps for the PolSAR data: cross-
channel SNR correction, Faraday rotation correction, and radiometric calibration for complex
data (Equation (2), derived from radiometric calibration of real data; Equation (1)) [35,40],
multi-look averaging of 4 × 9 (range × azimuth), refined LEE filter, and range doppler
terrain correction). The ensemble average size for the covariance matrix is crucial, especially
when studying natural vegetation. For natural vegetation, when the reflection symmetry
condition remains unchanged, the volume scattering power induced by vegetation will
improve with the increase in the average ensemble size [59]. The purpose of choosing
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4 × 9 (range × azimuth) as the core parameter of multi-look processing is to process the
pixels of the PolSAR data into square pixels as close as possible to the reference DEM data
and the measured plot.

σ0
slc = 10 · log10

〈
I2 + Q2

〉
+ CF1 − A, (1)

where σ0
slc is the backscattering coefficient after radiation calibration; I and Q represent

the real and imaginary parts of SLC 1.1 products, respectively; CF1 is −83.0 dB; and A is
32.0 dB.

Ical =
I

105.75 ; Qcal =
Q

105.75 , (2)

where Ical and Qcal are the real and imaginary parts of SLC 1.1 products after radiation calibration.

2.3. Ground-Measured Forest AGB

The measured forest AGB data were collected through a field survey conducted at
Saihanba Forest Farm in August 2020 for the training and validation of the forest AGB
inversion model. Through screening the key stand characteristics of the plots, including
tree species composition, understory environment, topographic slope, and stand thin-
ning density, 132 rhomboid plots (Figure 1) with an area of 0.06 ha (24.49 m × 24.49 m)
were established and investigated, including 28 plots distributed on a 1.0 km grid and
104 plots with a relatively uniform distribution. All plots were located using differential
GPS (Unistrong RTK-G10, Unistrong, Beijing, China), and plot information such as plot
type, plant number, and slope, as well as individual information of trees with a diameter at
breast height (DBH) ≥ 5.0 cm, was recorded, including DBH, tree height, and tree species.
Finally, the biomass per plant was calculated separately according to the allometric equa-
tion of different tree species (Table 2); then the total forest AGB of the plot was obtained by
summing (Equation (3)) [40] all the biomass per plant. Table 3 provides statistical details of
the field data for this study.

AGBj = ∑m
i=1 Wi/1000 × S, (3)

where AGBj is the AGB (t/ha) of the jth sample plot, m is the number of trees in the plot, Wi
is the AGB of the ith tree (kg), and S is the area of the sample plot (S = 0.06 ha).

Table 2. Allometric growth equation of different tree species.

Tree Species Allometric Equation Ref.

Larix principis-rupprechtii W = 0.1431 · DBH2.2193 [60]
Betula platyphylla W = 0.0330 · DBH2.9314 [61]

Pinus sylvestris var. mongolica W = 0.0930 · DBH2.3429 [62]
Pinus tabuliformis W = 0.0520 · DBH2.5830 [63]

Acer truncatum W = 0.1260 · DBH2.3830 [64]
Note: W is the AGB (kg) per plant, and DBH is the diameter at breast height (cm).

Table 3. Sample plot of AGB statistics.

Count Min (t/ha) Max (t/ha) Mean (t/ha) SD (t/ha)

132 36.39 166.58 103.88 32.31
Note: SD is standard deviation; Count is the number of sample plots.

2.4. SRTM DEM

Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) data with a
resolution of 30 m were used to complement the PolSAR data to implement geocoding and
calculate RTC-related factors.
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3. Methods

The processing framework of this study (Figure 2) includes the following steps: (1) ra-
diometric terrain correction (RTC) of PolSAR data, including polarization orientation angle
correction (POAC), effective scattering area correction (ESAC), and angular variation effect
correction (AVEC); (2) feature extraction and feature derivation based on PolSAR data,
including backscattering coefficient, polarization decomposition parameters, and their
related derived feature variables; and (3) feature selection and model training. All machine
learning algorithms were executed in the Python 3.10 development environment. The pro-
grams that involved partitioning the dataset used the default parameter (test_size = 0.25),
which was 75% for the training set and 25% for the test set. The following sections present
the necessary theories and related formulas for each stage in the flowchart in more detail.

Figure 2. A flowchart of the proposed forest AGB mapping scheme.

3.1. Radiometric Terrain Correction for PolSAR
3.1.1. Polarization Orientation Angle Correction

When there is topographic relief in the target area, the polarization orientation angle
(POA)—that is, the angle between the long axis of the polarization ellipse and the horizontal
axis of the ground plane—will be biased due to the slope (mainly the azimuth slope). In
order to compensate for this deviation of POA caused by terrain, the POA extracted
by the circular polarization method [39,65] is used first, and then the three-dimensional
polarization covariance (C3) matrix is compensated (Equation (4)).

C3_POAC = U3(η)C3U−1
3(η)

U3(η) =
1
2

 1 + cos(2η)
√

2 sin(2η) 1 − cos(2η)

−
√

2 sin(2η) 2 cos(2η)
√

2 sin(2η)

1 − cos(2η) −
√

2 sin(2η) 1 + cos(2η)


η = 1

4

[
−1 × Arg

(〈
−4Re⟨(SHH−SVV)S∗

HV⟩
−⟨|SHH−SVV |2⟩+4⟨|SHV |2⟩

〉)
+ π

] , (4)

where C3 and C3_POAC are the C3 matrix before and after polarization orientation angle
correction (POAC), respectively; η is the polarization orientation angle (POA); Arg(·) is a
phase function; and when η > π/4, η = η − π/2.
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3.1.2. Effective Scattering Area Correction

The effective scattering area is the projected area of the actual ground element on the
isophase surface. However, due to the difference in terrain slope, ground units of the same
SAR data in the geographical coordinate system correspond to different effective scattering
areas. Therefore, effective scattering area correction (ESAC) takes flat land as a reference to
correct the area effect of SAR data under different slope conditions so as to eliminate the
influence of terrain slope on scattering information [39,40]. The C3 matrix can be corrected
using Equation (5):

C3_ESAC = C3 ·
sin(θloc)

sin
(

θre f

) , (5)

where C3_ESAC is the C3 matrix after ESAC; C3 refers to the C3 matrix without ESAC; θloc is
the local incidence angle; and θref is the radar incidence angle.

3.1.3. Angular Variation Effect Correction

The angular variation effect (AVE) refers to the phenomenon whereby the local inci-
dence angle changes due to a change in terrain, which leads to a change in the scattering
mechanism of the target object (such as forest). The angular variation effect correction
(AVEC) is typically based on the cosine model (Equation (6)) to correct forest-covered
areas. In this study, the forest cover area was first extracted by Freeman3 decomposition
and Wishart unsupervised classification [66], and then the optimal n value matrix of the
C3 matrix (different elements correspond to different optimal n values) was obtained by
calculating the optimal n value corresponding to the main diagonal elements of the C3
matrix. For each element of the three principal diagonal elements, the optimal n value was
first determined by iterating the minimum value of the absolute value of f (n) when n takes
different values [39].

C3_AVEC = C3 ·
( cos θre f

cos θloc

)npq
= C3 ⊙


k(nHH) k

(
nHH+nHV

2

)
k
(

nHH+nVV
2

)
k
(

nHH+nHV
2

)
k(nHV) k

(
nHV+nVV

2

)
k
(

nHH+nVV
2

)
k
(

nHV+nVV
2

)
k(nVV)


npq = argmin

{
f(n)

}
= argmin

{∣∣ρ(θloc, C3_AVEC_pq
)∣∣}

, (6)

where (p, q) = (H, V) is the polarization mode of incidence and scattering of electromagnetic
waves; npq is the optimal n value of different polarization channels; ⊙ is the Hadamard
product; argmin{·} is the operation that takes the minimum value; f (n) is the absolute
value of the correlation coefficient between the local incidence angle θloc and C3_AVEC_pq;
C3_AVEC_pq is the decibel state of the intensity value after AVEC is applied to one of the
principal diagonal elements of the C3 matrix at a certain value of n; and ρ(·) is the correlation
coefficient function.

3.2. Feature Extraction and Feature Derivation of PolSAR

All 118 PolSAR features extracted in this study were based on the Polarimetric SAR
Data Processing and Educational Toolbox (PolSARpro_v5.1.1) and the Sentinel Application
Platform (SNAP_v9.0.0).

3.2.1. Backscattering Coefficient Features of PolSAR

This study extracted the intensity values (σ0
HH , σ0

HV , and σ0
VV) and decibel state values

(σ0
HH_db, σ0

HV_db, and σ0
VV_db) of the three main diagonal elements of the C3 matrix as the

six original backscatter coefficient features, and then calculated 20 classical derived features
(Table 4).
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Table 4. The features derived from the backscattering coefficients extracted from the PolSAR data.

Features Symbol Equation Symbol (dB) Source

Span Span σ0
HH + 2σ0

HV + σ0
VV Span_db [67]

Co-Pol HH/VV Ratio R_HH/VV σ0
HH/σ0

VV R_HH/VV_db [67]
Cross-Pol HH/HV Ratio R_HH/HV σ0

HH/σ0
HV R_HH/HV_db [67]

Cross-Pol VV/VH Ratio R_VV/VH σ0
VV /σ0

VH R_VV/VH_db [68]
Biomass Index BMI

(
σ0

HH + σ0
VV

)
/2 BMI_db [69]

Volume Scattering Index VSI σ0
HV /

(
σ0

HV + BMI
)

VSI_db [69]
Canopy Structure Index CSI σ0

VV /
(
σ0

HH + σ0
VV

)
CSI_db [69]

Radar Vegetation Index RVI 8σ0
HV /

(
σ0

HH + 2σ0
HV + σ0

VV
)

RVI_db [70]
Radar Forest Degradation Index RFDI

(
σ0

HH − σ0
HV

)
/
(
σ0

HH + σ0
HV

)
RFDI_db [71]

modified RFDI mRFDI
(
σ0

VV − σ0
HV

)
/
(
σ0

VV + σ0
HV

)
mRFDI_db [72]

Note: The backscattering coefficient σ0
pq in the table is the backscattering intensity in linear units.

3.2.2. Polarization Decomposition Features of PolSAR

In this study, 72 original polarization decomposition-related features in linear units
and decibel units were extracted based on 12 polarization decomposition methods (Table 5),
and then we calculated 20 derived features (Table 6). The Volume scattering component
(Vol) of the Pauli three-component (PAU3) in this study is exactly the same as σ0

HV, so
only the Surface scattering component (Odd) and the Double-bounce scattering component
(Dbl) of the PAU3 decomposition method were used.

Table 5. The polarization decomposition features extracted from the PolSAR data.

Decomposition Methods Abbreviation Symbol Source

Freeman two-component FRE2 F2V, F2O [73]
Freeman three-component FRE3 F3V, F3D, F3O [74]

Yamaguchi three-component YAM3 Y3V, Y3D, Y3O [75]
Yamaguchi four-component YAM4 Y4V, Y4D, Y4O, Y4H [76]

Van Zyl three-component VAZ3 V3V, V3D, V3O [77]
An and Yang three-component ANY3 A3V, A3D, A3O [78]
Model-free three-component MF3CF M3V, M3D, M3O [79]
Model-free four-component MF4CF M4V, M4D, M4O, M4H [80]

Cloude three-component CLD3 C3V, C3D, C3O [81]
Krogager three-component KRO3 K3S, K3D, K3H [82]

H-A-alpha HAα H, A, α [83]
Pauli three-component PAU3 P3D, P3O [84]

Note: In this table, the symbol of each component of the different polarization decomposition methods (except
H-A-alpha) has a consistent marking method: the first character (letter) is the first letter of the abbreviation of the
polarization decomposition method, the second character (number) is the number of its components, and the
third character (letter) is the first letter of the abbreviation of the different component types, including Volume
scattering component (Vol), Surface scattering component (Odd), Double-bounce scattering component (Dbl),
Helix scattering component (Hel), and Sphere scattering component (Sph). In addition, the decibel symbol of each
polarization decomposition component adds a suffix (“_db”) to the symbol of its intensity unit, which is not listed
in this table. For example, the decibel symbol of F3V is F3V_db.

Table 6. The features derived from the polarization decomposition extracted from the PolSAR data.

Symbol Equation Symbol (dB) Source

F2R_1 F2V/(F2O) F2R_1_db [85]
F3R_1 F3V/(F3D + F3O) F3R_1_db [85]
A3R_1 A3V/(A3D + A3O) A3R_1_db [85]
V3R_1 V3V/(V3D + V3O) V3R_1_db [85]
Y3R_1 Y3V/(Y3D + Y3O) Y3R_1_db [85]
F2R_2 F2V/(F2V + F2O) F2R_2_db [86]
F3R_2 F3V/(F3V + F3D + F3O) F3R_2_db [86]
A3R_2 A3V/(A3V + A3D + A3O) A3R_2_db [86]
V3R_2 V3V/(V3V + V3D + V3O) V3R_2_db [86]
Y3R_2 Y3V/(Y3V + Y3D + Y3O) Y3R_2_db [86]

Note: The meanings of the symbols in the equations in this table are shown in Table 5.
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3.3. Forest AGB Regression Modeling Algorithms and Model Evaluation

In this study, 10 multiple regression models (Table 7) were selected to evaluate the
effectiveness and robustness of RTC on the performance of different machine learning re-
gression models. Multiple regression models are statistical and machine learning methods
used to analyze the relationship between a continuous dependent variable (response vari-
able) and two or more independent variables (feature variables), which can be divided into
multiple linear regression models and non-parametric regression models. Non-parametric
regression models do not depend on the form of the model, while the multiple linear
regression model has an explicit parametric form (Equation (7)) [67]:

Y = α0 + α1X1 + α2X2 + · · ·+ αnXn + ε, (7)

where Y is the target variable of the prediction (decibels of forest AGB); X1, X2, . . ., Xn
are the predictor variables; α0 is a constant; α1, α2, . . ., α2n are the regression coefficients
associated with the corresponding variables; n is the number of the predictor variables; and
ε is the error term.

Table 7. The 10 regression models used in this study.

Model Python Package Module Estimator Category

Ridge scikit-learn (v1.4.2) sklearn.linear_model Ridge linear
Lasso scikit-learn (v1.4.2) sklearn.linear_model Lasso linear

ElasticNet scikit-learn (v1.4.2) sklearn.linear_model ElasticNet linear
BysRidge scikit-learn (v1.4.2) sklearn.linear_model BayesianRidge linear

ARD scikit-learn (v1.4.2) sklearn.linear_model ARDRegression linear
RF scikit-learn (v1.4.2) sklearn.ensemble RandomForestRegressor non-parametric
ET scikit-learn (v1.4.2) sklearn.ensemble ExtraTreesRegressor non-parametric

AdaBoost scikit-learn (v1.4.2) sklearn.ensemble AdaBoostRegressor non-parametric
XGBoost xgboost (v2.0.3) xgboost XGBRegressor non-parametric
CatBoost catboost (v1.2.3) catboost CatBoostRegressor non-parametric

The machine learning process in this study included the following steps (implementa-
tion details shown in Table 8): (1) The random forest regression model (RF) based on the
default parameters served as the base model for Boruta’s algorithm [87] and performed the
initial feature filtering on the entire dataset instead of the training set. The goal is to identify
and remove features that are irrelevant or weakly related to the target variable. (2) First, the
Optuna algorithm (n_trials = 500, including 10-fold cross-validation) was used to obtain the
optimal hyperparameters of 10 regression models on the feature set after the initial feature
selection. Then, the 10 regression models based on the optimal hyperparameters corre-
sponding to different models were used as the base model for recursive feature elimination
with cross-validation (RFECV) feature selection, and the feature selection of the second
step was completed. The aim is to iteratively search the optimal feature subset of the base
model. (3) Again, the Optuna algorithm was used to obtain and output the corresponding
evaluation indicators (based on the test set, i.e., 25% of all sample plots) of optimal perfor-
mance of 10 regression models on the feature set after two-step feature selection. These
evaluation indicators included the coefficient of determination (R2, Equation (8)), the root
mean square error (RMSE, Equation (9)), and the relative root mean square error (rRMSE,
Equation (10)) [18,27,42]. This was repeated 10 times and we calculated the average of
the above indicators. This is because the performance of the model largely depends on
the selected hyperparameters; however, the values of these hyperparameters are often
sensitive to the dataset, so the hyperparameters of Optuna need to be tuned separately for
different feature sets. In addition, since random states cannot be completely controlled,
they were not fixed in this study. This means that the initial state of model training and
possible random factors in each experiment followed a natural (random) process, which
was more in line with the real situation. However, through cross-validation and repeated
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tests, randomness can be reduced and a more stable and representative evaluation index
can be obtained.

R2 = 1 − ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − y)2 (8)

RMSE =

√
1
n∑N

i=1(yi − ŷi)
2, (9)

rRMSE = (RMSE/y)× 100% (10)

where N is the sample size, yi represents the true observed value, y represents the average
of the true observed value, and ŷi represents the predicted value.

Table 8. The Python packages on which the implementation of two-step feature selection depends.

Algorithm Boruta RFECV RF Optuna

package Boruta (v0.3) scikit-learn (v1.4.2) scikit-learn (v1.4.2) Optuna (v3.6.0)

4. Results
4.1. The Impact of Radiometric Terrain Correction on PolSAR Features

In order to quantitatively analyze the impact of the radiometric terrain correction
(RTC) process on the correlation between forest AGB and PolSAR features, we first set the
non-RTC (NRTC) data as the blank control and the RTC data as the test data. The core
correction factors of the RTC process are shown in our previous study [40]. Secondly, we
extracted a total of 117 effective PolSAR features (as mRFDI_db is invalid) based on NRTC
and RTC data. Subsequently, Pearson correlation coefficients (R) were calculated separately
between forest AGB and each of the PolSAR features (Table A1, Appendix B). Finally, in
order to compare and visually present the changes in the R-values of the NRTC data and
RTC data and, at the same time, reveal the relationship between various PolSAR features
and forest AGB correlation strength after RTC, we sorted and plotted them according to
the absolute R-values of the data (25 July 2020) after RTC (Figure 3).

The R-values of the RTC data increased to varying degrees in all (Figure 3a,b) but
three original features (α, α_db, and A_db). The R-values of the 75 original features (with
increased R-value) increased by an average of 0.26, and the largest R-value increase was 0.48
(σ0

HV), indicating that RTC processing can effectively improve the accuracy of most PolSAR
features and the sensitivity of AGB inversion. However, among the original features,
the three (H, H_db, and A) that belong to the same H-A-alpha (HAα) decomposition
method as α, α_db, and A_db were relatively less affected by RTC. This shows that HAα

decomposition can alleviate terrain disturbance. This is because the three parameters of the
HAα decomposition are defined by a function of the ratio class of the three eigenvalues (the
relative scattering power of different scattering mechanisms). Moreover, the R-values of
the RTC data in all but four derived features (Span, Span_db, BMI, and BMI_db) (Figure 3c)
were reduced to varying degrees. This suggests that the ratio operation (feature derived
algorithm) of features can eliminate some multiplicative interference (including terrain
interference). It also indicates that there is an overcorrection problem in the RTC process.
Although the overcorrection problem of RTC is small, it causes an error of 0.05 in the mean
value of the absolute value of the Pearson correlation coefficient between forest AGB and
these 35 derived features.

In addition, the feature R_HH/HV (R = 0.76) has the largest R-value among all the
features derived through ratio operations, but it is still 0.1 lower than σ0

HV_db (R = 0.86),
which has the highest R-value of all 117 PolSAR features. This suggests that, based only
on the backscattering coefficient, the HV polarization mode carries more polarization
information related to forest AGB. Although the ratio algorithm of features can mitigate
the topographic effects, it will also weaken some AGB-related information. The second-
largest R-value of all 117 PolSAR features is Y4V_db (R = 0.84), which indicates that
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the YAM4 decomposition method can decompose the scattering characteristics of the
target into different scattering components relatively more accurately. Moreover, among
the different components of the same polarization decomposition method, the Volume
scattering component (Vol) usually has the largest R-value, indicating that the relationship
between Vol and the scattering information in vegetation is relatively close. Furthermore,
regardless of the decomposition method, the R-value of volume scattering in decibels is
higher than that in linear units, which is consistent with the trend of previous studies [58].

Figure 3. Absolute value of Pearson correlation coefficient (R) between forest AGB and the PolSAR
features based on the data (25 July 2020) with radiometric terrain correction (RTC, olive) and non-RTC
data (NRT, red). Sorted based on R_RTC (i.e., absolute value of R value between forest AGB and
SAR features extracted based on RTC data). (a) The first set of the extracted original PolSAR features;
(b) the second set of the extracted original PolSAR features (39 in total); (c) derived features based on
PolSAR original features (39 in total).

4.2. The Impact of Radiometric Terrain Correction on Polarization Decomposition Component

In order to analyze the influence of different stages of RTC on the removal of topo-
graphic factors in the polarization decomposition component, we took the PolSAR data
from 25 July 2020 as an example and plotted a scatter density plot between the decibel
values of the three components of the Freeman three-decomposition method and the local
incidence angle. As can be seen from Figure 4, there is a relatively obvious linear rela-
tionship between each component and the local incidence angle in the NRTC and POAC
stages; but with the implementation of ESAC and AVEC, this linear relationship becomes
significantly weaker, which is consistent with the results of our previous research regarding
the backscattering coefficient [40]. The results show that RTC is also effective at removing
the effect of terrain on the polarization decomposition.
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Figure 4. Taking PolSAR data from 25 July 2020 as an example, we created scatter density plots
between the decibel values of the three components (Volume scattering component (Vol), Sur-
face scattering component (Odd), and Double-bounce scattering component (Dbl)) of the Freeman
three-decomposition in different topographic correction stages (non-radiometric terrain correction
(NRTC), polarization orientation angle correction (POAC), effective scattering area correction (ESAC),
and angular variation effect correction (AVEC)) and the local incidence angle θloc. (a) NRTC_Vol;
(b) POAC_Vol; (c) ESAC_Vol; (d) AVEC_Vol; (e) NRTC_Odd; (f) POAC_Odd; (g) ESAC_Odd;
(h) AVEC_Odd; (i) NRTC_Dbl; (j) POAC_Dbl; (k) ESAC_Dbl; (l) AVEC_Dbl.

In order to further analyze the specific mechanism of influence of different stages of
RTC (POAC, ESAC, and AVEC) on each component of polarization decomposition, taking
PolSAR data from 25 July 2020 as an example, we plotted the scatter density (Figure 5) of
each component of Freeman3 decomposition at each stage of different RTC relative to the
previous stage.

In the comparison stage between POAC and NRTC (Figure 5a,e,i), POAC caused the
intensity values of almost all pixels of the Vol component (Figure 5a) to decrease, while the
intensity values of almost all pixels of the Odd (Figure 5e) and Dbl components (Figure 5i)
showed an increasing trend. This suggests that the absence of POAC will lead to an
overestimation of Vol and an underestimation of Odd and Dbl. In addition, the correction
of the ESAC and AVEC stages did not cause the pixel intensity value of the polarization
decomposition component to undergo an overall increase or decrease, but there was an
increase or decrease in the pixel value in each component. This is because the correction
factors of ESAC and AVEC stages depend on both the value of the local incidence angle of
each pixel and its relationship with the radar incidence angle, which also indicates that the
correction effects of ESAC and AVEC stages are closely related to the ground conditions in
the study area. However, in the ESAC phase, most of the pixels that cause a large change in
the intensity value of the pixel (away from the 1:1 line) were decreasing, while in the AVEC
phase, the situation was the opposite. This indicates that going without ESAC will lead
to a more serious overestimation of some pixels, while going without AVEC will lead to
a more serious underestimation of some pixels. Moreover, the effect of RTC on the three
polarization decomposition components cannot be described by a simple law of increase
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and decrease because the correction effect of RTC is the superposition of the three stages
(Figure 5d,h,l).

Figure 5. Taking PolSAR data from 25 July 2020 as an example, we created a scatter density plot for
each component of Freeman three-decomposition (FRE3) at different radiometric terrain correction
(RTC) stages (Y-axis) relative to the previous stage (X-axis), and in AVEC stages (that is, after all
processing of the RTC was completed) with respect to non-RTC (NRTC). The three components of
FRE3 are the Volume scattering component (Vol), Surface scattering component (Odd), and Double-
bounce scattering component (Dbl). The three stages of RTC are polarization orientation angle
correction (POAC), effective scattering area correction (ESAC), and angular variation effect correction
(AVEC). The red line is a 1:1 line. (a) NRTC vs. POAC of Vol; (b) POAC vs. ESAC of Vol; (c) ESAC vs.
AVEC of Vol; (d) NRTC vs. AVEC of Vol; (e) NRTC vs. POAC of Odd; (f) POAC vs. ESAC of Odd;
(g) ESAC vs. AVEC of Odd; (h) NRTC vs. AVEC of Odd; (i) NRTC vs. POAC of Dbl; (j) POAC vs.
ESAC of Dbl; (k) ESAC vs. AVEC of Dbl; (l) NRTC vs. AVEC of Dbl.

In addition, in order to comprehensively evaluate the universality and robustness of
the effect of RTC on polarization decomposition, we used the Yamaguchi three-component
(YAM3) method for analysis and mapping (Figure A1, Appendix A). On the whole, the trend
of the scatter density plots of the two polarization decomposition methods was the same in
each stage except for slight differences caused by the different decomposition algorithms.
This shows that the effect of RTC on the components of polarization decomposition is
relatively robust in different polarization decomposition methods.

4.3. The Impact of Radiometric Terrain Correction on Regression Model Performance

In order to analyze the impact of RTC on the performance of machine learning mod-
els and select the optimal regression model, we conducted feature selection (Figure A2,
Appendix A) and model training (Table A2, Appendix B) for 10 regression models based on
the NRTC data and RTC data (25 July 2020), respectively. Then, we conducted a descending
order analysis and graphed the results (Figure 6) based on the R2 value of the training
results of the RTC data.
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Figure 6. Analysis of the effectiveness of RTC and the optimal regression model of this study, taking
the SAR data from 25 July 2020 as an example. (a) The training results of the NRTC and RTC data,
where the black dots are the results of the corresponding single training; (b) scatter plot of the
measured forest AGB and the AGB predicted by the optimal regression model (BysRidge); (c) spatial
distribution map of forest AGB in the study area based on optimal model prediction.

Compared with training using the RTC data (Figure 6a), R2 values obtained by dif-
ferent models based on training using the NRTC data are generally lower (0.14 lower on
average), while rRMSE values are generally higher (4.2% higher on average), indicating
that not implementing the RTC process will cause greater estimation error in forest AGB
inversion. In addition, from the R2 values of different models trained on the NRTC data
and RTC data, it can be found that the RTC process generally improves the performance of
linear models more than non-parametric models, indicating that the existence of terrain
factors will cause the real relationship between SAR information and forest AGB to become
more complex and difficult to describe by a simple linear relationship. Meanwhile, RTC can
effectively reduce the signal distortion caused by terrain factors and make SAR data more
closely reflect the real situation of forest biomass, thus reducing the complexity of data.

Figure 6b is a scatter plot of the measured forest AGB of 132 plots and the predicted
value obtained using the BysRidge regression model (the largest R2 value in 10 repetitions
of Optuna hyperparameter optimizations, Equation (11)), which had the best performance
on the data of this study, indicating that the model has a strong ability to explain the data
trend (R2 = 0.82). Its prediction error was relatively small (rRMSE = 18.06%), but there were
still some problems of overestimation and underestimation. In addition, the multivariate
model has a higher R2 value (0.82) compared to the R2 value of the univariate model (0.73
for the data dated 25 July 2020 in our previous study [40]), indicating that the multivariate
model has a stronger advantage in retrieving forest AGB. Moreover, we evaluated the
generalization ability of the model (Equation (11)) with respect to the PolSAR data from
different dates (11 July and 8 August 2020), and created a scatter plot of the measured
values and the predicted values of forest AGB calculated based on the model (Figure A3).
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Finally, the forest AGB in the whole range of the study area was predicted and mapped
(Figure 6c) based on the trained model.

AGB(db) = 56.4598 + 3.5369 × σ0
HV_db + 1.5128 × BMI_db + 3.5913 × V3R_2_db

+23.2417 × H + 2.0974 × mRFDI + 2.7412 × F3V_db − 6.1481 × RVI
−2.9493 × Span_db − 0.5524 × R_VV/HV_db − 26.397 × A3V

(11)

5. Discussion
5.1. The Significance of Radiometric Terrain Correction

As an important part of the terrestrial ecosystem carbon pool [88], the accurate estima-
tion of forest AGB is of great significance for quantifying the value of forest carbon storage
and assessing the dynamics of the global carbon cycle, but the interference of topographic
factors cannot be ignored [89]. This study found that the effective implementation of the
RTC process can significantly suppress the interference of terrain factors with PolSAR data,
thereby improving the quality and application potential of PolSAR data. This is specifically
reflected in the following points. On the one hand, compared to the R-value between forest
AGB and SAR features extracted from the NRTC data, the average R-value of 75 original
features extracted from the RTC data increased by 0.26, and the maximum improvement
was 0.48 (σ0

HV). On the other hand, RTC is highly reasonable and robust at correcting
components obtained by different polarization decomposition methods (FRE3 and YAM3
are examples). Moreover, results consistent with those of other researchers [90–92] were
obtained during the POAC stage: the Vol component decreased, while the Odd and Dbl
components increased. However, the correction effect on each ground unit during the
ESAC and AVEC stages was closely related to the ground conditions in the study area and
did not exhibit a monotonic trend. Finally, the fitting performance of 10 regression models
based on RTC data was generally superior to that based on NRTC data (R2 increased by
0.14 and rRMSE decreased by 4.2% on average). These results indicate that RTC is effective
and robust for improving the accuracy of PolSAR features and the reliability of forest
AGB inversion. This is because RTC is a set of effective step-by-step terrain correction
processes designed by in-depth analysis of the SAR physical mechanism, which accurately
corrects the interference caused by terrain factors in terms of the scattering mechanism
(POAC and AVEC) and intensity information (ESAC). The original PolSAR features after
RTC processing carry more accurate polarization scattering information, thus improving
the sensitivity of AGB inversion. In addition, if a suitable RTC process is created in the
application of other SAR technologies to eliminate the interference of terrain factors, the
application effect will be improved to a certain extent.

5.2. The Overcorrection of Radiometric Terrain Correction

This study also found that, without RTC processing, the R-value of the derived
features extracted based on ratio arithmetic is significantly higher than that of the original
features [86], but the original features showed significant improvement after RTC. This
indicates that ratio-derived features can be prioritized for SAR data application when RTC
is not feasible [93,94]. However, compared with the derived features without RTC, the
average R-value of the 35 ratio-related PolSAR-derived features after RTC decreased by
0.05, indicating that there are some overcorrection issues in the RTC process that need to be
improved. In addition, since the ratio operation can eliminate multiplicative noise, there
is a greater likelihood of overcorrection due to POAC and AVEC. The extraction of POA
needs to distinguish between the offset caused by forest targets and terrain factors, and
only correct the offset caused by terrain, while the correction factor in the AVEC stage
only considers the local incidence angle and radar incidence angle, without introducing
factors such as surface roughness, terrain slope, and complex dielectric coefficient that are
related to the backscatter coefficient in the AVEC correction process. Moreover, there is
potential space for further improvement of the ESAC method. Therefore, exploring how
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to effectively solve the overcorrection problems caused by the above factors in the RTC
process is a valuable future research direction.

5.3. Performance Comparison of Different Regression Models

Improving dataset quality (such as RTC) has a greater impact on improving AGB
estimation performance than selecting regression algorithms [95]. However, after the sig-
nificant improvement in data quality, the selection of machine learning regression models
becomes particularly crucial. Selecting an appropriate regression model can ensure that
the algorithm can fully utilize the features in the data, capture the relationships between
variables, and avoid overfitting or underfitting, thereby further improving the prediction
accuracy and generalization ability of the model. This study compared 10 different regres-
sion models and found that the linear model has superior complexity (feature dimension)
and interpretability compared to the non-parametric model. This is because non-parametric
models do not preset the specific form of the model but adjust flexibly based on the data.
However, it is precisely because of their higher flexibility that these models become too
complex. In the feature selection stage, the variance inflation factor (VIF) values of the
features of different linear regression models are all less than 10 (Figure A2d), indicating
that regularization methods (L1 or L2) can effectively alleviate the feature collinearity
problem in multivariate linear models. However, the VIF value of many features is greater
than 5, indicating that there is still a moderate degree of collinearity problem in the feature
set. In addition, it is to be expected that there is some degree of collinearity in the features
selected by the non-parametric model (Figure A2e), but the collinearity problem usually
has less effect on the non-parametric model.

In addition, the R2 and rRMSE indicators of the non-parametric models based on the
RTC data in this study are usually worse than those of the linear models. This may be
because the target variable of this study is the forest AGB value in decibels, which has
a better linear relationship with PolSAR features (higher accuracy) [7,58,96]. However,
non-parametric models based on the NRTC data in this study typically have better R2 and
rRMSE metrics than linear models. This is because terrain factors cause PolSAR features to
have a more obviously nonlinear relationship with forest AGB. Moreover, the setting of
hyperparameter spaces for different models directly affects the performance of the model,
while the setting of hyperparameter spaces for non-parametric models is more complex,
which may be one reason why non-parametric models performed slightly worse on the data
in this study. Furthermore, the comparison between parametric and non-parametric models
may be unfair because there is not a large amount of data to train the non-parametric model,
resulting in a feature selection method that is not ideal. Therefore, k-Nearest Neighbor
is a regression algorithm worth trying because it is more suitable for small datasets than
random forest. In addition, deep learning models (such as Convolutional Neural Networks
(CNN) and Deep Neural Networks (DNN)) have certain limitations (such as a large amount
of data being required for training, the consumption of computing resources being large,
and the model interpretation being poor) compared to traditional machine learning models.
However, because of their strong feature learning ability, high accuracy, and excellent
generalization ability, they have shown great potential for solving complex problems, and
so are worth putting into use in scenarios with sufficient resources.

5.4. Potential Limitations

In this study, only PolSAR features were applied in AGB inversion. However, it is
necessary to include more actual parameters that reflect the geographical environment and
physical conditions when constructing a more comprehensive and accurate AGB model [44].
For example, climatic factors (temperature, rainfall, humidity, etc.) may directly affect the
state of the land surface and vegetation, thereby altering the reflection characteristics of SAR
signals [97]. Moreover, although RTC is carried out in the pre-processing of PolSAR data, it
may also be worth taking slope, aspect, and local incidence angle into account in model
training. In addition, more polarization parameters also contribute to the application of
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SAR data [67,98,99]. Through the comprehensive analysis of these multivariate parameters,
we can expect a significant improvement in the predictive power of the model and a deeper
understanding of the object of study.

In this study, data from only 132 plots were used to build and train machine learning
models due to human constraints and real-world conditions. The relatively small forest
AGB range (36.39–166.58 t/ha) of the real test sample may not be suitable for the forest
in the study area (the maximum value is 254.6 t/ha). However, adding more plot data
through unmanned aerial vehicle-light detecting and ranging (UAV-LiDAR) systems can
significantly improve the generalization and reliability of the model, as larger datasets
more accurately reflect the ecological diversity and complexity of the study area, helping
the model capture more patterns and trends [5]. Furthermore, the control of data quality is
crucial. It is necessary to strictly control field measurement errors, AGB calculation errors,
and matching errors between sample location and remote sensing image data to reduce the
uncertainty caused by human factors, so as to comprehensively improve the overall quality
of data and the accuracy of the model prediction [100].

In addition, this study did not conduct differentiated modeling for different forest
types. However, the AGB modeling method based on forest type is a forest AGB modeling
strategy that has attracted much attention in recent years. Because it is based on the basic
characteristics of forest ecosystem diversity and heterogeneity, which is helpful to reveal
the biomass distribution law and the fine modeling of forest AGB, so it has significant
advantages in terms of the accuracy and practicability of the AGB inversion model [101,102].

6. Conclusions

Considering that the impact of RTC on the correctness of feature extraction and
regression model performance needed to be further evaluated, this study took PolSAR
data provided by ALOS-2 as the data source, and used 10 machine learning regression
models and the Optuna hyperparameter optimization algorithm to verify the effectiveness
and robustness of RTC in improving the correctness of the PolSAR feature set and the
accuracy of forest AGB inversion. The detailed results are as follows: The RTC process
effectively and robustly improved the correlation between the PolSAR features and the
measured forest AGB (with an average increase of 0.26 in R-values) and the performance
of the regression models (with an average increase of 0.14 in R2 values and an average
decrease of 4.2% in rRMSE). The RTC process also showed prime robustness and rationality
for the correction of different polarization decomposition components. The ratio operation
of PolSAR features offset some multiplicative noises (including terrain), which indicates
that there was a certain degree of overcorrection in the RTC process. Therefore, the ratio
class-derived features were given priority when there was no condition for RTC; after
RTC, σ0

HV_db still had the highest R-value of all PolSAR features and forest AGB decibels.
In addition, the PolSAR features had a closer linear relationship with the forest AGB of
decibel states. In this case, the linear model remained a powerful and practical choice due
to its efficiency and stability. For example, the optimal regression model in this study was
BysRidge (R2 = 0.82, rRMSE = 18.06%).

However, this study treated all forest cover areas as the same type without differen-
tiated modeling of different forest types, and confirmed that there is an overcorrection
problem in the RTC process. More PolSAR features and actual parameters, as well as
more accurate sample data, should be applied in machine learning inversion of forest
parameters. Although this study had these limitations, it also provides insight for future
research. It is expected to significantly improve the inversion accuracy of forest AGB by
overcoming the above limitations, which can provide more reliable data support for the
scientific management and protection of forest resources.

In summary, this study validated the effectiveness and robustness of RTC in improving
the correct extraction of PolSAR features and accurately inverting forest AGB, and analyzed
the potential mechanism of RTC on polarization decomposition parameters. The method
used in this study has good robustness and universality. It can therefore provide assistance
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and reliable reference values for the inversion of forest AGB and related SAR applications
based on machine learning models using PolSAR data in complex terrain areas.
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Appendix A

Figure A1. The scatter density plot of each component of Yamaguchi three-component (YAM3) at
different radiometric terrain correction (RTC) stages (Y-axis) relative to the previous stage (X-axis),
and in AVEC stages (that is, after all processing of the RTC) with respect to non-RTC (NRTC). The
three components of YAM3 are the Volume scattering component (Vol), Surface scattering component
(Odd), and Double-bounce scattering component (Dbl). The three stages of RTC are polarization
orientation angle correction (POAC), effective scattering area correction (ESAC), and angular variation
effect correction (AVEC). The red line is a 1:1 line. (a) NRTC vs. POAC of Vol; (b) POAC vs. ESAC of
Vol; (c) ESAC vs. AVEC of Vol; (d) NRTC vs. AVEC of Vol; (e) NRTC vs. POAC of Odd; (f) POAC vs.
ESAC of Odd; (g) ESAC vs. AVEC of Odd; (h) NRTC vs. AVEC of Odd; (i) NRTC vs. POAC of Dbl;
(j) POAC vs. ESAC of Dbl; (k) ESAC vs. AVEC of Dbl; (l) NRTC vs. AVEC of Dbl.
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Figure A2. The result of feature selection: (a) the 32 features selected in preliminary feature selection
(Boruta algorithm) based on radiative terrain correction (RTC) data, including the importance score
given by the RF of the selected features, and absolute values of Pearson correlation coefficients (R)
between the selected features and measured forest AGB; (b) the 21 features selected in preliminary
feature selection (Boruta algorithm) based on non-RTC (NRTC) data, including the importance score
given by the RF of the selected features, and absolute values of Pearson correlation coefficients
(R) between the selected features and measured forest AGB; (c) the number of features selected
in the second step feature selection (RFECV algorithm) based on RTC and NRTC data; (d) the
features selected in different multivariate linear models and the variance inflation factor (VIF) value
corresponding to each feature; (e) the features selected in different non-parametric models.
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Figure A3. Scatter plot of measured forest AGB and predicted forest AGB. The prediction model is
an optimal regression model based on the PolSAR data processed by radiometric terrain correction
(RTC) from 25 July 2020. (a) The independent variable of the prediction model was derived from the
PolSAR data (after RTC processing) from 11 July 2020. (b) The independent variable of the prediction
model was derived from the PolSAR data (after RTC processing) from 8 August 2020.

Appendix B

Table A1. Pearson correlation coefficient (R) between forest AGB and the 118 PolSAR features based
on the data with radiometric terrain correction (RTC) and non-RTC data (NRTC), obtained from 11
July, 25 July, and 8 August 2020.

ID Features
NRTC/RTC

Significance
R_200711 R_200725 R_200808

1 σ0
HH 0.12/0.58 0.16/0.63 0.14/0.60 -/**

2 σ0
HV 0.25/0.70 0.28/0.73 0.27/0.71 */**

3 σ0
VV 0.15/0.61 0.18/0.66 0.17/0.62 -/**

4 Span 0.18/0.66 0.21/0.71 0.20/0.69 -/**
5 R_HH/VV −0.09/−0.09 −0.10/−0.10 −0.10/−0.10 -/-
6 R_HH/HV −0.74/−0.73 −0.77/−0.76 −0.76/−0.75 **/**
7 R_VV/VH −0.70/−0.69 −0.74/−0.73 −0.72/−0.70 **/**
8 BMI 0.14/0.62 0.17/0.66 0.15/0.65 -/**
9 VSI 0.70/0.67 0.73/0.71 0.71/0.68 **/**

10 RVI 0.70/0.67 0.73/0.71 0.71/0.68 **/**
11 CSI 0.091/0.089 0.096/0.094 0.096/0.095 -/-
12 RFDI −0.65/−0.64 −0.68/−0.66 −0.67/−0.65 **/**
13 mRFDI −0.63/−0.61 −0.66/−0.64 −0.65/−0.62 **/**
14 F2O 0.14/0.51 0.19/0.56 0.16/0.53 -/**
15 F2V 0.14/0.51 0.17/0.54 0.14/0.52 -/**
16 F3D 0.15/0.30 0.17/0.31 0.19/0.34 -/*
17 F3O 0.04/0.11 0.05/0.14 0.03/0.10 -/-
18 F3V 0.30/0.72 0.32/0.74 0.31/0.74 */**
19 Y3D 0.22/0.34 0.26/0.36 0.24/0.35 -/*
20 Y3O −0.03/0.10 −0.04/0.15 −0.04/0.11 -/-
21 Y3V 0.25/0.69 0.29/0.73 0.28/0.70 -/**
22 Y4D −0.04/0.21 −0.05/0.23 −0.04/0.21 -/-
23 Y4O −0.24/−0.44 −0.25/−0.44 −0.27/−0.45 -/*
24 Y4V 0.31/0.71 0.30/0.71 0.30/0.70 */**
25 Y4H 0.08/0.15 0.09/0.16 0.09/0.18 -/-
26 M3D 0.21/0.49 0.23/0.51 0.20/0.51 -/**
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Table A1. Cont.

ID Features
NRTC/RTC

Significance
R_200711 R_200725 R_200808

27 M3O 0.01/0.25 0.01/0.29 0.01/0.28 -/-
28 M3V 0.32/0.72 0.30/0.71 0.35/0.74 */**
29 M4D 0.25/0.60 0.24/0.58 0.22/0.57 -/**
30 M4O 0.01/0.28 0.01/0.28 0.01/0.30 -/-
31 M4V 0.29/0.71 0.30/0.72 0.32/0.74 */**
32 M4H 0.06/0.13 0.06/0.12 0.09/0.15 -/-
33 A3D 0.22/0.45 0.20/0.43 0.18/0.40 -/*
34 A3O 0.03/0.32 0.03/0.31 0.03/0.30 -/-
35 A3V 0.31/0.64 0.29/0.63 0.30/0.63 -/**
36 V3D 0.20/0.46 0.22/0.49 0.22/0.51 -/*
37 V3O 0.15/0.54 0.16/0.54 0.18/0.55 -/**
38 V3V 0.32/0.68 0.31/0.66 0.31/0.65 */**
39 H 0.61/0.62 0.61/0.63 0.60/0.63 **/**
40 A −0.07/−0.23 −0.06/−0.23 −0.07/−0.25 -/-
41 α 0.55/0.51 0.57/0.55 0.57/0.56 **/**
42 C3D 0.24/0.48 0.24/0.49 0.26/0.50 -/*
43 C3O 0.30/0.60 0.32/0.63 0.31/0.60 -/**
44 C3V −0.01/0.15 −0.02/0.19 −0.02/0.20 -/-
45 K3S 0.18/0.52 0.20/0.55 0.21/0.55 -/**
46 K3D 0.31/0.70 0.30/0.68 0.30/0.67 */**
47 K3H 0.05/0.08 0.05/0.08 0.05/0.07 -/-
48 P3D 0.20/0.60 0.22/0.63 0.22/0.65 -/**
49 P3O 0.13/0.52 0.14/0.54 0.15/0.55 -/**
50 A3R_1 0.60/0.55 0.60/0.56 0.61/0.58 **/**
51 A3R_2 0.62/0.59 0.62/0.58 0.63/0.60 **/**
52 F2R_1 −0.31/−0.12 −0.33/−0.13 −0.37/−0.15 -/-
53 F2R_2 −0.32/−0.15 −0.34/−0.15 −0.38/−0.17 -/-
54 F3R_1 0.61/0.58 0.63/0.59 0.59/0.55 **/**
55 F3R_2 0.69/0.60 0.70/0.61 0.71/0.61 **/**
56 V3R_1 0.70/0.66 0.71/0.68 0.69/0.66 **/**
57 V3R_2 0.72/0.70 0.73/0.70 0.71/0.69 **/**
58 Y3R_1 0.65/0.61 0.65/0.62 0.64/0.60 **/**
59 Y3R_2 0.70/0.64 0.72/0.64 0.70/0.63 **/**
60 σ0

HH_db 0.30/0.70 0.31/0.72 0.31/0.71 */**
61 σ0

HV_db 0.50/0.81 0.54/0.86 0.52/0.82 **/**
62 σ0

VV_db 0.32/0.72 0.34/0.75 0.34/0.73 */**
63 Span_db 0.38/0.79 0.40/0.82 0.40/0.80 */**
64 R_HH/VV_db −0.01/−0.01 −0.098/−0.096 −0.10/−0.10 -/-
65 R_HH/HV_db −0.57/−0.65 −0.71/−0.69 −0.70/−0.67 **/**
66 R_VV/VH_db −0.62/−0.60 −0.66/−0.65 −0.64/−0.63 **/**
67 BMI_db 0.30/0.73 0.32/0.76 0.30/0.75 */**
68 VSI_db 0.75/0.74 0.77/0.75 0.78/0.76 **/**
69 RVI_db 0.75/0.74 0.77/0.75 0.78/0.76 **/**
70 CSI_db 0.10/0.09 0.099/0.097 0.10/0.10 -/-
71 RFDI_db −0.62/−0.60 −0.64/−0.61 −0.65/−0.62 **/**
72 mRFDI_db NaN/NaN NaN/NaN NaN/NaN -/-
73 F2O_db 0.36/0.66 0.40/0.69 0.38/0.67 */**
74 F2V_db 0.23/0.53 0.25/0.56 0.25/0.54 -/**
75 F3D_db 0.35/0.45 0.37/0.46 0.38/0.48 */*
76 F3O_db −0.05/0.14 −0.06/0.16 −0.04/0.11 -/-
77 F3V_db 0.45/0.81 0.47/0.83 0.46/0.83 */**
78 Y3D_db 0.36/0.47 0.39/0.49 0.37/0.47 */*
79 Y3O_db −0.03/0.10 −0.05/0.14 −0.05/0.12 -/-
80 Y3V_db 0.42/0.72 0.45/0.75 0.43/0.72 */**
81 Y4D_db −0.05/0.27 −0.07/0.29 −0.05/0.27 -/-
82 Y4O_db −0.39/−0.65 −0.40/−0.65 −0.42/−0.67 */**
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Table A1. Cont.

ID Features
NRTC/RTC

Significance
R_200711 R_200725 R_200808

83 Y4V_db 0.54/0.84 0.53/0.84 0.53/0.83 **/**
84 Y4H_db 0.16/0.17 0.18/0.19 0.18/0.20 -/-
85 M3D_db 0.39/0.60 0.40/0.62 0.38/0.62 */**
86 M3O_db 0.04/0.32 0.05/0.35 0.05/0.34 -/*
87 M3V_db 0.55/0.83 0.54/0.82 0.58/0.85 **/**
88 M4D_db 0.41/0.63 0.40/0.62 0.39/0.60 */**
89 M4O_db 0.05/0.35 0.05/0.35 0.05/0.37 -/*
90 M4V_db 0.55/0.82 0.55/0.83 0.56/0.85 **/**
91 M4H_db 0.12/0.17 0.12/0.16 0.15/0.18 -/-
92 A3D_db 0.39/0.57 0.38/0.56 0.35/0.52 */**
93 A3O_db 0.05/0.38 0.05/0.37 0.04/0.35 -/*
94 A3V_db 0.50/0.79 0.49/0.79 0.49/0.80 **/**
95 V3D_db 0.38/0.55 0.41/0.57 0.41/0.59 */**
96 V3O_db 0.28/0.63 0.29/0.63 0.30/0.64 -/**
97 V3V_db 0.46/0.79 0.46/0.78 0.45/0.76 **/**
98 H_db 0.62/0.63 0.62/0.64 0.61/0.64 **/**
99 A_db −0.09/−0.06 0.08/−0.06 0.09/−0.08 -/-

100 α_db 0.54/0.50 0.56/0.53 0.56/0.54 **/**
101 C3D_db 0.33/0.57 0.33/0.58 0.35/0.59 */**
102 C3O_db 0.37/0.70 0.40/0.72 0.38/0.70 */**
103 C3V_db 0.02/0.23 0.04/0.26 0.04/0.27 -/-
104 K3S_db 0.31/0.58 0.34/0.61 0.35/0.61 */**
105 K3D_db 0.47/0.78 0.46/0.76 0.46/0.75 */**
106 K3H_db 0.09/0.09 0.089/0.092 0.09/0.09 -/-
107 P3D_db 0.35/0.63 0.38/0.65 0.38/0.67 */**
108 P3O_db 0.27/0.55 0.28/0.57 0.28/0.58 -/**
109 A3R_1_db 0.65/0.59 0.65/0.60 0.66/0.63 **/**
110 A3R_2_db 0.66/0.63 0.66/0.62 0.67/0.64 **/**
111 F2R_1_db −0.32/−0.15 −0.36/−0.16 −0.39/−0.18 */-
112 F2R_2_db −0.39/−0.19 −0.39/−0.19 −0.39/−0.19 */-
113 F3R_1_db 0.64/0.62 0.66/0.63 0.61/0.60 **/**
114 F3R_2_db 0.71/0.64 0.72/0.65 0.73/0.65 **/**
115 V3R_1_db 0.73/0.69 0.75/0.71 0.73/0.70 **/**
116 V3R_2_db 0.75/0.72 0.76/0.72 0.75/0.71 **/**
117 Y3R_1_db 0.69/0.64 0.69/0.65 0.67/0.62 **/**
118 Y3R_2_db 0.73/0.67 0.75/0.67 0.73/0.66 **/**

Note: ** means extremely significant (p ≤ 0.01), * means significant (p ≤ 0.05), - means did not pass the significance
test (p > 0.05). NaN means Not a Number, because mRFDI has a partial negative value, so it is impossible to
calculate the feature of its decibel unit (mRFDI_db).

Table A2. The average value of the corresponding evaluation index of the optimal performance
obtained by repeating 10 times: two-step feature selection was carried out using the radiometric
terrain correction (RTC) and non-RTC (NRTC) datasets, and then 10 regression models and the Optuna
algorithm were used to obtain the corresponding evaluation indicators of optimal performance.

Model R2_RTC R2_NRTC rRMSE_RTC (%) rRMSE_NRTC (%)

BysRidge 0.86334 0.69453 18.11756 22.89453
ARD 0.86213 0.71534 18.31867 22.57860
Lasso 0.85586 0.68453 18.13603 23.37506

ElasticNet 0.84783 0.68124 18.51316 22.56761
Ridge 0.84704 0.64753 18.74611 23.45273

CatBoost 0.82521 0.73013 18.14501 22.43760
XGBoost 0.82202 0.74273 19.01550 21.37638
AdaBoost 0.81934 0.69574 18.37307 22.45734

ET 0.79859 0.70750 18.56786 22.89376
RF 0.78988 0.68545 18.53375 22.45703
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