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Abstract: The past decade has seen remarkable advancements in Earth observation satellite tech-
nologies, leading to an unprecedented level of detail in satellite imagery, with ground resolutions
nearing an impressive 30 cm. This progress has significantly broadened the scope of satellite imagery
utilization across various domains that were traditionally reliant on aerial data. Our ultimate goal is to
leverage this high-resolution satellite imagery to classify land use types and derive soil permeability
maps by attributing permeability values to the different types of classified soil. Specifically, we
aim to develop an object-based classification algorithm using fuzzy logic techniques to describe the
different classes relevant to soil permeability by analyzing different test areas, and once a complete
method has been developed, apply it to the entire image of Pavia. In this study area, a logical scheme
was developed to classify the field classes, cultivated and uncultivated, and distinguish them from
large industrial buildings, which, due to their radiometric similarity, can be classified incorrectly,
especially with uncultivated fields. Validation of the classification results against ground truth data,
produced by an operator manually classifying part of the image, yielded an impressive overall
accuracy of 95.32%.
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1. Introduction

The earth observation (EO) sector has seen notable technological progress in recent
years, especially in the satellite sector, where increasingly higher-resolution images have
been put on the market. Satellite resolutions rapidly went from values lower than one
meter, for example, the SPOT 6 and 7 satellites with a Ground Sample Distance (GSD) of
1.5 m on the ground in the panchromatic image, defined as medium-high resolution. Up
to a GSD of 31 cm, like those of the acquisitions of the WorldView-3 and WorldView-4
satellites, or more generally, acquisitions below one meter always refer to the panchromatic
image, defined as having very high resolution. In addition to the very high resolution,
these products are available with return times, i.e., the possibility of having an image of the
same area of the planet in less than a week in some cases. All these advances have attracted
more and more interest in the development of methodologies for soil classification, more
or less automated, aimed at facilitating many applications, from the creation of maps to
various uses in precision agriculture, monitoring the health of crops, to the observation of
cities and their development. Thanks to the very short revisit times, the monitoring of an
area by applying change detection techniques to the images is increasingly used even in
the most extreme situations, in which, following natural disasters, it can provide support in
estimating the damage and planning the necessary interventions to restore the territory [1].
Our world is changing more and more rapidly, and satellite images have definitively
become a valid tool for promptly observing and monitoring this change. At the same
time, increasingly high-performance classification methodologies have been developed,
from pixel-based analysis to object-based analysis (OBIA), deep learning algorithms, and,
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although computationally more expensive, convolutional neural networks (CNNs) have
become more popular in recent years. The state of the art sees the use of such algorithms
and methods for most applications, not only in the classification of the scene in terms of land
use but also in the previous phases, such as image fusion, segmentation, and registration
of images. These methods, although very effective, must be some more, some less trained
in some way to perform their function for the classification of land use by providing
known image elements, elements already classified that are sometimes not available in
large quantities. In the work presented below, an object-based approach combined with the
use of fuzzy logic is proposed; radiometric and geometric aspects of the objects segmented
in the image are used simultaneously in a logical scheme designed to reproduce what could
be the line of thought of a human observer looking at the image. In this way, the training
phase is eliminated, which, while maintaining the logical descriptive scheme of the class, is
currently replaced by the calibration of the parameters, which, applied to the individual
membership functions, duly combined with each other, define the class of an object. Mainly,
the proposed method has the advantage of exploiting a logical description of the classes,
which, once defined, is not strictly linked to the context analyzed, but precisely because it
is developed on the basis of what could be the considerations of a human observer, it has
greater versatility. In addition to this, you do not need to sacrifice for training, if present,
part of the ground truth; this phase is replaced by a necessary calibration of the parameters
that describe the various classes. However, it must be taken into consideration that this
operation does not require much time, as the geometric parameters can be easily adapted
depending on the resolution of the image available. Radiometrically, the description of
the classes and the main factors involved are the indices and the standard deviation; the
indices already have normalized values and are therefore suitable in contexts like the
one analyzed, while the standard deviation values can be adjusted in various attempts
or by evaluating the correlation with the histograms of the image bands, with images
already classified. The ultimate objective of our work is to obtain a soil permeability map,
attributing permeability values to the identified classes, through a classification method
accurate enough that we need the ground truth only for what is strictly necessary to
validate the results since, if not already available, creating ground truth is a very time-
consuming activity. In this work, a step forward has been made, using a portion of the
Pavia image, for the development of the logical scheme to identify the class of fields
and to test the logical scheme describing the water class developed in previous work to
effectively distinguish it from the shadows in an urban context, a problem well known
in the literature [2]. In both works, the image used is the same, but different areas were
analyzed; specifically, the image was acquired by the WorldView3 satellite [3] in March
2021 over the entire area of the municipality of Pavia, a city located in Italy in the Po Valley.
It has the ability to acquire a panchromatic image at a ground resolution of 30 cm with
a revisit frequency of 4.5 days at 20° off-nadir or less. The raw data are composed of a
panchromatic band with a GSD of 31 cm and eight multispectral bands: Coastal Blue, Blue,
Green, Yellow, Red, Red Edge, Nirl, Nir2, with a GSD of 124 cm. From these, by carrying
out a pansharpening operation based on the Gram-Schmidt orthogonalization [4], using
the ArcGIS Pro software, it was possible to analyze and classify an image with a GSD of
31 cm and an estimation of the spectral information of the eight bands. The developed
algorithm is mainly composed of three phases: segmentation, classification, and refinement;
the result is then compared with the ground truth created specifically in our laboratory by
an operator, who patiently identified and manually classified a good number of objects
before the classification had been performed. The area manually classified to constitute the
ground truth is equal to 975.092,3 square meters, or 15.64% of the analyzed area. The result
obtained satisfied us because, beyond the overall accuracy value achieved, 95.32% is already
very good in itself. Given the heterogeneity of the scene, it makes us think we can proceed
with the classification of the entire image in our possession, keeping the methodology and
parameters used unchanged and obtaining a good result. Tests carried out on other portions
of the image do not reveal any particular limitations related to the method and seem to
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confirm its effectiveness, at least visually, by returning a good classification. However, at
the moment, we do not have the possibility of rigorously showing its effectiveness in terms
of accuracy as we do not have sufficient truth to the ground in those areas.

2. Materials and Methods

The area analyzed is a portion of the image acquired by the WorldView?3 satellite in
March 2021 of the entire municipal area of the city of Pavia. The product purchased from
the Geomatics Laboratory of the University of Pavia includes for the entire area an 8-band
multispectral image with a lower ground resolution, equal to approximately 120 cm for
each pixel, and a panchromatic image, which, in a gray scale, shows the entire area with
a ground resolution of approximately 30 cm, as summarized in Figure 1. In addition to
the panchromatic and multispectral components, the WorldView3 satellite is capable of
acquiring another 8 short-band infrared (SWIR) bands, which have an even lower resolution
of approximately 320 cm on the ground [3]. The SWIR component of the image was not
purchased because we are interested in seeing what can be obtained from a high-resolution
image, and the data resulting from this component have a high but not sufficient spatial
resolution. For this reason, only the panchromatic and multispectral components of the
image of the Pavia area were purchased and used for classification.
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Figure 1. This diagram represents the bands captured by the multispectral sensor of the WorldView3
satellite with the relative wavelength intervals.

The two components, panchromatic and multispectral, were combined by applying
the pansharpening algorithm based on Gram-Schmidt orthogonalization [5]. Within ESRI’s
ArcGIS Pro™ v.3.0.2 software, the details of the technique used by the software are de-
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scribed in this patent [6], obtaining an image with the spectral information of the 8 bands
(Coastal Blue, Blue, Green, Yellow, Red, Red Edge, Nir 1, Nir 2, and the degree of detail of
the panchromatic image) at an almost 30 cm resolution on the ground [4]. Clearly, the result
obtained, distorts the basic multispectral information; various algorithms could have been
explored to enhance the image quality and minimize spectral errors [7]. The achieved level
of detail, even without additional algorithms, is noteworthy. This detail proves crucial for
distinguishing diverse elements within the urban area. However, the advantage of working
on a much more detailed image is that it allows a significantly higher degree of accuracy to
be achieved for classification purposes.

The area analyzed is located slightly east of the historic center of the city, as shown
in Figure 2, and features a modest-sized industrial area and small residential areas; the
rest is made up of agricultural areas and isolated farms. The choice was influenced by
the fact that this area involves various elements, in particular large industrial buildings,
which in past classifications were sometimes erroneously classified as uncultivated fields,
small lakes and waterways, and isolated buildings in the middle of the countryside, all
located in an area adjacent to the residential center (see Figure 3). This proximity allows
us to see if the algorithm and the methodology developed are suitable for dealing with
a mixed context and, therefore, applicable to the entire image without having to modify
the parameters specifically. This occurs through a dedicated segmentation process, using
the multiresolution segmentation algorithm [8], set in a first phase to identify very large
objects, the size of fields, and after having identified them as fields or not, a detailed
segmentation is necessary to continue in image classification. Both in the segmentation
and classification phases, two indices are exploited: the Normalized Difference Vegetation
Index (NDVI) [9] and the Normalized Difference Water Index (NDWTI) [10], which are
very useful for highlighting and, therefore, more easily identifying vegetation and water,
respectively. The result obtained from the classification is ten refined using algorithms
that allow the fusion of adjacent objects if they satisfy certain criteria and algorithms that
allow the classified objects to grow in neighboring pixels under certain conditions, which
are exceptionally effective for improving the edges of objects classified as water. Overall,
the area studied is composed of 64,877,220 pixels and covers an area of 5.8389 square
kilometers. In the area, there are no large watercourses, only small streams and lakes,
which are identifiable during the construction of the ground truth in some cases only
because the trees above them do not yet have fully developed foliage in early spring.
Approximately half of the fields present have crops in an advanced state, while others
have either recently passed the sowing phase or have still been left in an uncultivated state,
depending on the type of harvest. Paradoxically, we will see in the next chapters how some
small wooded areas will be classified as uncultivated fields precisely because the foliage of
the trees is not yet developed and no other vegetation has grown on the ground because it
is covered by dead leaves.

The methodology applied is basically the same as already presented in a previous
article [2] where the approach used for the classification of urban land was exposed.
Focusing mainly on the correct distinction during the classification phase between shadows
and water is a well-known problem in the literature [11-14], during the classification of
urban areas. The main steps have remained unchanged, and in the order, the useful indices
are first calculated, then a first segmentation is carried out to identify and subsequently
classify larger objects such as fields, and a second segmentation to identify and classify
smaller objects, water, and vegetation. Finally, the classified objects are refined to better
define their edges, and what has not yet been classified is attributed to the impermeable
class. Even if some parameters have been slightly adapted during the segmentation phase,
the main feature remains unchanged, namely the creation of a logical scheme that exploits
both the geometric and spectral characteristics of the segmented objects. A scheme is
derived on the basis of what could be the logical processes that a human observer could
generally adopt to distinguish the various elements in the image.
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Figure 2. Pavia is a city in northern Italy, located south of the city of Milan. The area studied in this
work, highlighted in red, is located just outside the city center towards the east.
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Figure 3. The studied area is characterized by a modest industrial area surrounded mainly by land
for agricultural use, except for a small urban area present in the upper right corner of the image and
another just below the industrial area.
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2.1. Index Calculations

In this first phase, the indices that can be useful in the classification phase are added
to the radiometric information; in our case, the only indices that are calculated are NDWI
(Normalized Difference Water Index) [10,15] and NDVI (Normalized Difference Vegetation
Index) [16,17]. These two indices are among the best known in the literature and are often
used in different fields, not necessarily just the classification of water and vegetation [9].

(Band Green — Band Nir 2)

DWI =
NDW (Band_Green + Band_Nir 2)

(1)

(Band Nir 2 — Band Red)

NDVI =
(Band_Nir_2 + Band_Red)

()

These new “bands” were not only used to identify the various classes more easily but
directly in the segmentation phase, where they contributed to better identifying the edges
of objects that could mainly belong to the water and vegetation classes. As indicated in the
formulas above, only the Nir2 band is used in the index calculation because, compared to
the Nirl, it presents higher values, generating higher index values compared to what was
calculated with the Nirl. Compared to the other bands involved in the segmentation, the
indices will have a greater weight as the information that can be extracted depends greatly
on the near-infrared values, both for the identification of water bodies and green areas, for
which the soil permeability values are significantly different from man-made structures.

2.2. Segmentation

Among the various segmentation algorithms present within the eCognition™ v. 10.3
software, we have chosen to use the algorithm called multiresolution segmentation [8]
both for the first phase of identification and classification of fields and for the second phase
of identification and classification of smaller objects. This algorithm proceeds to merge
individual pixels into objects based on mutual similarity at the spectral level; the user
can adjust this similarity by specifying a scale factor that manages the heterogeneity of
the objects; high values of this factor will lead to the identification of larger objects and
therefore more radiometrically heterogeneous objects. The user can indicate the bands to
take into consideration during this process and the different weights for each band. In
addition to this, the objects can be different depending on the shape factor entered by the
user; this value can vary from 0 to 1 and influences how much the shape of objects should
be considered at the expense of the weight of the spectral information.

Similarly, the shape of objects is influenced by a further factor called compactness,
which can also take on values compressed between 0 and 1. Knowing that the interaction
of these factors with each other can be complex to interpret, two diagrams are shown below
in which the values attributed to each factor and their relationship for both classifications
carried out are highlighted. Figure 4 shows the parameters assigned to the various factors
for the first segmentation phase, for which a scale factor of 700 is adopted, suitable for
identifying large objects such as fields, a shape factor of 0.4, and a compactness of 0.8.
The segmentation is carried out on the visible bands (red, blue, and yellow) and on the
calculated NDVI and NDWI indices. Weights equal to 1 for the visible bands and 3 for the
indices are adopted, respectively. Below are the results of the first segmentation phase on a
portion of the image (Figure 5).
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Figure 4. Parameters used for the segmentation of bigger objects—field segmentation (scale
factor = 700).

(b)

Figure 5. In the images above, we see a comparison of the image before segmentation to detect large

objects (a) and after segmentation (b).

After the identification of the fields and their distinction into cultivated and unculti-
vated fields, the rest of the not yet classified image is segmented again using a scale factor
of 50 to identify small objects, such as the roofs of buildings. Shape factor and compactness
have been modified to better adapt to the context in which the next classification will be
performed, assuming the values of 0.3 and 0.5, respectively, recapped in Figure 6, while
the bands and weights used remain unchanged, the result of the segmentation is shown in
Figure 7.

For both segmentations performed, no detailed studies were carried out on the degree
of accuracy achieved in a rigorous way. We limited ourselves to a visual check, estimating
the best parameters capable of returning an identification that fits with the dimensions and
edges of the perceptible elements for a human observer. We considered this step negligible
because the objective of this work now is the creation of a logical scheme that, by combining
the membership functions applied to the different features, leads to a correct classification
and distinction of cultivated and uncultivated fields. To further increase the quality of
the classification, more rigorous quality controls could be applied to the segmentation
obtained [18,19] and consequently calibrate the various factors that influence it to maximize
the quality of the segmentation.
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Figure 6. Parameters used for the classification of smaller objects—urban segmentation (scale
factor = 50).

Figure 7. The image shows a comparison between a portion of an image before (a) and after (b)
segmentation for the identification of objects in the urban context.

2.3. Classification

The determination of belonging to one class rather than another occurs through an
accurate description of the class using a logical combination of the different features that
allow distinguishing the various elements within the image. The algorithm provides two
distinct classifications; the first, designed to identify objects that cover a large area, involves
only the class of fields, which, once identified, are divided into the subclasses cultivated
fields and non-cultivated fields, and addresses the problem of identifying these elements
without them being confused with large industrial building extensions. A second classi-
fication is needed to identify the detailed elements, i.e., water and vegetation, accurately
enough to leave as the only remaining elements only objects that belong to the impermeable
class, i.e., roads and buildings. The fundamental block that, together with others, consti-
tutes the description of a class is the membership function; the various classes involved
are described through a logical combination of the individual membership functions, as
already mentioned. In our case, only increasing, which we will call function A from now
on, or decreasing function B functions are used; the two functions used can be seen in
Figure 8. In this way, it is possible to smooth a threshold in a range of values between 0 and
1, which describes, if we want, in percentage, whether for that specific feature an object
should belong or not to a class. If, however, a certain feature has a value less than the left
border value or greater than the right border value, based on the membership function
used, we will obtain a value of 1, completely belonging to that class, or 0, not belonging to
that class.



Remote Sens. 2024, 16, 2273

90f19

|

| | |

|
Left border

[ | l
Right border Left border Right border

(a) (b)

Figure 8. Membership functions are used to assign fuzzified values to the different features used to
describe the classes; in red is the increasing function (a) and in blue is the decreasing function (b).

The logical scheme, therefore, has the task of combining the results obtained from
the individual membership functions to determine the percentage of membership or not
for a certain class; the scheme clearly varies from class to class. For each class, the logical
scheme is reported in the respective sub-chapters; for the classes involved, an accurate
description was necessary only for the water and fields class, while for the vegetation
class, the classification is quite straightforward using the NDVI index. These schemes were
created following the logical process that a human being probably uses in recognizing those
elements in the image, not only the color but also the geometric aspects.

2.3.1. Field Class

The identification of the fields occurs through the combination of the membership
functions applied to the various features that characterize these objects, as indicated in
the logical diagram below in Figure 9. Carrying out a specific segmentation allows us to
use the geometric characteristics linked to the extension of the objects and their regular
conformation through the border index. Within the eCognitionTM software, the index
border is defined as the Border Index feature that describes how jagged an image object
is; the more jagged it is, the higher the edge index. The smallest rectangle enclosing
the image object is created, and the edge index is calculated as the ratio of the length of
the object’s edge to the smallest enclosing rectangle. Typically, they tend to be regular
objects, and therefore, values close to 1 well describe the regularity of the edges typical
of the worked fields in the Po Valley. The geometric component A is calculated as the
average between the returned value of the membership function A applied to the feature
area, with respective values for the right and left border of 20,000 square meters and
5000 square meters, and the returned value of the membership function B applied to the
index border, with respective values for the right and left border of 2.5 and 1.5. To evaluate
the radiometric homogeneity of objects, which in the final expression we indicate with
the letter B, we apply the membership function B to the internal standard deviation of the
object in the green, panchromatic, and yellow bands, and we calculate the average value.
Portions of urban territory identified in the segmentation phase are likely to fail to meet this
homogeneity requirement because they contain many different elements, such as buildings,
roads, vehicles, trees, and more. Therefore, for these elements, the parameter B will be
a very small value, if not even 0. For urban portions, this requirement is very effective,
while for industrial buildings, it is necessary to introduce, as an additional constraint,
the C parameter of the expression, which takes into account the brightness of the objects,
calculated as the sum of the visible bands (red, green, yellow, and blue).
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Figure 9. Logical scheme with which the membership functions applied to the various features
involved in the identification of fields are combined, with increasing and decreasing membership
functions highlighted in red and blue, respectively.

The membership function B is therefore applied in the range 375-500 of the brightness
values, allowing us to filter the industrial warehouses that typically respect both the
geometric and radiometric homogeneity requirements, respectively, due to their extension
and the roofs typically left free. The last parameter to be inserted, called D, is obtained
by directly applying function B to the average value of the NDWI index calculated on the
object. This is to exclude a priori the bodies of water, which otherwise, despite having
good homogeneity characteristics, may be mistakenly classified as fields. If, for us human
observers, the distinction between the two types of objects is immediate and unequivocal,
the addition of this fourth parameter also makes the distinction between large bodies of
water and fields almost unequivocal for the software. The multiplication of the parameters
B, C, and D is the most important part of the identification, in which it is fundamentally
assumed that if an object is very bright, it cannot be a field regardless of whether it is
homogeneous or not, and similarly, if the NDWI values are very high, the membership
function goes to a value equal to or close to 0 and consequently cancels the product. If,
however, the luminosity is contained within a reasonable range and the possibility that it
is water is excluded, through low values of the NDWI index, we would obtain from this
multiplication a weighted value based on radiometric homogeneity, a condition finally
combined with the geometric requirements.

2.3.2. Cultivated and Uncultivated Fields

With the scheme illustrated previously, almost all fields are effectively identified by
the software, regardless of the value of the NDVI index within the objects and, therefore,
whether they are cultivated or not. The distinction between these two conditions is rather
simple and is made by integrating at this point a threshold on the value of the NDVI
index, where it is assumed that for objects classified as fields, NDVI values higher than
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0.15 determine that the field is cultivated; otherwise, for lower values, the field will be
considered not cultivated. The result is shown below in Figure 10.

Legend:
Fields Fields

I:l Uncultivated Cultivated

@) S (b)

Figure 10. The image shows the area before (a) and after (b) the classification of the fields and their
further distinction into cultivated and uncultivated.

2.3.3. Water Class

The identification of water in the scene is primarily achieved using the NDVI and
NDWTI indices. Objects with sufficiently high NDWI index values are initially considered
potential water objects. However, since shadows cast by buildings can often be erroneously
included, further refinement is needed. This involves leveraging the presence of various
background objects typically found in shadows, such as cars, roads, and other buildings. To
address this issue, the D factor is introduced, which is derived from the standard deviation
values of different bands. This factor considers the phenomenon that objects classified as
water, due to their homogeneity, tend to exhibit lower standard deviation values if they are
sufficiently deep. The objects that fulfill all these criteria are allocated to the water class.
Any remaining objects, if they do not qualify as vegetation, are then assigned to the non-
permeable soil class. The logical diagram presented below in Figure 11 was developed in a
prior study that addressed the challenge of distinguishing between water and shadows in
an urban environment [2]. For a more comprehensive explanation, readers are encouraged
to refer to the aforementioned article.

2.3.4. Vegetation Class

For the identification of areas in which there is the presence of vegetation, even in
urban areas, an excellent tool, which in this specific case has proven to be extremely
effective, is the NDVI index. After segmenting the image, objects for which the NDVI index
values are sufficiently high are classified as vegetation. In detail, the membership function
A was applied to the index in the range 0.1-0.2; substantially, a threshold equal to 0.15
was applied to determine whether an object is vegetation or not. We preferred to use a
membership function because, in this way, we obtain a value between 0 and 1 based on
the NDVI index. Doing so, if an object had a membership value of 0.51 for the vegetation
class and a membership value for the slightly higher water class, it would be attributed
to the water class rather than vegetation, as would happen in the case of a threshold. It is
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necessary to take into consideration that the classification of the image depends greatly
on the period of the year in which it is acquired; in our case, the month of March, not all
plants have fully developed foliage. For this reason, it is possible to correctly classify the
impervious soil part of the roads that have trees on the sides, which would otherwise also
be classified as vegetation.

Mean Area in square meters

NDVIINDEX
0.0 0.02 250 I I 400

Mean
NDWIINDEX Minimum _ A X B

0 I 0.2 value

N

Standard deviation
RED BAND

Tl IT Minimum _ D X C
value
Standard deviation 4}
COASTAL BLUE BAND Water Class

2 2.5

value

Standard deviation
BLUE BAND

J

Figure 11. Logical scheme with which the membership functions applied to the various features
involved in the identification of water are combined; functions A and B are highlighted in red and
blue, respectively.

2.3.5. Impermeable Class

Since the main purpose of my work concerns the classification of images for the
creation of soil permeability maps, no distinction is made between the elements present
in the urban area. Both buildings, building roofs, and asphalt roads are not permeable
surfaces, and therefore, no distinction is made between the two. Having classified all the
other classes present in the image, the objects that have not been assigned to any class at
this point are, therefore, assigned to the impermeable soil class. The distinction between
the various elements that make up this class is in itself a separate problem and, as such,
deserves to be explored in depth with specific research that goes beyond the objective we
have set ourselves for this work.

2.4. Refinement Process

The refinement of the classification obtained is carried out after both segmentations
and classifications, both for the identification of fields and for the identification of detail
elements. For the water class, first all the objects classified in this class that are not in contact
with other objects belonging to the same class are eliminated; this is necessary to remove
a small portion of objects that represent shadow areas from the classification obtained. It
is not always necessary, but given that the size of a stream or a small lake tends to allow
for more objects inside them to be classified as water, this step constitutes a further check
that the possible incorrectly classified shadows proceed in the next steps. Subsequently, the
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merge object fusion function is applied; this function allows you to merge adjacent objects
if certain parameters are respected. For example, if an object classified as water is in contact
with other objects in which a value belonging to the water class is found to be greater than
0.2, the two objects are merged precisely because water tends to be continuous, both in
the form of a river and a lake. From this result, we then pass through another function
present within the software, called Pixel-Based Object Resizing, where, essentially always
exploiting the fact that bodies of water are continuous in nature, the objects belonging to
the water class are grown in adjacent pixels if they have an NDWI index value greater than
0.3. By doing so, as we have seen in a previously published study [2], it is possible to define
the edges of a watercourse very precisely.

At each cycle, the water objects enlarge in the neighboring pixels, and this operation
is repeated until there are no more variations in the objects present in the image, as in the
example area shown in Figure 12. The next phase consists of refining the uncultivated fields
that have been identified. In this case, only the merge object fusion function is used because,
following the detailed segmentation adjacent to the objects classified as uncultivated fields,
long-limbed objects are created; therefore, if these new objects respect certain values, they
are aggregated with the existing objects. It is not necessary to carry out this operation
on cultivated fields because the edges tend to be in contact with objects that will already
be classified as vegetation. Even compared to what happens for the water class, in this
case, the effect of the refinement is more modest; it helps us to better define the edges for
uncultivated fields, as seen in the example below in Figure 13.

Legend:
Uncultivated Cultivated ;
[ Ut [ Gttt N Vegeoion [N v

el

Figure 12. Comparison between the water classified in the scene before (a) and after refinement (b).

Legend:
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[ roiss B Vegetation

(a) (b)

Figure 13. Comparison between an example field before (a) and after refinement (b).
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A small portion of unclassified objects is added in the right field, and in the left field,
a slight addition takes place, which regularizes the border. In some cases, between one
field and another, there may be a canal used for irrigation, and it is probably for this reason
that these parts are not classified, as in this case, they may contain small portions with
vegetation rather than exposing their surface, which is made of concrete and is, therefore,
not classified. In the image shown, this effect extends, probably due to the pansharpening
effect, which for small objects tends to spread the color slightly into the neighboring pixels,
and therefore, a band lateral to the field is not classified. However, we believe the quality
objective has been achieved given the extensive classified area, the results obtained both on
the fields and on the water present in the scene, and the limits that prevent the algorithm
from further improving the classification.

3. Results

Figure 14, shown below, displays the results of the classification, with impermeable
objects shown in red, uncultivated fields in yellow, cultivated fields in light green, water in
blue, and vegetation in green. For comparison purposes, a shapefile was specifically created
within ArcGIS Pro, containing several objects belonging to the impermeable fields, water,
and vegetation classes. These objects were manually identified by a user, who observed
the image and determined the edges of the objects as accurately as possible. During the
comparison phase, cultivated fields were merged into the vegetation class, and individual
pixels belonging to the ground truth were compared with the corresponding pixels in the
classified image. From this comparison, a confusion matrix was derived, summarizing the
achieved accuracy. In the lower part of the image, what immediately catches the eye is
the presence in the ground truth of a small stream of a lake mainly used for agricultural
purposes, which the developed classification algorithm is not able to identify. This is mainly
due to the small size of the objects in that area and the presence of trees, which largely
cover the path of the stream. Although the trees are bare enough to allow the operator to
see the stream and identify it, radiometrically, they reflect enough light in the near-infrared
wavelength to mask it from the algorithm’s eyes. This condition was not present in the
area used for the development of the logical scheme of the water class since it was an
urban environment; therefore, we are not surprised that this error was made, while the
distinction between water and shadows, the objective for which it was developed, is carried
out very well.

The result is that these objects, due to this particular interaction, as the water class
has been described, are not suitable to be part of it and, at the same time, do not have
high enough NDVI index values due to the thin foliage of the trees to be classified as
vegetation. Unfortunately, this ultimately leads to the attribution of the impermeable soil
class to objects, for which it is obvious that this should not be the case. In cases where the
vegetation is sufficiently abundant, the small portions of the river are incorporated into
larger objects classified as cultivated fields or into objects of the vegetation class. However,
it is a less impactful scenario, given our ultimate goal of obtaining a soil permeability map
from the classification result. From the comparison between the results obtained from
the classification by applying the developed algorithm and the ground truth identified
in the study area, a confusion matrix and an accuracy matrix were derived and reported,
respectively, in Tables 1 and 2 below.

In the first table for each column, we see the corresponding class in which the same
pixel was classified. As an example, of the 251,804 ground truth pixels that were cataloged
as water, 60,357 pixels were classified by the software as water class, 59,486 pixels as
vegetation class, and 108,647 pixels as uncultivated fields, while in the second table, the
corresponding accuracies are shown. Ultimately, an overall accuracy of 95.32% and a
Cohen’s kappa coefficient of 0.93 were achieved in the analyzed area.
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Legend:
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Figure 14. In the images above, we see a comparison of the result obtained from the classification of
the study area (a) and the ground truth created manually for validation in the same area (b).

Table 1. Confusion matrix.

User Class\Sample Water Vegetation Uncultivated Fields Impermeable Sum
Water 60,357 0 0 0 60,357
Vegetation 59,486 2,573,163 7990 185,632 2,826,271
Uncultivated Fields 23,314 645 3,238,154 7695 3,269,808
Impermeable 108,647 70,175 11,748 3,799,636 3,990,206
Sum 251,804 2,643,983 3,257,892 3,992,963

Table 2. Accuracy matrix.

Accuracy Water Vegetation Uncultivated Fields Impermeable
Producer 0.2397 0.9732 0.9939 0.9516
User 1 0.9104 0.9903 0.9522
Hellden 0.3867 0.9408 0.9921 0.9519
Short 0.2397 0.8882 0.9844 0.9082
Kappa Per Class 0.2351 0.9629 0.9911 0.9202

4. Discussion

As we have seen, there are difficulties in classifying small watercourses, for which
the presence of tree foliage is a significant problem, due to the acquisition period, which
we remember took place in March 2021. Fortunately, for the applications we are aiming
for, this defect does not have major repercussions. The problem is mainly linked to the
classification of water, which, if present in small-sized elements, is difficult to identify and
is mainly linked to the fact that the image resolution is not sufficient. If we consider that the
“real” data used have 120 cm of resolution on the ground, we realize that those rivers are
only 2/3 pixels wide, and if there are trees, the radiometric data are significantly altered,
considerably complicating correct identification. Furthermore, as mentioned in the belief,
this error in the failure to identify water is due to the fact that the logical scheme developed
to distinguish between water and shadows in an urban context. Therefore, this result can
be seen from two points of view; on the one hand, it highlights the need to improve the
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water class description if there is a need to at least partially identify these small elements.
On the other hand, the effectiveness of what has been developed is confirmed; in the area
studied, there are no shadows, neither in the urban area nor outside it, incorrectly classified
as water, which is a non-negligible result.

More impactful is the incorrect classification of the field adjacent to the small water-
course, which involves the attribution of the impermeable class to a fairly large surface,
highlighted above in Figure 15. In the validation, that particular field was not taken into
consideration; however, we can make some considerations regarding the accuracy obtained,
in particular underscoring that the extension of the fields plays a fundamental role both
in the classification and in the final validation. In the specific case over the entire area,
the greatest classification error occurred precisely in this case, and even if the erroneously
classified area is considerable (39,167.46 m?), compared with the overall extension of the
uncultivated fields present in the classified (2,072,011.59 m?) image, it is reduced to a very
low error percentage of 1.89%. Therefore, it is not considered necessary to modify the
description currently adopted for the identification of cultivated and uncultivated fields to
try to fix this error, which, as demonstrated by the results, has an excellent success rate in
identifying these elements. It must also be considered that there are cases in which the result
obtained is very satisfactory, where the result obtained reflects almost perfectly what the
operator identified in the ground truth. As shown in Figure 16, the parts of non-permeable
soil and those that are permeable in the form of vegetation are almost perfectly identified; in
this case, the software also outlines the roads and edges of the square serving the shed very
well. Therefore, after taking these cases into account, we can state that we are satisfied with
the result obtained from the sole application of the developed algorithm, considering that
errors of a gross nature, such as the incorrect classification of the fields shown in Figure 16,
can always be easily fixed by the user in a review phase of the result obtained. Another
aspect that can certainly be improved is the image creation process through pansharpening;
currently, in the ArcGIS™ software, it is possible to perform pansharpening by applying
the Gram—-Schmidt orthogonalization only on four bands (R, G, B, Nir).

Legend:
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Figure 15. Comparison between the area affected by the classification error shown in the classified
image (a) and in the ground truth (b).
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Legend:
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Figure 16. Comparison Example of an area in which the adopted method gave excellent results:

(a) portion of the raw image; (b) ground truth identified; (c) classification result.

Based on the sensor that acquired the image, the software proposes a different weight
for each band to adjust its contribution to creating a low-resolution panchromatic. These
weights depend on various factors and are available by default for the four bands listed
above. For the other four bands at our disposal—Coastal Blue, Yellow, Red Edge, and Nir
2—the same weights have been adopted, knowing that this necessarily introduces an error
in the final result when these four bands are shown at high resolution. This necessarily
presupposes a recalibration of the parameters involved when the pansharpening technique
is changed or the weights with which to combine the various multispectral bands to
form the low-resolution panchromatic are optimized. The technique used at this stage
of development clearly presupposes the presence of an operator ready to recalibrate the
parameters involved in the description of the classes as the analyzed image changes. The
logical process that links and combines the membership functions between them can be
considered valid, and for the water class, it has been proven valid, where there is only
the need to improve the identification of small watercourses in the case in which they
are partially covered by vegetation. Making the parameter calibration process automatic
would constitute a notable step forward towards the application of this methodology for the
segmentation phase using segmentation procedures already present in the literature [18].
While for the optimization of the values to be attributed to the right and left limits of the
membership functions, for the average values of the bands, it could be interesting to use
auto-threshold algorithms or, alternatively, to statistically analyze the values adopted in
the classification of the image in this work and contextualize them in the overall image
analyzed. Subsequently, test on a new image to see whether, by fixing the parameters a
priori and applying the same correlations to the radiometric aspects of the new image, the
results obtained are good or not. From what emerged from the application of the water
logic scheme, it seems that this operation is not necessary if only the region studied is
changed. It would certainly be interesting to test the defined parameters on a more current
image acquired from the same satellite, and only through a rigorous comparison would
we have confirmation or not of the real degree of dependence on the calibration of the
parameters involved in the proposed method. It must also be taken into consideration
that the classification obtained is absolutely independent of the ground truth, and this
represents an advantage compared to machine and deep learning techniques. Creating
ground truth is very time-consuming, whether you create it manually or extract it using
different methods [20], even more so if part of this information must be used as examples to
train this kind of algorithm. Also, in this case, the algorithms must be trained on the basis
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of the radiometric information of the image, and therefore, the process must be repeated if
the sensor that acquires the image changes.

5. Conclusions

In conclusion, the work carried out allowed us to evaluate the effectiveness of the
description of the water class previously developed in another work on a different area of
the city of Pavia, discovering limitations due to the presence of vegetation but confirming
its effectiveness in distinguishing between water and shadows. Furthermore, the logical
scheme describing the field class has been improved, producing excellent results without
misclassifying any industrial building, which had been our main problem in previous
tests. The distinction between cultivated and uncultivated fields was added later, given the
simplicity with which it is possible to identify them, even if it does not constitute essential
information for the creation of soil permeability maps. We are satisfied with the results
obtained, considering that we are still working to improve the classification result and to
make it less dependent on the region studied, reducing its dependence on the recalibration
of the parameters involved from time to time. I can imagine an improvement in the
classification, in particular, given the critical issues with small watercourses, to further
improve the potential of the methodology adopted in identifying land use. Similarly,
although not fundamental for the creation of soil permeability maps, the distinction of
impervious elements could be evaluated and addressed as a separate problem to distinguish
in detail between the portions of soil representing buildings or roads and further enhance
the ability to classify land use. Ultimately, the proposed methodology allowed us to
achieve an overall accuracy equal to 95.32%, a result that I consider very satisfactory if
we consider that this result takes into consideration the small quantity of water present in
the scene, which, with a success rate of 23.97%, significantly lowers the overall accuracy
achieved on the classification of the entire area. Future developments can certainly concern
an improvement in the phase of the creation of the high-definition multispectral image
through pansharpening. In my opinion, this constitutes the most critical step because we
know for sure that it introduces the Coastal Blue, Yellow, Red Edge, and Nir2 bands, an
error because the weights adopted for the creation of the low-resolution panchromatic,
even if they are an approximation, are not correct. Ideally, I would like to finish developing
an algorithm in Matlab to create the image in a single step through the pansharpening
process that adopts the Gram—Schmidt orthogonalization algorithm to have more control
over the individual factors that influence the result and have a final product in which the
distortion of the original data of the multispectral bands in the final high-resolution image
is minimal. Further progress can be obtained by inserting another step in the refinement
phase, as highlighted in this work, and trying to extract, if possible, from objects classified
as cultivated fields or vegetation any small and partially hidden waterways to improve
further the quality of the result obtained. In the last few years, experiments have been
carried out in various test areas. The one shown in this work is only the latest, and the
results achieved suggest that the methodology adopted can give good results in very
different situations, such as urban, rural, and mixed contexts, and therefore, it is suitable
for carrying out the classification of the entire area of the municipality of Pavia.
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