Telescopic Network of Zhulong for Orbit Determination and Prediction of Space Objects
Abstract
:1. Introduction
- (1)
- GNSS (Global Navigation Satellite System) data: The fundamental measurement data collected by the onboard GNSS receiver are the pseudo-range or carrier phase data [6]. Satellite orbit data can be obtained through single-point positioning or relative positioning methods [7]. Depending on the data used and the data processing methods, the orbit’s accuracy ranges from tens of meters to millimeters [8,9]. GNSS measurement data have high accuracy and can be obtained continuously, round the clock [10]. However, only a limited number of space objects can provide GNSS data.
- (2)
- Radar observation data: Radar systems utilize electromagnetic waves to transmit and receive reflected waves, enabling the determination of the object’s position and motion information [11]. Radar systems possess high accuracy and sensitivity, but their regular operation is typically expensive and not readily available to the public.
- (3)
- Telescope angular data: Telescope angular data are obtained by ground or space telescopes through image processing [12]. When the reflected light or radiation from a space object enters the telescope’s field of view, it can be detected by the sensor, allowing for the extraction of the object’s position information from the captured image. In precision OD and OP, it is usually necessary to extract this positional information and convert it to the desired coordinate system, such as the right ascension/declination or elevation/azimuth coordinate system.
2. Data and Methods
2.1. Observation Data
- (1)
- FoV: 6.5° × 6.5°;
- (2)
- Aperture: 150 mm;
- (3)
- Detection ability: 15 stars (under 20-star sky brightness);
- (4)
- Photometric accuracy: better than 0.3 magnitudes in star brightness.
2.2. CPF Data
- (1)
- Data collection and preprocessing. Register on the website https://spacemapper.cn/ (accessed on 1 June 2024). and download the angular data for selected objects. Download the CPF files for the objects from the ILRS website at the time of the angular data. Perform outlier detection and remove any outliers.
- (2)
- Reference angular data generation. According to the telescopic position and time provided in the angular data file, the method for calculating the reference angular data using the reference orbit is as follows: First, the three-dimensional coordinates obtained from the CPF file are denoted as . Second, based on the telescopic position , the right ascension () of the space object, declination (), and calculation formulas are
- (3)
- Angular data error calculation. For a certain moment, the error of angular data is defined as
2.3. Method of Precision OD and OP
3. Results
4. Discussion
- (1)
- Increasing the number of telescope systems
- (2)
- Improving OP through machine learning
- (3)
- Characterization detection of space objects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Metzger, P.T. Space development and space science together, a historic opportunity. Space Policy 2016, 37, 77–91. [Google Scholar] [CrossRef]
- McDowell, J.C. The Low Earth Orbit Satellite Population and Impacts of the SpaceX Starlink Constellation. Astrophys. J. Lett. 2020, 892, 18. [Google Scholar] [CrossRef]
- Greenbaum, D. Space debris puts exploration at risk. Science 2020, 370, 922. [Google Scholar] [CrossRef] [PubMed]
- Guterman, L. Strike creates space debris. Science 2021, 374, 919. [Google Scholar]
- Marty, J.Y.; Bonnal, C.; Faucher, P.; Francillout, L. Space traffic management as a necessity for future orbital operations a French perspective. Acta Astronaut. 2023, 202, 278–282. [Google Scholar] [CrossRef]
- Mosavi, M.R.; Azad, M.S.; EmamGholipour, I. Position Estimation in Single-Frequency GPS Receivers Using Kalman Filter with Pseudo-Range and Carrier Phase Measurements. Wirel. Pers. Commun. 2013, 72, 2563–2576. [Google Scholar] [CrossRef]
- Paziewski, J.; Fortunato, M.; Mazzoni, A.; Odolinski, R. An analysis of multi-GNSS observations tracked by recent Android smartphones and smartphone-only relative positioning results. Measurement 2021, 175, 16. [Google Scholar] [CrossRef]
- Strugarek, D.; Sośnica, K.; Arnold, D.; Jäggi, A.; Zajdel, R.; Bury, G. Satellite laser ranging to GNSS-based Swarm orbits with handling of systematic errors. GPS Solut. 2022, 26, 16. [Google Scholar] [CrossRef]
- Li, X.X.; Chen, X.; Ge, M.; Schuh, H. Improving multi-GNSS ultra-rapid orbit determination for real-time precise point positioning. J. Geod. 2019, 93, 45–64. [Google Scholar] [CrossRef]
- Van Den Ijssel, J.; Encarnação, J.; Doornbos, E.; Visser, P. Precise science orbits for the Swarm satellite constellation. Adv. Space Res. 2015, 56, 1042–1055. [Google Scholar] [CrossRef]
- Leonard, R.; Williams, I.D. Viability of a circular economy for space debris. Waste Manag. 2023, 155, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Schildknecht, T. Optical surveys for space debris. Astron. Astrophys. Rev. 2007, 14, 41–111. [Google Scholar] [CrossRef]
- San Martin, F.I.; Perez, C.A.; Tapia, J.E.; Virani, S.; Holzinger, M.J. Automatic space object detection on all-sky images from a synoptic survey synthetic telescope array. Adv. Space Res. 2020, 65, 337–350. [Google Scholar] [CrossRef]
- Sang, J.; Bennett, J.C.; Smith, C. Experimental results of debris orbit predictions using sparse tracking data from Mt. Stromlo. Acta Astronaut. 2014, 102, 258–268. [Google Scholar] [CrossRef]
- Lei, X.; Li, Z.; Du, J.; Chen, J.; Liu, C. Identification of uncatalogued LEO space objects by a ground-based EO array. Adv. Space Res. 2021, 67, 350–359. [Google Scholar] [CrossRef]
- Yang, W.; Li, Z.W.; Liu, M.; Liu, D.; Sun, J.; Zhang, Z.; Yu, H. Detection approach for GEO space objects with a wide-field optical telescope array. Opt. Express 2023, 31, 18717–18733. [Google Scholar] [CrossRef]
- Chun, F.K.; Tippets, R.D.; Strong, D.M.; Della-Rose, D.J.; Polsgrove, D.E.; Gresham, K.C.; Reid, J.A.; Christy, C.P.; Korbitz, M.; Gray, J.; et al. A new global array of optical telescopes: The falcon telescope network. Publ. Astron. Soc. Pac. 2018, 130, 095003. [Google Scholar] [CrossRef]
- Shin, B.; Lee, E.; Park, S.Y. Determination of Geostationary Orbits (GEO) Satellite Orbits Using Optical Wide-Field Patrol Network (OWL-Net) Data. J. Astron. Space Sci. 2019, 36, 169–180. [Google Scholar] [CrossRef]
- Luo, H.; Zheng, J.H.; Wang, W.; Cao, J.J.; Zhu, J.; Chen, G.P.; Zhang, Y.S.; Liu, C.S.; Mao, Y.D. FocusGEO II. A telescope with imaging mode based on image overlay for debris at Geosynchronous Earth Orbit. Adv. Space Res. 2022, 69, 2618–2628. [Google Scholar] [CrossRef]
- Hossein, S.H.; Acernese, M.; Cardona, T.; Cialone, G.; Mariani, L.; Marini, V.; Marzioli, P.; Parisi, L.; Piergentili, F.; Santoni, F. Sapienza Space debris Observatory Network (SSON): A high coverage infrastructure for space debris monitoring. J. Space Saf. Eng. 2020, 7, 30–37. [Google Scholar] [CrossRef]
- Šilha, J.; Krajčovič, S.; Zigo, M.; Tóth, J.; Žilková, D.; Zigo, P.; Kornoš, L.; Šimon, J.; Schildknecht, T.; Cordelli, E.; et al. Space debris observations with the Slovak AGO70 telescope: Astrometry and light curves. Adv. Space Res. 2020, 65, 2018–2035. [Google Scholar] [CrossRef]
- Guo, X.; Gao, P.; Shen, M.; Yang, D.; Yu, H.; Liu, T.; Li, J.; Zhao, Y. Introduction to APOSOS project: 15 cm aperture elec-tro-optical telescopes to track space objects. Adv. Space Res. 2020, 65, 1990–2002. [Google Scholar] [CrossRef]
- Chen, J.; Sang, J.; Li, Z.; Liu, C. A Case Study on the Effect of Atmospheric Density Calibration on Orbit Predictions with Sparse Angular Data. Remote Sens. 2023, 15, 3128. [Google Scholar] [CrossRef]
- Abdelaziz, A.M.; Ibrahim, M.; Liang, Z.; Dong, X.; Tealib, S.K. Orbit Predictions for Space Object Tracked by Ground-Based Optical and SLR Stations. Remote Sens. 2022, 14, 13. [Google Scholar] [CrossRef]
- Lee, E.; Park, S.Y.; Hwang, H.; Choi, J.; Cho, S.; Jo, J.H. Initial orbit association and long-term orbit prediction for low earth space objects using optical tracking data. Acta Astronaut. 2020, 176, 247–261. [Google Scholar] [CrossRef]
- Du, J.; Chen, j.; Li, B.; Sang, J. Tentative design of SBSS constellations for LEO debris catalog maintenance. Acta Astronaut. 2019, 155, 379–388. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Zhang, C. Random Star Recognition Algorithm Based on Image Total Station and Its Application to Astronomical Positioning. J. Surv. Eng. 2022, 148, 7. [Google Scholar] [CrossRef]
- Pearlman, M.R.; Noll, C.E.; Pavlis, E.C.; Lemoine, F.G.; Combrink, L.; Degnan, J.J.; Kirchner, G.; Schreiber, U. The ILRS: Approaching 20 years and planning for the future. J. Geod. 2019, 93, 2161–2180. [Google Scholar] [CrossRef]
- Noll, C.E.; Ricklefs, R.; Horvath, J.; Mueller, H.; Schwatke, C.; Torrence, M. Information resources supporting scientific research for the international laser ranging service. J. Geod. 2019, 93, 2211–2225. [Google Scholar] [CrossRef]
- Najder, J.; Sosnica, K. Quality of Orbit Predictions for Satellites Tracked by SLR Stations. Remote Sens. 2021, 13, 20. [Google Scholar] [CrossRef]
- Steindorfer, M.A.; Kirchner, G.; Koidl, F.; Wang, P.; Jilete, B.; Flohrer, T. Daylight space debris laser ranging. Nat. Commun. 2020, 11, 6. [Google Scholar] [CrossRef]
- Tang, G.S.; Cao, J.; Liu, S.; Chen, G.; Man, H.; Zhang, X.; Shi, S.; Sun, J.; Li, Y.; Calabia, A. APOD mission status and preliminary results. Sci. China-Earth Sci. 2020, 63, 257–266. [Google Scholar] [CrossRef]
- Luceri, V.; Pirri, M.; Rodríguez, J.; Appleby, G.; Pavlis, E.C.; Müller, H. Systematic errors in SLR data and their impact on the ILRS products. J. Geod. 2019, 93, 2357–2366. [Google Scholar] [CrossRef]
- Montenbruck, O.; Gill, E.; Lutze, F. Satellite orbits: Models, methods, and applications. Appl. Mech. Rev. 2002, 55, B27–B28. [Google Scholar] [CrossRef]
- Picone, J.M.; Hedin, A.E.; Drob, D.P.; Aikin, A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. 2002, 107, SIA 15-1–SIA 15-16. [Google Scholar] [CrossRef]
- Bowman, B.R.; Kent Tobiska, W.; Marcos, F.A.; Valladares, C. The JB2006 empirical thermospheric density model. J. Atmos. Sol. Terr. Phys. 2008, 70, 774–793. [Google Scholar] [CrossRef]
- Anugu, N.; Amorim, A.; Gordo, P.; Eisenhauer, F.; Pfuhl, O.; Haug, M.; Wieprecht, E.; Wiezorrek, E.; Lima, J.; Perrin, G. Methods for multiple-telescope beam imaging and guiding in the near-infrared. Mon. Not. R. Astron. Soc. 2018, 476, 459–469. [Google Scholar] [CrossRef]
- Wurman, P.R.; Stone, P.; Spranger, M. Improving artificial intelligence with games. Science 2023, 381, 147–148. [Google Scholar] [CrossRef]
- Peng, H.; Bai, X. Machine Learning Approach to Improve Satellite Orbit Prediction Accuracy Using Publicly Available Data. J. Astronaut. Sci. 2020, 67, 762–793. [Google Scholar] [CrossRef]
- Li, B.; Huang, J.; Feng, Y.; Wang, F.; Sang, J. A Machine Learning-Based Approach for Improved Orbit Predictions of LEO Space Debris with Sparse Tracking Data from a Single Station. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 4253–4268. [Google Scholar] [CrossRef]
- Yao, Y.; Zhu, J.; Liu, Q.; Lu, Y.; Xu, X. An Adaptive Space Target Detection Algorithm. IEEE Geosci. Remote Sens. Lett. 2022, 19, 5. [Google Scholar] [CrossRef]
NORAD ID | Name | Size/m | Period | Inclination/deg | Apogee/km | Perigee/km | File Count | Start Date | End Date |
---|---|---|---|---|---|---|---|---|---|
41240 | JASON 3 | 1 × 1 × 3.7 | 112.42 | 66.04 | 1344 | 1332 | 16 | June 27th | October 5th |
46984 | S6 MICHAEL FREILICH | 5.13 × 4.17 × 2.34 | 112.42 | 66.04 | 1344 | 1332 | 14 | June 17th | October 7th |
1328 | EXPLORER 27 | ~2.3 × 2.3 | 107.56 | 41.18 | 1303 | 924 | 8 | July 23rd | September 30th |
NORAD ID | Stn6002 | Stn 5001 | File Count |
---|---|---|---|
41240 | 11 5.2 | 10 3.4 | 16 |
46984 | 8 3.4 | -- | 14 |
1328 | 10 2.6 | -- | 8 |
All | 10 3.4 | 38 |
NORAD ID | OD Start Date in 2023 | OD Duration | files Number | OD Fitting Errors/” | OD Errors | 1-Day OP Errors |
---|---|---|---|---|---|---|
41240 | Jul. 3 | 2 | 2 | 2 | 1703 | 1842 |
Jul. 3 | 5 | 3 | 2 | 312 | 352 | |
Jul. 3 | 6 | 4 | 2 | 731 | 742 | |
Jul. 3 | 10 | 6 | 3 | 106 | 212 | |
Jul. 3 | 11 | 7 | 3 | 178 | 314 | |
Jul. 7 | 2 | 2 | 2 | 904 | 1086 | |
Jul. 12 | 2 | 3 | 2 | 201 | 206 | |
Sep. 25 | 3 | 2 | 2 | 666 | 689 | |
Oct. 4 | 1 | 3 | 2 | 203 | 275 | |
46984 | Jun. 16 | 10 | 2 | 1 | 120 | 129 |
Jul. 3 | 1 | 3 | 2 | 57 | 218 | |
Jul. 3 | 11 | 4 | 2 | 348 | 480 | |
Jul. 25 | 1 | 2 | 1 | 811 | 1044 | |
Jul. 25 | 2 | 4 | 2 | 583 | 616 | |
Sep. 26 | 2 | 3 | 2 | 284 | 288 | |
Sep. 26 | 11 | 4 | 2 | 92 | 42 | |
1328 | Jul. 23 | 3 | 2 | 2 | 318 | 395 |
Jul. 25 | 2 | 2 | 2 | 502 | 503 | |
Sep. 25 | 2 | 3 | 2 | 534 | 549 | |
Sep. 25 | 3 | 4 | 2 | 107 | 109 | |
Sep. 25 | 4 | 5 | 2 | 177 | 179 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, X.; Lao, Z.; Liu, L.; Chen, J.; Wang, L.; Jiang, S.; Li, M. Telescopic Network of Zhulong for Orbit Determination and Prediction of Space Objects. Remote Sens. 2024, 16, 2282. https://doi.org/10.3390/rs16132282
Lei X, Lao Z, Liu L, Chen J, Wang L, Jiang S, Li M. Telescopic Network of Zhulong for Orbit Determination and Prediction of Space Objects. Remote Sensing. 2024; 16(13):2282. https://doi.org/10.3390/rs16132282
Chicago/Turabian StyleLei, Xiangxu, Zhendi Lao, Lei Liu, Junyu Chen, Luyuan Wang, Shuai Jiang, and Min Li. 2024. "Telescopic Network of Zhulong for Orbit Determination and Prediction of Space Objects" Remote Sensing 16, no. 13: 2282. https://doi.org/10.3390/rs16132282
APA StyleLei, X., Lao, Z., Liu, L., Chen, J., Wang, L., Jiang, S., & Li, M. (2024). Telescopic Network of Zhulong for Orbit Determination and Prediction of Space Objects. Remote Sensing, 16(13), 2282. https://doi.org/10.3390/rs16132282