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Abstract: The increasing proliferation of space debris, intermittent space incidents, and the rapid
emergence of massive LEO satellite constellations pose significant threats to satellites in orbit. Ground-
based optical observations play a crucial role in space surveillance and space situational awareness
(SSA). The Zhulong telescopic observation network stands as a pivotal resource in the realm of space
object tracking and prediction. This publicly available network plays a critical role in furnishing
essential data for accurately delineating and forecasting the orbit of space objects in Earth orbit.
Comprising a sophisticated array of hardware components including precise telescopes, optical
sensors, and image sensors, the Zhulong network synergistically collaborates to achieve unparalleled
levels of precision in tracking and observing space objects. Central to the network’s efficacy is its
ability to extract positional information, referred to as angular data, from consecutive images. These
angular data serve as the cornerstone for precise orbit determination and prediction. In this study,
the CPF (Consolidated Prediction Format) orbit serves as the reference standard against which the
accuracy of the angular data is evaluated. The findings reveal that the angular data error of the
Zhulong network remains consistently below 3 arcseconds, attesting to its remarkable precision.
Moreover, through the accumulation of angular data over time, coupled with the utilization of
numerical integration and least squares methods, the Zhulong network facilitates highly accurate
orbit determination and prediction for space objects. These methodologies leverage the wealth of data
collected by the network to extrapolate trajectories with unprecedented accuracy, offering invaluable
insights into the behavior and movement of celestial bodies. The results presented herein underscore
the immense potential of electric optic telescopes in the realm of space surveillance. By harnessing
the capabilities of the Zhulong network, researchers and astronomers can gain deeper insights into
the dynamics of space objects, thereby advancing our understanding of the cosmos. Ultimately, the
Zhulong telescopic observation network emerges as a pioneering tool in the quest to unravel the
mysteries of the universe.

Keywords: space object; telescope; angle measurement; orbit determination; orbit prediction

1. Introduction

The field of space exploration has experienced rapid growth in recent years, with an
increasing number of satellites and other space objects being launched into orbit [1,2]. This
surge in satellite launches has led to a proliferation of space debris objects orbiting Earth,
heightening the risk of collisions for both active and passive spacecraft operating in the low
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Earth orbit (LEO) region [3,4]. The precise orbit determination (OD) and orbit prediction
(OP) of space objects have become crucial for collision avoidance, space debris mitigation,
and efficient spacecraft operations [5].

Before conducting precise OD and OP of space objects, it is necessary to acquire space
object orbit measurement data, which primarily consist of the following:

(1) GNSS (Global Navigation Satellite System) data: The fundamental measurement
data collected by the onboard GNSS receiver are the pseudo-range or carrier phase
data [6]. Satellite orbit data can be obtained through single-point positioning or
relative positioning methods [7]. Depending on the data used and the data processing
methods, the orbit’s accuracy ranges from tens of meters to millimeters [8,9]. GNSS
measurement data have high accuracy and can be obtained continuously, round the
clock [10]. However, only a limited number of space objects can provide GNSS data.

(2) Radar observation data: Radar systems utilize electromagnetic waves to transmit
and receive reflected waves, enabling the determination of the object’s position and
motion information [11]. Radar systems possess high accuracy and sensitivity, but
their regular operation is typically expensive and not readily available to the public.

(3) Telescope angular data: Telescope angular data are obtained by ground or space
telescopes through image processing [12]. When the reflected light or radiation from a
space object enters the telescope’s field of view, it can be detected by the sensor, allow-
ing for the extraction of the object’s position information from the captured image. In
precision OD and OP, it is usually necessary to extract this positional information and
convert it to the desired coordinate system, such as the right ascension/declination or
elevation/azimuth coordinate system.

Angle data are an important type of measurement data for precise OD and OP of space
objects [13]. The accuracy of angle data is related to image resolution and other factors,
typically measured in arcseconds. For instance, at a distance of 1000 km from the telescope,
an arcsecond corresponds to approximately 5 m. For example, the angular data obtained
by the optical telescope at Mount Stromlo in Australia have an error of less than 1.5 arcsec-
onds [14]. There are also some similar small optical telescopes, such as Changchun LEO
EA [15], Changchun GEO EA [16], Falcon [17], OWL-Net [18], FocusGEO [19], SSON [20],
AGO70 [21], and APOSOS [22]. Observation using telescopes requires that the space object
be illuminated by the sun. The observation is limited by various factors, including weather
conditions, the relative position of the space object and the observation platform, the size
of the object, and the performance of the telescope. Most angular data for LEO are sparse,
with sparsity manifested in two aspects: firstly, the duration of angular data is less than
1% of the orbital period, and the duration of angular data is related to the field of view
(FoV) of the telescope, its working mode (tracking, scanning), and space object altitude;
secondly, the time interval between two angular arcs is usually large. For example, a study
of the angular arc data of 3388 space objects from a telescope in Changchun over a month
showed that the average time interval between two angular arc data for the same object was
approximately 3 days [23]. Due to limited angular arc data, the process of determining the
orbit of a space object often cannot accurately estimate empirical acceleration and struggles
to estimate ballistic coefficients. As a result, it absorbs atmospheric mass density model
errors. This results in errors of several kilometers when predicting the orbit of the LEO
objects for several days with limited angular arc data [15,24,25].

The Zhulong telescopic observation network provides a cost-effective and efficient
method for acquiring orbital measurement data of space objects, enabling space scientists
globally to share and utilize these data. The network’s angular data enable more accurate
prediction of the orbits of space objects, which is crucial for avoiding space collisions,
assessing the impact of space debris, and studying astrophysics [26].

The following texts introduce the fundamental information about the Zhulong obser-
vation network. Then, the accuracy of angular arc data is assessed using CPF (Consolidated
Prediction Format) orbital data. Finally, accurate OD and OP measurements are conducted
using angular measurement data. The conclusion is at the end of the article.
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2. Data and Methods
2.1. Observation Data

The Zhulong observation network is an integrated system of 15 cm telescopes, consist-
ing of more than 9 telescope systems (Figure 1). It has been working steadily since February
2023. The telescope uses a camera and processor integration method to achieve remote
control of the filming process, unattended operation, and automatic management of the
entire work process based on environmental status information provided by meteorological
sensors. This includes dome opening and closing, object search tracking, and recognition
positioning. The design parameters are as follows:

(1) FoV: 6.5◦ × 6.5◦;
(2) Aperture: 150 mm;
(3) Detection ability: 15 stars (under 20-star sky brightness);
(4) Photometric accuracy: better than 0.3 magnitudes in star brightness.
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Figure 1. A telescope observation system in Zhulong.

Under suitable observation conditions, LEO space objects can be tracked at a rate of
31 to 201 objects per day, with a sampling frequency of approximately 1 Hz and an average
arc length of about 86 s.

The direct data obtained through the telescope system are images, and continuous im-
age information can be obtained through astronomical positioning technology to generate
angle measurement data. Astronomical positioning refers to the process of providing a
set of space object observation images, along with information about the observation time
epoch and equipment pointing. It involves using star position estimation to determine
the right ascension/declination or pitch/yaw of the celestial object at the moment of ob-
servation, thus forming a time series of angle measurements for the celestial object [27].
The core of astronomical positioning lies in how to correctly identify stars in the image
and determine their location information, also known as star identification. Once the
star identification is completed, the right ascension/declination of the space object can be
determined using the right ascension/declination of the stars. It should be noted that the
accuracy of the determined space object angle data ultimately depends on factors such as
the accuracy of the image object’s centroid position, the number and distribution of stars,
the field of view, and the aspect ratio of the charge-coupled device (CCD) camera. The
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website not only provides image data for monitoring space objects but also provides their
angle data.

2.2. CPF Data

Various sources of errors in telescopes, such as optical distortion, instrumental noise,
and atmospheric turbulence, can affect the accuracy of angular data. This section will
aggregate observation files spanning multiple days for three celestial bodies. It will utilize
precise CPF orbits as reference orbits. These orbits will be compared with angular data to
quantify differences. Subsequently, an analysis of angular data accuracy will be conducted.

Three space objects have been chosen, and their NORAD (North American Aerospace
Defense Command) numbers, orbital information, and names are provided in Table 1. The
table presents the calculated orbital period, inclination, perigee height, and apogee height
based on the data from October 2023. Please note that the orbital period is measured in
minutes, the inclination is measured in degrees, and the perigee height and apogee height
are measured in kilometers, with all data dates falling within 2023.

Table 1. Selected space object information.

NORAD
ID Name Size/m Period Inclina-

tion/deg
Apo-

gee/km
Peri-

gee/km
File

Count Start Date End Date

41240 JASON 3 1 × 1 × 3.7 112.42 66.04 1344 1332 16 June 27th October 5th

46984 S6 MICHAEL
FREILICH

5.13 × 4.17
× 2.34 112.42 66.04 1344 1332 14 June 17th October 7th

1328 EXPLORER 27 ~2.3 × 2.3 107.56 41.18 1303 924 8 July 23rd September 30th

To evaluate the accuracy of the angular measurements for the three chosen space
objects, 38 sets of angular arc files from mid-June to early October 2023 were collected. The
reference orbit used is ephemeris files in CPF. CPF serves as a predictive format offered by
the International Laser Ranging Service (ILRS), facilitating the dissemination of precise orbit
prediction data concerning more than 100 SLR satellites. Its purpose extends to furnishing
guidance for satellite laser ranging operations [21]. Each CPF file contains the satellite’s
position information at regular time intervals over several days, usually in the form of x, y,
and z coordinates in a geocentric coordinate system. Currently, more than 30 institutions
provide CPF for various satellites [22]. CPF files are usually created using satellite laser
ranging data, and their accuracy is affected by factors such as the distribution and precision
of the data, the satellite orbit altitude, the geometric characteristics of the satellite, and the
precise orbit determination strategy used for the laser ranging data [28–30]. Typically, the
accuracy of the CPF is considered to be within several meters [31–33]. The format of CPF
varies for different satellites but generally includes three parts: a header, data records, and
end-of-file identification. The orbits of the three selected space objects have a precision of
approximately 2 m, which is adequate for evaluating the accuracy of angular data with an
objected precision of 3 arc seconds.

The method for analyzing the accuracy of angular data is as follows:

(1) Data collection and preprocessing. Register on the website https://spacemapper.
cn/ (accessed on 1 June 2024). and download the angular data for selected objects.
Download the CPF files for the objects from the ILRS website at the time of the angular
data. Perform outlier detection and remove any outliers.

(2) Reference angular data generation. According to the telescopic position and time
provided in the angular data file, the method for calculating the reference angular
data using the reference orbit is as follows: First, the three-dimensional coordinates

obtained from the CPF file are denoted as
⇀
r t =

xt
yt
zt

. Second, based on the telescopic

https://spacemapper.cn/
https://spacemapper.cn/
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position
⇀
Rt =

Xt
Yt
Zt

, the right ascension (∅r) of the space object, declination (δr), and

calculation formulas are
∅r = arctan(∆Yt/∆Xt) (1)

δr = arcsin(∆Zt/ρt) (2)

where
∆Xt = xt−∆t − Xt
∆Yt = yt−∆t − Yt
∆Zt = zt−∆t − Zt

ρt =

√
∆Xt

2 + ∆Yt
2 + ∆Zt

2

∼
ρ t =

√
(xt − Xt)

2 + (yt − Yt)
2 + (zt − Zt)

2

Among them, ∅r represents the reference right ascension, and δr represents the refer-
ence declination. c refers to the speed of light. Note that xt−∆t, yt−∆t, and zt−∆t represent
the position of a space object, accounting for the propagation speed of photons, and are
calculated using Lagrange interpolation polynomials. In addition, all data’s time and
coordinate systems need to be consistent.

(3) Angular data error calculation. For a certain moment, the error of angular data is
defined as

∆∅ = ∅o − ∅r (3)

∆δ = δo − δr (4)

e =
√
(∅o −∅r)

2 + (δo − δr)
2 (5)

where ∅o refers to the observed right ascension and δo refers to the observed decli-
nation. The error e is calculated using Equation (5). The standard deviation S of an
angular data file with n sets is given by Equation (6).

S =
√

∑n
i=1 (ei − e)2/(n − 1) (6)

where ei refers to the error of each angular data point and e is its mean value.

Figure 2 presents the error of angular data collected at 21:38:00 on 28 September 2023.
The angular data in this file start at 21:38:00 on 28 September 2023, with approximately one
data point per second for approximately 3 min.
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The accuracy of angular data is usually associated with the characteristics of the
telescope positions and space objects. Table 2 presents error statistics for 2 stations and
3 space objects. The results show that the accuracy of angular data for the three space objects
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and two telescope stations is relatively similar, with an average value of approximately
10 arcseconds and a standard deviation of around 3 arcseconds. In addition, the average
error in the right ascension for all files is approximately 2 arcseconds, with a standard
deviation of about 7.3 arcseconds. The average error in declination is approximately
−3 arcseconds, with a standard deviation of about 3.8 arcseconds.

Table 2. Error statistics for 2 stations.

NORAD ID Stn6002 Stn 5001 File Count

41240 e =11
S =5.2

e =10
S =3.4 16

46984 e =8
S =3.4 -- 14

1328 e =10
S =2.6 -- 8

All e = 9
S = 3.1

e =10
S =3.4 38

-- indicates no data.

2.3. Method of Precision OD and OP

Precise OD can be conducted using continuous multi-day angular arc data. Orbit
determination utilizes the least squares estimation method, which calculates an orbit that
minimizes the sum of squared residuals between theoretical and actual observations. Set
the quantity of the state.

x = {r, v, p}T (7)

where r and v represent the three-dimensional position and velocity vectors of the orbit,
respectively. p is the parameter vector of the force model to be estimated, typically including
drag coefficients, pressure of light, etc. Assuming there is a functional relationship between
the measured angular data (y) and the initial orbit (x0),

y = f (x0) + n (8)

where n is the measurement noise. The OD process requires minimizing the weighted sum
of squares of the difference between the actual observed value y and the value calculated
using the mathematical and physical model f (x0), under the conditions of given angular
data y, statistical characteristics of the mathematical model f , and noise n.

(y − f (x0))
T P(y − f (x0)) = min (9)

Here, P is the weight matrix and the estimated value of x0, denoted as x̂0, is

x̂0 = x0 + ∆x̂0 (10)

The equation constructed using the least squares principle is

(ATPA) ∆x̂0 = ATP(y − f (x0)) (11)

where A =
(

∂ f
∂x

)∣∣∣
x=x0

is the partial derivative matrix. The solution of the previous equa-

tion is
∆x̂0 = (ATPA)−1ATP(y − f (x0)) (12)

The process described above is a continuous iterative process. Initially, x̂0 is solved and
used as an approximation of the initial state quantity. The process is then repeated until the
variation of the solved x̂0 satisfies the condition of convergence, typically when the number
of position corrections in the two calculations is less than 1 mm. To obtain an accurate
orbit, a set of angular measurements with minimal error is necessary, along with a complete
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mathematical model f (x0). Commonly used mathematical models include the Cowell
numerical integration model and the Gauss–Jackson model [34]. All subsequent examples
use the Cowell model. The force models used in OD and OP include the gravity field
JGM-3 50 × 50, third-body gravity, atmospheric mass density model NRLMSISE-00 [35]
and JB2008 [36] for atmospheric drag, and solar radiation pressure.

The OP can be described as { dx
dt = f (x, t)
x(t0) = x0

(13)

where x0 and f have been obtained in the OD. The orbit at a given moment is

x(t) = x(t0, x0; t) (14)

The form of the OD and OP results is similar to that of the CPF file, i.e., the position
and velocity of the space object are given at certain time intervals.

3. Results

After obtaining the OD and OP results, two forms of accuracy assessment can be
conducted. One is called internal consistency, which calculates the differences between
the determined orbits and the angle observation. The other is external consistency, which
compares the differences between the determined orbits and external data, in this case, the
CPF orbits. In this section, an analysis of the internal and external consistency of OD’s
angular measurements for selected space objects, along with the external consistency of OP,
will be presented.

The example in Figure 3 utilizes the residuals (differences between observations and
orbital determinations) of OD for 41,240 space objects from 4 to 8 July 2023. The example
includes two files of angular data from Telescope Stn 5001. One file was recorded at
14:00 UTC on the 4th, and the other was recorded at 13:00 UTC on the 7th, with a time
interval of approximately 3 days. The standard deviation of the declination and right
ascension differences over the 3 days was calculated to be 1.6.
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Figures 4–7 present the results of precise OD and OP for three space objects using
angular data over some time, compared to reference orbits. The results include along-track,
radial, and across-track errors and spatial distance differences. The horizontal axis in the
figures describes the time in days, with 0 representing the start of the prediction period,
negative values corresponding to OD, and positive values corresponding to OP. From the
results in the figures, it can be seen that OD can be achieved within a time range of 3 days
to 10 days. The comparison of the OD results with the reference orbits shows an error
within 800 m. The OP error tends to increase exponentially with time, and this trend is
related to many factors, such as the OD error and the force model error. During the OD and
OP, the NRLMSISE-00 and JB2008 were utilized. As the orbital altitudes of the three space
objects surpassed 1000 km, coupled with the sparsity of angular data, the utilization of
both density models in conducting precise OD and OP resulted in similar error outcomes.
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Table 3 provides results of the precise OD and OP for the three space objects over
three months. The table includes information for each example case, including internal
consistency information that compares the OD results with the measured angular data
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and differences in the OD and one-day OP compared to the reference orbits. The “No. of
observation files” in the table refers to the number of angular data files used in the OD
process. Each angular data file contains a complete observation arc, with each case in the
table having a data period of approximately 3 min. The results in the table show that at least
two angular data files are required during the OD period. The internal consistency errors of
OD are all within 3 arcseconds, but the external consistency errors corresponding to similar
internal consistency errors vary greatly, with OD errors ranging from tens of meters to over
two kilometers. The correlation coefficients of OD errors concerning OP error, the number
of angular data files, and OD duration are 0.986, −0.44, and −0.36, respectively.

Table 3. Statistics of outlier coincidence errors in orbit determination prediction.

NORAD
ID

OD Start
Date in 2023

OD
Duration

files
Number

OD Fitting
Errors/”

OD
Errors

1-Day OP
Errors

41240

Jul. 3 2 2 2 1703 1842
Jul. 3 5 3 2 312 352
Jul. 3 6 4 2 731 742
Jul. 3 10 6 3 106 212
Jul. 3 11 7 3 178 314
Jul. 7 2 2 2 904 1086

Jul. 12 2 3 2 201 206
Sep. 25 3 2 2 666 689
Oct. 4 1 3 2 203 275

46984

Jun. 16 10 2 1 120 129
Jul. 3 1 3 2 57 218
Jul. 3 11 4 2 348 480

Jul. 25 1 2 1 811 1044
Jul. 25 2 4 2 583 616
Sep. 26 2 3 2 284 288
Sep. 26 11 4 2 92 42

1328

Jul. 23 3 2 2 318 395
Jul. 25 2 2 2 502 503
Sep. 25 2 3 2 534 549
Sep. 25 3 4 2 107 109
Sep. 25 4 5 2 177 179

4. Discussion

(1) Increasing the number of telescope systems

The Zhulong telescopic network is planned to exceed nine telescope systems to obtain
more measurement data. If these devices are installed globally, it is possible to obtain con-
tinuous observation data for space objects. Multiple telescope systems can simultaneously
observe the same space object, enabling the acquisition of more precise data and enabling
more accurate applications, such as improving orbit accuracy and establishing space object
models [37]. These data will help us to better understand the movement trajectory and
possible influence of space objects, making an important contribution to the development
of the field of space science.

(2) Improving OP through machine learning

With the rapid development of Artificial Intelligence (AI) and machine learning (ML)
technology [38], some research results have been achieved based on historical orbital
measurement data, using ML to enhance OP accuracy. However, there is relatively little
research on improving the OP of ML based on sparse angle data due to the scarcity of
angular data obtained by telescopes. Future research can explore the data conditions (such
as accuracy and distribution) under which machine learning can effectively enhance the
accuracy of traditional OD and OP. Through in-depth research, valuable insights may
be discovered, such as the optimal data conditions for selecting the most suitable ML
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method to enhance OP or the data distribution conditions under which ML can effectively
improve OP accuracy. Such research will provide us with a deeper understanding of how
to effectively utilize sparse data for ML to further improve the accuracy of OP. This will
provide an important reference for future calculations of space object orbits and help us
better understand the movement trajectory and possible influence of space objects. In
comparing the use of machine learning for OD and OP, we have found that the current
literature primarily focuses on enhancing the accuracy of OP. Three additional references
have been added to the reference list [23,39,40]. Specifically, the first article utilizes Two-
Line Element (TLE) data, while the second relies on simulated datasets.

(3) Characterization detection of space objects

Using telescopes, detailed information about space objects can be observed and col-
lected, including their position, velocity, shape, size, and composition. This information is
crucial for understanding the characteristics of space objects, their trajectory of movement,
and their potential influence. The Zhulong telescopic network can also be used for the
characterization detection of space objects. For instance, spectral analysis can help us
understand the composition of an object. Brightness changes [41] can provide insights into
the object’s active state and changes. Measuring position and velocity can help us gain
insight into the object’s orbit and movement. In the future, with continued technological
advancements, scientists anticipate the production of larger and more precise telescopes.
These advanced instruments will offer enhanced insights into space objects, providing
more detailed information. Additionally, with the advancement in data analysis technology
and computer science, these data can be processed and analyzed more effectively to gain a
deeper understanding of the mysteries of the universe.

5. Conclusions

Telescope network data on the angular positions of space objects are a crucial type of
orbital measurement data. This article provides orbital measurement data from the Zhulong
telescopic network, which can be publicly accessed by users worldwide. These data are of
great significance for the study of the orbits and other characteristics of space objects. Over
three months, we analyzed the angular data of three typical space objects and conducted
OD and OP calculations. The angular data accuracy analysis results show that the angular
data errors for the selected period of the space objects are less than 3 arcseconds. The precise
OD and OP results show that the internal consistency error of the orbit determination is
within 3 arcseconds. Secondly, when using the CPF orbits as the reference orbit, the OD and
OP errors are generally in the hundreds of meters range. The OD error is closely related
to the OD duration and the number of observations passed. If the OD duration remains
constant, the more observation passes are used, and the smaller the OD and OP errors
become. This result also demonstrates the importance of the Zhulong telescopic network in
providing open data for precise OD and OP of space objects.
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