Assessing Many Image Processing Products Retrieved from Sentinel-2 Data to Monitor Shallow Landslides in Agricultural Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Methodology for Determining Occurrence of Shallow Landslides in Agricultural Environments
2.3. First Procedure (I Panel in Figure 3)
2.3.1. Reference Data and Regions of Interest
2.3.2. Regions of Interest (ROIs)
2.4. Second Procedure (II Panel in Figure 3)
2.4.1. Remote Image
2.4.2. Image Processing Products Selected
2.5. Third Procedure (III Panel in Figure 3)
Kling–Gupta Efficiency
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Cardinali, M.; Galli, M.; Guzzetti, F.; Ardizzone, F.; Reichenbach, P.; Bartoccini, P. Rainfall Induced Landslides in December 2004 in South-Western Umbria, Central Italy: Types, Extent, Damage and Risk Assessment. Nat. Hazards Earth Syst. Sci. 2006, 6, 237–260. [Google Scholar] [CrossRef]
- Mondini, A.C.; Viero, A.; Cavalli, M.; Marchi, L.; Herrera, G.; Guzzetti, F. Comparison of Event Landslide Inventories: The Pogliaschina Catchment Test Case, Italy. Nat. Hazards Earth Syst. Sci. 2014, 14, 1749–1759. [Google Scholar] [CrossRef]
- Fiorucci, F.; Ardizzone, F.; Mondini, A.C.; Viero, A.; Guzzetti, F. Visual Interpretation of Stereoscopic NDVI Satellite Images to Map Rainfall-Induced Landslides. Landslides 2019, 16, 165–174. [Google Scholar] [CrossRef]
- Notti, D.; Cignetti, M.; Godone, D.; Giordan, D. Semi-Automatic Mapping of Shallow Landslides Using Free Sentinel-2 and Google Earth Engine. Nat. Hazards Earth Syst. Sci. Discuss. 2022, 23, 2625–2648. [Google Scholar] [CrossRef]
- Prakash, N.; Manconi, A.; Loew, S. A New Strategy to Map Landslides with a Generalized Convolutional Neural Network. Sci. Rep. 2021, 11, 9722. [Google Scholar] [CrossRef] [PubMed]
- Ghorbanzadeh, O.; Gholamnia, K.; Ghamisi, P. The Application of ResU-Net and OBIA for Landslide Detection from Multi-Temporal Sentinel-2 Images. Big Earth Data 2022, 7, 961–985. [Google Scholar] [CrossRef]
- Nava, L.; Bhuyan, K.; Meena, S.R.; Monserrat, O.; Catani, F. Rapid Mapping of Landslides on SAR Data by Attention U-Net. Remote Sens. 2022, 14, 1449. [Google Scholar] [CrossRef]
- Handwerger, A.L.; Jones, S.Y.; Amatya, P.; Kerner, H.R.; Kirschbaum, D.B.; Huang, M.-H. Strategies for Landslide Detection Using Open-Access Synthetic Aperture Radar Backscatter Change in Google Earth Engine. Nat. Hazards Earth Syst. Sci. Discuss. 2021, 22, 753–773. [Google Scholar] [CrossRef]
- Mondini, A.C.; Guzzetti, F.; Chang, K.-T.; Monserrat, O.; Martha, T.R.; Manconi, A. Landslide Failures Detection and Mapping Using Synthetic Aperture Radar: Past, Present and Future. Earth-Sci. Rev. 2021, 216, 103574. [Google Scholar] [CrossRef]
- Juhadi, J.; Banowati, E.; Sanjoto, T.B.; Nugraha, S.B. Rapid Appraisal for Agricultural Land Utilization in the Erosion and Landslide Vulnerable Mountainous Areas of Kulonprogo Regency, Indonesia. Manag. Environ. Qual. Int. J. 2020, 31, 1–17. [Google Scholar] [CrossRef]
- Mauri, L.; Straffelini, E.; Cucchiaro, S.; Tarolli, P. UAV-SfM 4D Mapping of Landslides Activated in a Steep Terraced Agricultural Area. J. Agric. Eng. 2021, 52, 11–30. [Google Scholar] [CrossRef]
- Pijl, A.; Quarella, E.; Vogel, T.A.; D’Agostino, V.; Tarolli, P. Remote Sensing vs. Field-Based Monitoring of Agricultural Terrace Degradation. Int. Soil. Water Conserv. Res. 2021, 9, 1–10. [Google Scholar] [CrossRef]
- Fiorucci, F.; Giordan, D.; Santangelo, M.; Dutto, F.; Rossi, M.; Guzzetti, F. Criteria for the Optimal Selection of Remote Sensing Optical Images to Map Event Landslides. Nat. Hazards Earth Syst. Sci. 2018, 18, 405–417. [Google Scholar] [CrossRef]
- Mohd Salleh, M.R.; Ishak, N.I.; Razak, K.A.; Abd Rahman, M.Z.; Asmadi, M.A.; Ismail, Z.; Abdul Khanan, M.F. Geospatial approach for landslide activity assessment and mapping based on vegetation anomalies. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 201–215. [Google Scholar] [CrossRef]
- Miller, A.J. Remote Sensing Proxies for Deforestation and Soil Degradation in Landslide Mapping: A Review: Remote Sensing Proxies. Geogr. Compass 2013, 7, 489–503. [Google Scholar] [CrossRef]
- Guo, X.; Guo, Q.; Feng, Z. Detecting the Vegetation Change Related to the Creep of 2018 Baige Landslide in Jinsha River, SE Tibet Using SPOT Data. Front. Earth Sci. 2021, 9, 706998. [Google Scholar] [CrossRef]
- Mondini, A.C.; Guzzetti, F.; Reichenbach, P.; Rossi, M.; Cardinali, M.; Ardizzone, F. Semi-Automatic Recognition and Mapping of Rainfall Induced Shallow Landslides Using Optical Satellite Images. Remote Sens. Environ. 2011, 115, 1743–1757. [Google Scholar] [CrossRef]
- Mwaniki, M.W.; Kuria, D.N.; Boitt, M.K.; Ngigi, T.G. Image Enhancements of Landsat 8 (OLI) and SAR Data for Preliminary Landslide Identification and Mapping Applied to the Central Region of Kenya. Geomorphology 2017, 282, 162–175. [Google Scholar] [CrossRef]
- Mohd Salleh, M.R.; Norhairi, N.H.A.; Ismail, Z.; Abd Rahman, M.Z.; Abdul Khanan, M.F.; Asmadi, M.A.; Razak, K.A.; Tam, T.H.; Osman, M.J. Classification of translational landslide activity using vegetation anomalies indicator (vai) in kundasang, sabah. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 46, 247–256. [Google Scholar] [CrossRef]
- Fiorucci, F.; Cardinali, M.; Carlà, R.; Rossi, M.; Mondini, A.C.; Santurri, L.; Ardizzone, F.; Guzzetti, F. Seasonal Landslide Mapping and Estimation of Landslide Mobilization Rates Using Aerial and Satellite Images. Geomorphology 2011, 129, 59–70. [Google Scholar] [CrossRef]
- Scollar, I. Archaeological Prospecting and Remote Sensing. In Topics in Remote Sensing; Cambridge University Press: Cambridge, UK, 1990; pp. 591–633. ISBN 978-0-521-32050-4. [Google Scholar]
- Clark, C.; Garrod, S.; Pearson, M.P. Landscape Archaeology and Remote Sensing in Southern Madagascar. Int. J. Remote Sens. 1998, 19, 1461–1477. [Google Scholar] [CrossRef]
- Cavalli, R.M. Integrated Approach for Archaeological Prospection Exploiting Airborne Hyperspectral. In Good Practice in Archaeological Diagnostics, Non-Invasive Survey of Complex Archaeological Sites Series, Natural Science in Archaeology; Springer International Publishing: Cham, Switzerland, 2013; ISBN 978-3-319-01783-9. [Google Scholar]
- Sever, T.L. Validating Prehistoric and Current Social Phenomena upon the Landscape of the Peten, Guatemala. In People and Pixels: Linking Remote Sensing and Social Science; National Academies Press: Washington, DC, USA, 1998; pp. 145–163. [Google Scholar]
- Cavalli, R.M.; Licciardi, G.A.; Chanussot, J. Detection of Anomalies Produced by Buried Archaeological Structures Using Nonlinear Principal Component Analysis Applied to Airborne Hyperspectral Image. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 659–669. [Google Scholar] [CrossRef]
- Cavalli, R.M.; Colosi, F.; Palombo, A.; Pignatti, S.; Poscolieri, M. Remote Hyperspectral Imagery as a Support to Archaeological Prospection. J. Cult. Herit. 2007, 8, 272–283. [Google Scholar] [CrossRef]
- Agapiou, A. Vegetation Indices and Field Spectroradiometric Measurements for Validation of Buried Architectural Remains: Verification under Area Surveyed with Geophysical Campaigns. J. Appl. Remote Sens. 2011, 5, 053554. [Google Scholar] [CrossRef]
- Cavalli, R.M.; Pascucci, S.; Pignatti, S. Optimal Spectral Domain Selection for Maximizing Archaeological Signatures: Italy Case Studies. Sensors 2009, 9, 1754–1767. [Google Scholar] [CrossRef]
- Pascucci, S.; Cavalli, R.M.; Palombo, A.; Pignatti, S. Suitability of CASI and ATM Airborne Remote Sensing Data for Archaeological Subsurface Structure Detection under Different Land Cover: The Arpi Case Study (Italy). J. Geophys. Eng. 2010, 7, 183–189. [Google Scholar] [CrossRef]
- Cerra, D.; Agapiou, A.; Cavalli, R.; Sarris, A. An Objective Assessment of Hyperspectral Indicators for the Detection of Buried Archaeological Relics. Remote Sens. 2018, 10, 500. [Google Scholar] [CrossRef]
- CEOS Working Group on Calibration & Validation (WGCV). Available online: https://ceos.org/ourwork/workinggroups/wgcv/ (accessed on 22 March 2023).
- Schmiedt, G. Applicazioni della Fotografia Aerea in Ricerche Estensive di Topografia Antica in Sicilia. Kokalos 1957, 3, 18–30. [Google Scholar]
- Rallo, A. Scavi e Ricerche Nella Città Antica Di Selinunte. Relazione Preliminare. Kokalos 1976, 2223, 720–723. [Google Scholar]
- Rallo, A. Nuovi Aspetti Dell’urbanistica Selinuntina. ASAtene 1984, 46, 81–96. [Google Scholar]
- Des Courtils, J.; Mertens, D. Selinus I. Die Stadt und ihre Mauern.-Mainz am Rhein: Von Zabem, 2003. Rev. Études Anciennes 2007, 109, 791–792. [Google Scholar]
- Guzzetti, F.; Galli, M.; Reichenbach, P.; Ardizzone, F.; Cardinali, M. Landslide Hazard Assessment in the Collazzone Area, Umbria, Central Italy. Nat. Hazards Earth Syst. Sci. 2006, 6, 115–131. [Google Scholar] [CrossRef]
- Fiorucci, F.; Ardizzone, F.; Rossi, M.; Torri, D. The Use of Stereoscopic Satellite Images to Map Rills and Ephemeral Gullies. Remote Sens. 2015, 7, 14151–14178. [Google Scholar] [CrossRef]
- Galli, M.; Ardizzone, F.; Cardinali, M.; Guzzetti, F.; Reichenbach, P. Comparing Landslide Inventory Maps. Geomorphology 2008, 94, 268–289. [Google Scholar] [CrossRef]
- Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.-T. Landslide Inventory Maps: New Tools for an Old Problem. Earth-Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef]
- Volpe, E.; Gariano, S.L.; Ardizzone, F.; Fiorucci, F.; Salciarini, D. A Heuristic Method to Evaluate the Effect of Soil Tillage on Slope Stability: A Pilot Case in Central Italy. Land 2022, 11, 912. [Google Scholar] [CrossRef]
- Ardizzone, F.; Cardinali, M.; Galli, M.; Guzzetti, F.; Reichenbach, P. Identification and Mapping of Recent Rainfall-Induced Landslides Using Elevation Data Collected by Airborne Lidar. Nat. Hazards Earth Syst. Sci. 2007, 7, 637–650. [Google Scholar] [CrossRef]
- Lombardo, L.; Opitz, T.; Ardizzone, F.; Guzzetti, F.; Huser, R. Space-Time Landslide Predictive Modelling. Earth-Sci. Rev. 2020, 209, 103318. [Google Scholar] [CrossRef]
- Foody, G.M. Status of Land Cover Classification Accuracy Assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Cavalli, R.M. Spatial Validation of Spectral Unmixing Results: A Case Study of Venice City. Remote Sens. 2022, 14, 5165. [Google Scholar] [CrossRef]
- Cavalli, R.M. Spatial Validation of Spectral Unmixing Results: A Systematic Review. Remote Sens. 2023, 15, 2822. [Google Scholar] [CrossRef]
- Europe’s Copernicus Programme. Available online: https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Europe_s_Copernicus_programme (accessed on 4 January 2024).
- Copernicus Sentinel-2 Mission. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed on 4 January 2024).
- Copernicus Data Space Ecosystem. Available online: https://dataspace.copernicus.eu/ (accessed on 4 January 2024).
- Bassani, C.; Cavalli, R.M.; Goffredo, R.; Palombo, A.; Pascucci, S.; Pignatti, S. Specific Spectral Bands for Different Land Cover Contexts to Improve the Efficiency of Remote Sensing Archaeological Prospection: The Arpi Case Study. J. Cult. Herit. 2009, 10, e41–e48. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically Resistant Vegetation Index (ARVI) for EOS-MODIS. Geosci. Remote Sens. IEEE Trans. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, X.; Qing, Y.; Li, H.; Hong, L.; Lu, W. Estimation of Time-Series Forest Leaf Area Index (LAI) Based on Sentinel-2 and MODIS. Appl. Sci. 2023, 13, 8777. [Google Scholar] [CrossRef]
- Drury, S.A. Image Interpretation in Geology; Taylor & Francis: Abingdon, UK, 1987. [Google Scholar]
- Gasmi, A.; Gomez, C.; Chehbouni, A.; Dhiba, D.; Elfil, H. Satellite Multi-Sensor Data Fusion for Soil Clay Mapping Based on the Spectral Index and Spectral Bands Approaches. Remote Sens. 2022, 14, 1103. [Google Scholar] [CrossRef]
- Somvanshi, S.S.; Kumari, M. Comparative Analysis of Different Vegetation Indices with Respect to Atmospheric Particulate Pollution Using Sentinel Data. Appl. Comput. Geosci. 2020, 7, 100032. [Google Scholar] [CrossRef]
- Segal, D. Theoretical Basis for Differentiation of Ferric-Iron Bearing Minerals, Using Landsat MSS Data. In Proceedings of the Symposium for Remote Sensing of Environment, 2nd Thematic Conference on Remote Sensing for Exploratory Geology, Fort Worth, TX, USA, 6–10 December 1982; pp. 949–951. [Google Scholar]
- Index DataBase. Available online: https://www.indexdatabase.de/db/i.php (accessed on 31 January 2024).
- Wu, W. The Generalized Difference Vegetation Index (GDVI) for Dryland Characterization. Remote Sens. 2014, 6, 1211–1233. [Google Scholar] [CrossRef]
- Sentinel-2 RS Indices. Available online: https://custom-scripts.sentinel-hub.com/custom-scripts/sentinel-2/indexdb/ (accessed on 31 January 2024).
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Falkowski, M.J.; Gessler, P.E.; Morgan, P.; Hudak, A.T.; Smith, A.M.S. Characterizing and Mapping Forest Fire Fuels Using ASTER Imagery and Gradient Modeling. For. Ecol. Manag. 2005, 217, 129–146. [Google Scholar] [CrossRef]
- Crippen, R.E. Calculating the Vegetation Index Faster. Remote Sens. Environ. 1990, 34, 71–73. [Google Scholar]
- Jurgens, C. The Modified Normalized Difference Vegetation Index (mNDVI) a New Index to Determine Frost Damages in Agriculture Based on Landsat TM Data. Int. J. Remote Sens. 1997, 18, 3583–3594. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. In Progress Report RSC 1978-1; Remote Sensing Center: College Station, TX, USA, 1973; 93p. [Google Scholar]
- Wang, L.; Qu, J.J. NMDI: A Normalized Multi-Band Drought Index for Monitoring Soil and Vegetation Moisture with Satellite Remote Sensing. Geophys. Res. Lett. 2007, 34, L20405. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-Destructive Optical Detection of Pigment Changes during Leaf Senescence and Fruit Ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between Leaf Pigment Content and Spectral Reflectance across a Wide Range of Species, Leaf Structures and Developmental Stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Roujean, J.-L.; Breon, F.-M. Estimating PAR Absorbed by Vegetation from Bidirectional Reflectance Measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Hunt, E.R.; Daughtry, C.S.T.; Eitel, J.U.H.; Long, D.S. Remote Sensing Leaf Chlorophyll Content Using a Visible Band Index. Agron. J. 2011, 103, 1090–1099. [Google Scholar] [CrossRef]
- Huete, A.R.; Jackson, R.D. Soil and Atmosphere Influences on the Spectra of Partial Canopies. Remote Sens. Environ. 1988, 25, 89–105. [Google Scholar] [CrossRef]
- Penuelas, J.; Filella, I.; Gamon, J.A. Assessment of Photosynthetic Radiation-Use Efficiency with Spectral Reflectance. New Phytol. 1995, 131, 291–296. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Rock, B.N.; Moss, D.M. Red Edge Spectral Measurements from Sugar Maple Leaves. Int. J. Remote Sens. 1993, 14, 1563–1575. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the Mean Squared Error and NSE Performance Criteria: Implications for Improving Hydrological Modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Cavalli, R.M. Local, Daily, and Total Bio-Optical Models of Coastal Waters of Manfredonia Gulf Applied to Simulated Data of CHRIS, Landsat TM, MIVIS, MODIS, and PRISMA Sensors for Evaluating the Error. Remote Sens. 2020, 12, 1428. [Google Scholar] [CrossRef]
- Cavalli, R.M. The Weight of Hyperion and PRISMA Hyperspectral Sensor Characteristics on Image Capability to Retrieve Urban Surface Materials in the City of Venice. Sensors 2023, 23, 454. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Guo, J.; Guo, P.; Chen, X. Classification of Very-High-Spatial-Resolution Aerial Images Based on Multiscale Features with Limited Semantic Information. Remote Sens. 2021, 13, 364. [Google Scholar] [CrossRef]
- Dice, L.R. Measures of the Amount of Ecologic Association between Species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Sorensen, T. A Method of Establishing Groups of Equal Amplitude in Plant Sociology Based on Similarity of Species Content and Its Application to Analyses of the Vegetation on Danish Commons. Biol. Skr. 1948, 5, 1–34. [Google Scholar]
- Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.; Murayama, Y.; Ranagalage, M. Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sens. 2020, 12, 2291. [Google Scholar] [CrossRef]
- Filippucci, P.; Brocca, L.; Bonafoni, S.; Saltalippi, C.; Wagner, W.; Tarpanelli, A. Sentinel-2 High-Resolution Data for River Discharge Monitoring. Remote Sens. Environ. 2022, 281, 113255. [Google Scholar] [CrossRef]
- Cavalli, R.M. Remote Data for Mapping and Monitoring Coastal Phenomena and Parameters: A Systematic Review. Remote Sens. 2024, 16, 446. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Y.; Niu, X.; Jiang, S.; Liu, Z. A Comparative Study of Mutual Information-Based Input Variable Selection Strategies for the Displacement Prediction of Seepage-Driven Landslides Using Optimized Support Vector Regression. Stoch. Environ. Res. Risk Assess. 2022, 36, 3109–3129. [Google Scholar] [CrossRef]
Landslide ID | 25 April 2018 | 8 October 2019 | 8 April 2021 | 23 March 2022 | 30 May 2023 |
---|---|---|---|---|---|
2 | NL | NL | YL | NL | NA |
3 | YL | YL | YL | NA | YL |
4 | YL | YL | YL | NA | NL |
5 | NL | NL | YL | NA | NL |
5bis | NMC | NL | YL | NA | NL |
6 | NL | YL | YL | YL | NA |
9 | NMC | NL | YL | NL | NA |
11 | NL | NL | YL | NA | YL |
14 | NL | NL | YL | NA | NL |
15 | NL | NL | YL | NA | YL |
19 | NMC | YL | YL | YL | NA |
20 | NL | NL | YL | YL | NA |
21 | YL | NL | YL | NMC | NA |
22 | NL | NL | YL | NA | YL |
Google Earth | Sentinel-2 |
---|---|
25 April 2018 | 21 April 2018 (1) |
8 October 2019 | 8 October 2019 |
8 April 2021 | 8 April 2021 |
23 March 2022 | 24 March 2022 (1,2) |
30 May 2023 | 30 May 2023 (2) |
Band Number | Band Named in This Paper | Spatial Resolution (m) | Sentinel-2A | Sentinel-2B | ||
---|---|---|---|---|---|---|
Central Wavelength (nm) | Bandwidth (nm) | Central Wavelength (nm) | Bandwidth (nm) | |||
1 | B1 | 60 | 442.7 | 21 | 442.2 | 21 |
2 | B2 | 10 | 492.4 | 66 | 492.1 | 66 |
3 | B3 | 10 | 559.8 | 36 | 559 | 36 |
4 | B4 | 10 | 664.6 | 31 | 664.9 | 31 |
5 | B5 | 20 | 704.1 | 15 | 703.8 | 16 |
6 | B6 | 20 | 740.5 | 15 | 739.1 | 15 |
7 | B7 | 20 | 782.8 | 20 | 779.7 | 20 |
8 | B8 | 10 | 832.8 | 106 | 832.9 | 106 |
8a | B8a | 20 | 864.7 | 21 | 864 | 22 |
9 | B9 | 60 | 945.1 | 20 | 943.2 | 21 |
10 | B10 | 60 | 1373.5 | 31 | 1376.9 | 30 |
11 | B11 | 20 | 1613.7 | 91 | 1610.4 | 94 |
12 | B12 | 20 | 2202.4 | 175 | 2185.7 | 185 |
Index Name | Index Acronym | Proposed by [Reference] | Applied to Satellite Data | Equation | Reference on Sentinel-2 |
---|---|---|---|---|---|
Atmospherically Resistant Vegetation Index | ARVI | [50] | MODIS | (B8 − (B4 − 1 × (B2 − B4)))/(B8 + (B4 − 1 × (B2 − B4))) | [51] |
Clay Mineral Ratio | Clay Mineral Ratio * | [52] | N/A | (B10)/(B11) | [53] |
Difference Vegetation Index | DVI | [52] | N/A | (B8 − B4) | [51] |
Enhanced Vegetation Index | EVI | [52] | N/A | 2.5 × ((B8 − B4)/((B8 + 6 × B4 − 7.5 × B2) + 1)) | [54] |
Ferrous Minerals Ratio | Ferrous Minerals Ratio * | [52,55] | Landsat | (B10)/(B8a) | [56] |
Green Difference Vegetation Index | GDVI | [57] | Landsat | (B8a − B3) | [58] |
Green NDVI | GNDVI | [59] | MODIS | (B8a − B3)/(B8a + B3) | [58] |
Green Ratio Vegetation Index | GRVI | [60] | ASTER | (B8a)/(B3) | [56] |
Infrared Percentage Vegetation | IPVI | [61] | N/A | (((B8a)/(B8a + B5))/2) × (((B5 − B3)/(B5 + B3)) + 1) | [56] |
Iron Oxide | Iron Oxide * | [52,55] | Landsat | (B5)/(B1) | [56] |
Modified Normalized Difference Vegetation Index | mNDVI | [62] | SPOT | (B8 − B4)/(B8 + B4 − 2 × B1) | [58] |
Normalized Differential Vegetation Index | NDVI | [63] | ERTS 1 MSS | (B8 − B4)/(B8 + B4) | [54] |
Normalized multibands Drought Index | NMDI | [64] | MODIS | (B8 − B10 + B11)/(B8 + B10 − B11) | [58] |
Plant Senescence Reflectance Index | PSRI | [65] | N/A | (B4 − B2)/(B6) | [58] |
Red Edge Normalized Difference Vegetation Index | mNDVI 705 | [66] | N/A | (B6 − B5)/(B6 + B5) | [58] |
Renormalized Difference Vegetation Index | RDVI | [67] | N/A | (B8a − B4)/((B8a + B5)0.5) | [58] |
Simple Ratio Index | SR | [68] | N/A | (B8a)/(B4) | [51] |
Soil Adjusted Vegetation Index | SAVI | [69] | Landsat | (1.5 × ((B8 − B4)/(B8 + B5 + 0.5))) | [58] |
Structure Insensitive Pigment Index | SIPI | [70] | N/A | (B8 − B1)/(B8 − B4) | [58] |
Vogelmann Red Edge Index 1 | VOG1 | [71] | N/A | (B6)/(B5) | [56] |
Landslide ID | Ge image Acquisition Dates | LPs Area (m2) | Minimum Landslide Width (m) | Called Landslide Size |
---|---|---|---|---|
11 | 30 May 2023 | 6250 | 70 | GT |
11 | 8 April 2021 | 6250 | 70 | GT |
14 | 8 April 2021 | 2250 | 25 | CO |
4 | 8 October 2019 | 1925 | 15 | LT |
4 | 8 April 2021 | 1925 | 15 | LT |
3 | 25 April 2018 | 1625 | 10 | LT |
3 | 8 October 2019 | 1625 | 10 | LT |
3 | 8 April 2021 | 1625 | 10 | LT |
3 | 30 May 2023 | 1625 | 10 | LT |
2 | 8 April 2021 | 1275 | 30 | LT |
20 | 8 April 2021 | 1125 | 15 | LT |
19 | 8 October 2019 | 975 | 15 | LT |
19 | 8 April 2021 | 975 | 15 | LT |
15 | 8 April 2021 | 975 | 15 | LT |
6 | 23 March 2022 | 725 | 15 | LT |
6 | 8 April 2021 | 725 | 15 | LT |
20 | 23 March 2022 | 725 | 15 | LT |
22 | 8 April 2021 | 675 | 5 | LT |
22 | 30 May 2023 | 675 | 5 | LT |
9 | 8 April 2021 | 675 | 5 | LT |
21 | 8 April 2021 | 575 | 10 | LT |
19 | 23 March 2022 | 550 | 15 | LT |
21 | 25 April 2018 | 475 | 10 | LT |
15 | 30 May 2023 | 475 | 5 | LT |
5 | 8 April 2021 | 425 | 10 | LT |
5bis | 8 April 2021 | 400 | 10 | LT |
6 | 8 October 2019 | 350 | 15 | LT |
4 | 25 April 2018 | 300 | 15 | LT |
Index | Overall Accuracy | Precision SDI | True Positive of 28 YL | Mean Value of KGE | Minimum Value of KGE | True Negative of 24 NL | Band Spatial Resolutions (Table 3 and Table 4) |
---|---|---|---|---|---|---|---|
SAVI | 1.00 | 1.00 | 28 | −0.47 | −0.92 | 24 | 10–20 m |
RDVI | 1.00 | 1.00 | 28 | −0.37 | −0.79 | 24 | 10–20 m |
GRVI | 0.98 | 0.98 | 27 | −0.34 | −1.06 | 24 | 10–20 m |
NDVI | 0.98 | 0.98 | 27 | −0.49 | −1.68 | 24 | 10 m |
SIPI | 0.94 | 0.95 | 28 | −0.48 | −1.88 | 21 | 10–60 m |
GNDVI | 0.94 | 0.95 | 26 | −0.36 | −0.78 | 23 | 10–20 m |
DVI | 0.94 | 0.94 | 25 | −0.53 | −1.17 | 24 | 10 m |
SR | 0.94 | 0.94 | 25 | −0.41 | −0.82 | 24 | 10–20 m |
mNDVI | 0.88 | 0.89 | 25 | −0.57 | −1.44 | 21 | 10–60 m |
GDVI | 0.88 | 0.88 | 23 | −0.39 | −1.07 | 23 | 10–20 m |
EVI | 0.85 | 0.85 | 23 | −0.51 | −1.16 | 21 | 10 m |
VOG1 | 0.79 | 0.76 | 17 | −0.23 | −0.60 | 24 | 20 m |
NMDI | 0.75 | 0.70 | 16 | −0.36 | −1.00 | 22 | 10–20–60 m |
Ferrous Minerals Ratio * | 0.73 | 0.70 | 15 | −0.22 | −0.59 | 24 | 20–60 m |
IPVI | 0.73 | 0.67 | 14 | −0.28 | −0.65 | 24 | 10–20 m |
mNDVI 705 | 0.71 | 0.65 | 14 | −0.26 | −0.55 | 23 | 20 m |
Clay Mineral Ratio * | 0.69 | 0.62 | 13 | −0.34 | −1.44 | 23 | 20–60 m |
Iron Oxide * | 0.67 | 0.56 | 11 | −0.32 | −1.21 | 24 | 20–60 m |
PSRI | 0.62 | 0.47 | 9 | −0.22 | −0.57 | 23 | 10–20 m |
ARVI | 0.56 | 0.38 | 7 | −0.24 | −0.63 | 22 | 10 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavalli, R.M.; Pisano, L.; Fiorucci, F.; Ardizzone, F. Assessing Many Image Processing Products Retrieved from Sentinel-2 Data to Monitor Shallow Landslides in Agricultural Environments. Remote Sens. 2024, 16, 2286. https://doi.org/10.3390/rs16132286
Cavalli RM, Pisano L, Fiorucci F, Ardizzone F. Assessing Many Image Processing Products Retrieved from Sentinel-2 Data to Monitor Shallow Landslides in Agricultural Environments. Remote Sensing. 2024; 16(13):2286. https://doi.org/10.3390/rs16132286
Chicago/Turabian StyleCavalli, Rosa Maria, Luca Pisano, Federica Fiorucci, and Francesca Ardizzone. 2024. "Assessing Many Image Processing Products Retrieved from Sentinel-2 Data to Monitor Shallow Landslides in Agricultural Environments" Remote Sensing 16, no. 13: 2286. https://doi.org/10.3390/rs16132286
APA StyleCavalli, R. M., Pisano, L., Fiorucci, F., & Ardizzone, F. (2024). Assessing Many Image Processing Products Retrieved from Sentinel-2 Data to Monitor Shallow Landslides in Agricultural Environments. Remote Sensing, 16(13), 2286. https://doi.org/10.3390/rs16132286