
Citation: Kim, T.-L.; Park, T.-H.

Reinforcement Learning and Genetic

Algorithm-Based Network Module for

Camera-LiDAR Detection. Remote

Sens. 2024, 16, 2287. https://

doi.org/10.3390/rs16132287

Academic Editor: Filiberto

Chiabrando

Received: 23 April 2024

Revised: 14 June 2024

Accepted: 19 June 2024

Published: 22 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

Reinforcement Learning and Genetic Algorithm-Based Network
Module for Camera-LiDAR Detection
Taek-Lim Kim 1 and Tae-Hyoung Park 2,*

1 Department of Control and Robot Engineering, Chungbuk National University,
Cheongju 28644, Republic of Korea; taeglem@chungbuk.ac.kr

2 Department of Intelligent Systems & Robotics, Chungbuk National University,
Cheongju 28644, Republic of Korea

* Correspondence: taehpark@chungbuk.ac.kr

Abstract: Cameras and LiDAR sensors have been used in sensor fusion for robust object detection in
autonomous driving. Object detection networks for autonomous driving are often trained again by
adding or changing datasets aimed at robust performance. Repeat training is necessary to develop an
efficient network module. Existing efficient network module development changes to hand design
and requires much module design experience. For this, a neural architecture search was designed,
but it takes much time and requires optimizing the design process. To solve this problem, we
propose a two-stage optimization method for the offspring generation process in a neural architecture
search based on reinforcement learning. In addition, we propose utilizing two split datasets to
solve the fast convergence problem as the objective function of the genetic algorithm: source data
(daytime, sunny) and target data (day/night, adversary weather). The proposed method is an efficient
module generation method requiring less time than the NSGA-NET. We confirmed the performance
improvement and the convergence speed reduction using the Dense dataset. Through experiments, it
was proven that the proposed method generated an efficient module.

Keywords: sensor fusion; deep learning; neural architecture search

1. Introduction

Artificial neural networks have made significant advancements in autonomous driv-
ing, particularly in classification [1] and object detection [2,3]. In such environments,
variations in light and humidity, particularly during adverse weather conditions or at
night, can affect LiDAR data [4]. Therefore, designing networks that can adapt to various
conditions in autonomous driving is crucial, and sensor fusion has proven to be an effective
method for this. Recently, research on camera-LiDAR detection in autonomous driving
has explored middle-level fusion techniques [5,6], which involve integrating inputs from
different sensor-based networks.

Figure 1a shows the object detection network frameworks. The network takes input
from a single sensor-based detection network, which refines the features and performs
detection by inputting it to the middle layer or directly to the head. When fusing networks
from different sensors, a multi-modal fusion method is preferred. This involves creating a
backbone network for each sensor and performing fusion at a middle layer. Figure 1b,c
illustrate fusion in the middle layer, and (b) is a simple fusion method carried out by stack-
ing or concatenating features. However, in the case of multi-modal fusion, a recalibration
process is required between the features from different sensors [7]. A configuration of
the module is shown in Figure 1c with the feature in the middle to be corrected. The
development of these modules must be efficient and effective.

Remote Sens. 2024, 16, 2287. https://doi.org/10.3390/rs16132287 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16132287
https://doi.org/10.3390/rs16132287
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-8001-4212
https://doi.org/10.3390/rs16132287
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16132287?type=check_update&version=1

Remote Sens. 2024, 16, 2287 2 of 20Remote Sens. 2024, 16, x FOR PEER REVIEW 2 of 22

Figure 1. Comparison of the current object detection network frameworks: (a) Object detection with
one sensor dataset. (b) Configure each backbone to process two or more features in the middle layer.
The features of each backbone are fused at the middle layer. (c) Configure a module using the multi-
modal fusion method to process specific features and perform refined calibration.

Efficient network metrics [8] in object detection include quality and footprint. Quality
metrics, such as mAP (mean average precision) [9], precision, and recall, can evaluate and
develop network effectiveness. As the data grow, the difficulty of learning increases, and
it takes much time to check quality through repeated experiments. Existing studies have
developed effective deep learning, and we intend to go further in existing research to re-
solve learning difficulties. The attention mechanism module shows visible performance
improvement in various fields [7,10] with a slight increase in computation resources. We
can improve performance and solve efficiency issues by utilizing the attention mechanism
well.

Figure 2 shows the number of epochs needed for convergence using the same atten-
tion mechanism module as previous studies, AFAM and FSL [11,12]. We found out that
the training epochs varied. AFAM, which uses contrastive learning, converges faster due
to using a separate dataset for contrast learning. Our experiments suggest that separating
datasets can affect the convergence speed, which can be a helpful idea in the optimization
process. We propose a method to create a network module that uses neural architecture
search (NAS) and utilizes separated adversary weather data. NAS methods [13] include
evolutionary [14–16] and learning methods [17]. Evolutionary methods apply a genetic
algorithm (GA) when solving multi-objective problems with multiple objective functions
to optimize. GA creates offspring and solves the overall objective function through the
population, crossover, and mutation processes. The population process in GA makes
chromosomes considered for diversity. NSGA-NET [14] was proposed as a NAS method
using GA. Existing NSGA [18] research has strong randomness in the population process,

Figure 1. Comparison of the current object detection network frameworks: (a) Object detection
with one sensor dataset. (b) Configure each backbone to process two or more features in the middle
layer. The features of each backbone are fused at the middle layer. (c) Configure a module using the
multi-modal fusion method to process specific features and perform refined calibration.

Efficient network metrics [8] in object detection include quality and footprint. Quality
metrics, such as mAP (mean average precision) [9], precision, and recall, can evaluate
and develop network effectiveness. As the data grow, the difficulty of learning increases,
and it takes much time to check quality through repeated experiments. Existing stud-
ies have developed effective deep learning, and we intend to go further in existing re-
search to resolve learning difficulties. The attention mechanism module shows visible
performance improvement in various fields [7,10] with a slight increase in computation re-
sources. We can improve performance and solve efficiency issues by utilizing the attention
mechanism well.

Figure 2 shows the number of epochs needed for convergence using the same attention
mechanism module as previous studies, AFAM and FSL [11,12]. We found out that the
training epochs varied. AFAM, which uses contrastive learning, converges faster due to
using a separate dataset for contrast learning. Our experiments suggest that separating
datasets can affect the convergence speed, which can be a helpful idea in the optimization
process. We propose a method to create a network module that uses neural architecture
search (NAS) and utilizes separated adversary weather data. NAS methods [13] include
evolutionary [14–16] and learning methods [17]. Evolutionary methods apply a genetic
algorithm (GA) when solving multi-objective problems with multiple objective functions
to optimize. GA creates offspring and solves the overall objective function through the
population, crossover, and mutation processes. The population process in GA makes chro-
mosomes considered for diversity. NSGA-NET [14] was proposed as a NAS method using
GA. Existing NSGA [18] research has strong randomness in the population process, so

Remote Sens. 2024, 16, 2287 3 of 20

creating a learning module takes a long time. In addition, NSGA-based EEEA [16] proposed
an optimization method by adding a heuristic and exiting early based on parameter values
below the threshold. However, in this method, it is critical to set a standard for setting a
specific threshold, and the standard can only be set through experimentation. So, in this
paper, we optimized the population process to reduce randomness via a reinforcement
learning network. The reinforcement learning network is divided into training and utiliza-
tion, and the dataset composition varies for each stage. The contributions of this paper are
as follows.

Remote Sens. 2024, 16, x FOR PEER REVIEW 3 of 22

so creating a learning module takes a long time. In addition, NSGA-based EEEA [16] pro-
posed an optimization method by adding a heuristic and exiting early based on parameter
values below the threshold. However, in this method, it is critical to set a standard for
setting a specific threshold, and the standard can only be set through experimentation. So,
in this paper, we optimized the population process to reduce randomness via a reinforce-
ment learning network. The reinforcement learning network is divided into training and
utilization, and the dataset composition varies for each stage. The contributions of this
paper are as follows.
• The model training of the reinforcement learning network was optimized by dividing

it into two stages.
• The search time to create a practical network module was shortened by reducing the

search space using reinforcement learning in GA’s population process.
• Performance and network convergence speed are improved based on GA assisted

with reinforcement learning.
This paper applies GA to improve performance and computation resource issues and

solve multi-objective problems for fast convergence. Our core contribution is to propose a
method for GA’s search space problem using a reinforcement learning network rather
than random offspring. This method can effectively obtain a solution close to global rather
than local optimal. As a comparative experiment, it was demonstrated by comparing the
creation of a network module using GA-based NSGA and reinforcement learning support
GA.

Figure 2. Number of epochs to convergence. Blue: AFAM; gray: FSL. Network’s loss convergence is
faster when two different networks add adversary weather data.

2. Related Works
Deep learning networks have made significant progress in object detection and clas-

sification [19] in computer vision. Recently, researchers have studied a network module
that refines features using squeeze and excitation [20] or attention mechanisms. The
CBAM [10] method proposes refined features by emphasizing essential features for each
element in each feature map using channel and spatial attention. Wang et al. [21] improved
performance by configuring efficient modules using channel and spatial attention for dif-
ferent domain alignments. The attention mechanism can be applied to other dimensions,
and the ReFID [22] study proposed learning in the frequency domain by utilizing the at-
tention mechanism in the frequency domain, improving generalization ability, and prov-
ing it through extensive experiments. The Transformer [23] is an attention mechanism that
has been used in various fields and has achieved several state-of-the-art results [24–26].
However, its high computation requirements limit its use in embedded environments.
These studies [10,20] can be applied to various fields such as speech recognition [27], au-
dio–video speech [28], and image captioning [29]. Our research aims to improve perfor-
mance with minimal computation. The SCConv [30] method generates a feature map
highlighted from channel and spatial information, but it has the limitation of determining

Figure 2. Number of epochs to convergence. Blue: AFAM; gray: FSL. Network’s loss convergence is
faster when two different networks add adversary weather data.

• The model training of the reinforcement learning network was optimized by dividing
it into two stages.

• The search time to create a practical network module was shortened by reducing the
search space using reinforcement learning in GA’s population process.

• Performance and network convergence speed are improved based on GA assisted
with reinforcement learning.

This paper applies GA to improve performance and computation resource issues and
solve multi-objective problems for fast convergence. Our core contribution is to propose a
method for GA’s search space problem using a reinforcement learning network rather than
random offspring. This method can effectively obtain a solution close to global rather than
local optimal. As a comparative experiment, it was demonstrated by comparing the creation
of a network module using GA-based NSGA and reinforcement learning support GA.

2. Related Works

Deep learning networks have made significant progress in object detection and classi-
fication [19] in computer vision. Recently, researchers have studied a network module that
refines features using squeeze and excitation [20] or attention mechanisms. The CBAM [10]
method proposes refined features by emphasizing essential features for each element in
each feature map using channel and spatial attention. Wang et al. [21] improved perfor-
mance by configuring efficient modules using channel and spatial attention for different
domain alignments. The attention mechanism can be applied to other dimensions, and
the ReFID [22] study proposed learning in the frequency domain by utilizing the attention
mechanism in the frequency domain, improving generalization ability, and proving it
through extensive experiments. The Transformer [23] is an attention mechanism that has
been used in various fields and has achieved several state-of-the-art results [24–26]. How-
ever, its high computation requirements limit its use in embedded environments. These
studies [10,20] can be applied to various fields such as speech recognition [27], audio–video
speech [28], and image captioning [29]. Our research aims to improve performance with
minimal computation. The SCConv [30] method generates a feature map highlighted from
channel and spatial information, but it has the limitation of determining the ratio through

Remote Sens. 2024, 16, 2287 4 of 20

experimentation. We will create a module using attention research for this multi-modal
network fusion.

In NAS, there were evolutionary methods [15] and reinforcement learning [17] meth-
ods, and research was actively conducted based on NASNet [31] proposed by Zoph. Among
various approaches, the cell-based method by Bender [32] has been applied as a simple way
to implement NAS, and in particular, DARTs [33] enable network design more efficiently
than before by optimizing search space. It is possible to quickly derive optimal results by
defining and learning various cases in advance, but computing power is required. Evolu-
tionary NAS [34,35] has been efficiently utilized in multiple-objective problems aimed at
operating in various environments, reducing computation, and improving performance.
NSGA-NET [14], an existing study of evolutionary methods, effectively solved multiple-
objective problems and showed the potential for performance and an efficient approach. We
changed the search strategy to NSGA-Net and found a structure with faster convergence
through the optimized population process.

Over the past decades, neural network-based object detection research [36–38] has
been conducted using cameras as single sensors. Object detection networks for autonomous
driving rely on multi-sensors, making camera, LiDAR, and radar fusion research neces-
sary [4,39]. Research on sensor fusion may be a matter of considering the domain or fusing
various views. The study proposed [40] learning complex correlations through graph
collaboration in a multi-view problem, and at the same time, it designed the learning
convergence problem as an optimization problem and proved fast convergence using the
Lagrange multiplier method. A neural network based on fusion techniques [6,39,41–43] can
enhance the limited data from far-off LiDAR sensors by incorporating detailed information
from cameras or depth estimates. This integration can improve the accuracy of vehicle
volume and heading estimation by incorporating shape and spatial data. The network
fusion of multi-modals has different roles and requires alignment in the network [20]. In a
study [7] that effectively fused multi-modals such as voice, video, and motion, filtering was
applied to each sensor feature using attention [10] on the channel and spatial information,
and then, features of the different modals were combined through a squeeze and excitation
network (SENet) [20]. Since data fusion cannot simply stack different features, it can be
refined using attention and SENet, as in previous studies.

In previous extensive research, the measurement deviation of LiDAR [44–46] in ad-
versary weather situations, that is, high-humidity situations, was analyzed, and object
classification through noise filtering using CNNs was proposed [47]. Camera-based ad-
versary weather studies [48,49] analyzed clear and fog differences using noise to create
training data by making insufficient data synthetically. In research on adversary weather,
an important element is analyzing the characteristics of noise according to the situation of
each sensor. In adversary weather, as a study, domain adaptations [50] learn only daytime
and sunny weather data; evaluate learning on fog and rain, which is the target domain; and
aim to learn a generalized classifier by proposing domain-invariant representations [51,52].
However, since such research requires a target domain, domain generalization research
has recently been proposed [53]. So, domain generalization does not require target data,
enabling more generalized network learning, but since it uses only the source domain,
there is a performance discrepancy in learning. Existing studies on reducing this domain
gap can be considered a very effective method in adversary weather or when there is a lack
of data, but the difficulty of network learning must be considered.

3. Method Overview

We are working on designing network modules that can handle middle-level fusion
and deliver reliable performance even in adverse weather conditions. However, finding a
suitable network module can be time-consuming and experimental. To address this, we are
focusing on improving the efficiency of both gene generation and convergence modules.
First, we have improved generation efficiency by introducing chromosomes based on
reinforcement learning to the gene generation of the GA algorithm. The reinforcement

Remote Sens. 2024, 16, 2287 5 of 20

learning network aims to optimize the gene generation process, and we aim to achieve this
within minimal training time. However, the reinforcement learning process can take longer
if data deviations increase. So, we have excluded adverse weather data from the source
data used for training in reinforcement learning.

In Figure 3a, the process of creating GA involves reinforcement learning. However, the
adversary weather data is not included in the source data used for training. Reinforcement
learning networks are designed to optimize the gene generation process to minimize
training time. However, if the variance in the data increases, the reinforcement learning
process may require more training time. During Stage I, reinforcement learning learns the
source dataset and predicts the loss in the next epoch for each module generated via GA.
This prediction helps forecast the network’s convergence speed. Reinforcement learning
predicts the loss, modifies the module with actions, and receives a penalty if the loss is not
improved as much as predicted.

Remote Sens. 2024, 16, x FOR PEER REVIEW 5 of 22

learning network aims to optimize the gene generation process, and we aim to achieve
this within minimal training time. However, the reinforcement learning process can take
longer if data deviations increase. So, we have excluded adverse weather data from the
source data used for training in reinforcement learning.

In Figure 3a, the process of creating GA involves reinforcement learning. However,
the adversary weather data is not included in the source data used for training. Reinforce-
ment learning networks are designed to optimize the gene generation process to minimize
training time. However, if the variance in the data increases, the reinforcement learning
process may require more training time. During Stage I, reinforcement learning learns the
source dataset and predicts the loss in the next epoch for each module generated via GA.
This prediction helps forecast the network’s convergence speed. Reinforcement learning
predicts the loss, modifies the module with actions, and receives a penalty if the loss is not
improved as much as predicted.

In Stage II, a module is created using the NSGA-NET algorithm proposed in [14]. The
method generates a gene population by combining the module set 𝑂௧ proposed through
reinforcement learning with the parent population 𝑃௧ generated via NSGA. The pro-
posed module is obtained through sampling from the rescued gene population. This ap-
proach enables simultaneous search and learning by the network’s training with the head.
Some deviations are expected as the data were collected during adversary weather condi-
tions. However, the optimization process of GA can prevent the problem of falling into
local optimality. Furthermore, the module estimated from the source data of reinforce-
ment learning can reduce search time and support faster convergence speed.

Figure 3. Description of the overall structure of the proposed method. (a) Modifying the middle
layer in the object detection network. Stage I is the training stage of the reinforcement learning net-
work. Stage II supports the GA’s regeneration process using RL in the network module design pro-
cess. Yellow is the NSGA-NET method. (b) The reinforcement learning training process consists of
evaluating action and loss and giving a reward. (c) Designing multi-objective functions with im-
proved performance and convergence.

Figure 3. Description of the overall structure of the proposed method. (a) Modifying the middle
layer in the object detection network. Stage I is the training stage of the reinforcement learning
network. Stage II supports the GA’s regeneration process using RL in the network module design
process. Yellow is the NSGA-NET method. (b) The reinforcement learning training process consists
of evaluating action and loss and giving a reward. (c) Designing multi-objective functions with
improved performance and convergence.

In Stage II, a module is created using the NSGA-NET algorithm proposed in [14]. The
method generates a gene population by combining the module set Ot proposed through
reinforcement learning with the parent population Pt generated via NSGA. The proposed
module is obtained through sampling from the rescued gene population. This approach
enables simultaneous search and learning by the network’s training with the head. Some
deviations are expected as the data were collected during adversary weather conditions.
However, the optimization process of GA can prevent the problem of falling into local
optimality. Furthermore, the module estimated from the source data of reinforcement
learning can reduce search time and support faster convergence speed.

4. Efficient Module Design Method
4.1. Genetic Algorithm for Neural Architecture Search

We are looking for modules that can refine and highlight the features of the camera
and LiDAR backbone. The features extracted from the backbone are Fi

C and Fi
L, where i is

the number of features extracted from the backbone layer. The features extracted from the
backbone are denoted as F(i)

C,L, where C and L refer to the camera and LiDAR. A feature

F(i)
C,L is of size W × H × D, where W(width) and H(height) are the spatial dimensions, and

Remote Sens. 2024, 16, 2287 6 of 20

D(depth of feature tensor) is the depth of the backbone network; the feature F(i)
C,L will

become F(i)
M_C,L of a specific size through the input and calculation process to the module

M(i)
C,L. F(i)

M_C,L is the i-th operation result of module M(i)
C,L, denoted as W

′
, H

′
, D

′
, and will

be different from the input feature W, H, D. So, we applied channel attention to F(i)
M_C,L

and converted it into a feature map of a certain size. Since channel attention uses squeeze
and excitation, if D′ of F(i)

M is smaller than D, it is expanded, and in the opposite case, it is
squeezed to create a feature map of a certain size. It is expressed as Equations (1) and (2).

F(i)
M_C = Mi

C

(
Fi

C

)
, (1)

F(i)
M_L = Mi

L

(
Fi

L

)
, (2)

The highlighted feature map is created by applying elemental-wise multiplication
to the existing input feature map to the channel attended result F(i)

M_C,L, which is given in
Equations (3) and (4):

F′C = Mi
C

(
Fi

C

)⊗
Fi

C = F(i)
M_C

⊗
Fi

C, (3)

F′L = Mi
L

(
Fi

L

)⊗
Fi

L = F(i)
M_L

⊗
Fi

L, (4)

where ⊗ denotes element-wise multiplication. By adding the recalibrated feature map
F′C,L and the backbone features Fi

C,L, a feature map with highlighted features is created.
Equations (3) and (4) are highlighted feature maps, and the i-th modules and the results for
each sensor are concatenated and delivered to the layer for object detection. The output
of the module created in this paper is delivered to the head or middle layer through the
process of Equations (1)–(6).

F′′C = F′C + Fi
C, (5)

F′′L = F′L +Fi
L, (6)

The genetic algorithm of the proposed method must define encoding, selection,
crossover, and mutation, and reinforcement learning is used as an aid in the gene re-
production process using these. To find an efficient and effective module, similar to the
NSGA-NET [14] process, we made the pop size smaller and optimized it by changing the
selection process to reduce GPU-Days.

(1) Encoding: In the proposed method, each iterative process gradually builds up a
good group. The middle layer consists of blocks and nodes, and Figure 4 shows the
encoding process for each block. In this study, the node of the block is expressed
as x(i)C,L, where the subscript indicates the sensor and the superscript indicates the

location of the block. Each block can consist of up to m or n nodes. Each x(i)C,L node is
a basic computation based on VGG [54], ResNet [1], and DenseNet [55] in the CNN
literature. We chose a computation operation from among the following options,
collected based on their prevalence in the CNN literature (1–8).

1. 1 × 1 max pooling;
2. 3 × 3 max pooling;
3. 1 × 1 avg pooling;
4. 3 × 3 avg pooling;
5. 3 × 3 local binary conv;
6. 5 × 5 local binary conv;
7. 3 × 3 dilated convolution;
8. 5 × 5 dilated convolution.

x(1)C,L refers to the camera or LiDAR feature map and is the 1st conv block. A node
consists of a total of 6 bits; 3 bits are the operation described above and the remaining

Remote Sens. 2024, 16, 2287 7 of 20

3 bits are the output channel size. When the GA algorithm determines only channel
and operation, the kernel size may be larger than the input, and in this case, it is
skipped without operation.

(2) Selection: Selection plays an important role in the process of GA finding the global
optimal solution, and the tournament method was mainly used. Selection results due
to fitness bias do not always provide us with a global optimal solution and can also
have the disadvantage of widening the search space. In the proposed method, the best
candidates were derived in terms of performance and calculation time, respectively,
so that nondominant solutions could be passed on to the next generation. Then, it is to
be noted once again that a certain probability is also added to the outcome proposed
by the reinforcement learning network later.

(3) Crossover: Fitness is improved by stacking blocks through selection based on fitness
bias and gene combination process crossover. The building block represents various
node connection combinations, and the various connections optimize the conv block.
Our proposed method used a one-point method, randomly selecting a node in the
encoding vector and changing the designated point. If the crossover is diverse, the
search space expands and a global near optimal can be found. However, to reduce the
search time, a simple method is used and supplemented with reinforcement learning.

(4) Mutation: To improve diversity, there is mutation as a gene generation process that de-
viates from the local optimal solution during the population process, and we changed
the connection node by flipping the bits of the encoding vector. The bits of the encod-
ing vector are reversed and the operation or output channel at the connection node is
changed. The proposed method only changes the form of the operation or channel, but
it is difficult to find a new structure. However, in this study, a reinforcement learning
network was able to solve the problem of diversity by proposing a new structure.

(5) Reproduction: The softmax method of selecting the reproduction process, like the
method proposed by DARTs [33], is suitable when using only genetic algorithms. To
form an optimal gene population, we must appropriately combine genes generated
through reinforcement learning with previous generations during reproduction. A
reasonable moment when reinforcement learning genes should be sampled is when
the update size of the loss is small.

Remote Sens. 2024, 16, x FOR PEER REVIEW 8 of 22

Figure 4. Encoding: illustration of a middle-layer network encoded by 𝑥 = 𝑥௦, where is the connec-
tion in the block (gray, blue boxes, each with a possible maximum of 6 nodes). See Section 4.1 for a
detailed description of the encoding schemes.

Algorithm 1 is the module creation process for GA-based NAS. Genes are organized
into modules, and fitness functions for the initial genes are calculated. Dominant genes
are sampled through binary tournament selection and reproduced as the size of 𝐾. Genes
are updated by adding modules generated via RLNet or crossover and mutation processes
within a generation. After breeding, based on the evaluation of an objective function fa-
voring fitness, nondominant genes are selected and passed on to the next generation, up-
dating the generation.

Figure 4. Encoding: illustration of a middle-layer network encoded by x = xs, where is the connection
in the block (gray, blue boxes, each with a possible maximum of 6 nodes). See Section 4.1 for a detailed
description of the encoding schemes.

Algorithm 1 is the module creation process for GA-based NAS. Genes are organized
into modules, and fitness functions for the initial genes are calculated. Dominant genes
are sampled through binary tournament selection and reproduced as the size of K. Genes

Remote Sens. 2024, 16, 2287 8 of 20

are updated by adding modules generated via RLNet or crossover and mutation processes
within a generation. After breeding, based on the evaluation of an objective function
favoring fitness, nondominant genes are selected and passed on to the next generation,
updating the generation.

Algorithm 1: Population Strategy of Genetic Algorithm using Reinforcement Learning Network

Input: Max, number of generations G, Size of crossover selection K,
Crossover probability Pc, Mutation probability Pm,
Reinforcement Learning Network (RLNet)
Output: Parent population PoP

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 22

Algorithm 1: Population Strategy of Genetic Algorithm using Reinforcement Learn-
ing Network

Input : Max, number of generations 𝐺, Size of crossover selection 𝐾,
Crossover probability 𝑃, Mutation probability 𝑃,
Reinforcement Learning Network (RLNet)
Output : Parent population 𝑃𝑜𝑃

1: Stage II)
2: g ← 0 //initialize a generation counter.
3: 𝑅𝐿(𝑃𝑟𝑜𝑏) ← 1 //initialize the control parameter for exploration.
4: P ← initialize the parent population by uniform sampling
5: 𝑓 ← Evaluate(P)
6: [𝐹ଵ, 𝐹ଶ,…] ← NondominatedSort(𝑓,𝑓ሚ(𝑃))
7: while g < G do
8: k ← 0 // initialize an individual counter
9: O ← ∅ // offspring is created in each iteration k.
10: p ← BinaryTournamentSelction (P, [𝐹ଵ, 𝐹ଶ,…], K)
11: while k < K do
12: if rand() > 𝑅𝐿(𝑝𝑟𝑜𝑏) then
13: o ← Crossover(p,𝑃)
14: o ← Mutation(o,𝑃)
15: else
16: o ← sample an offspring from RLNet. // reinforcement learning network
17: end
18: O ← O ∪ o; k ← k + 1
19: end
20: 𝑓ᇱ ← Evaluate(O)
21: [𝐹ଵ, 𝐹ଶ,…] ← NondominatedSort(𝑓 ∪ 𝑓ᇱ,𝑓ሚ(𝑃) ∪ 𝑓ሚ(𝑂))
22: dist ← CrowdingDistance(𝐹ଵ, 𝐹ଶ,…)
23: P ← Selection (P ∪ O, [𝐹ଵ, 𝐹ଶ,…], dist, K)
24: g ← g + 1;
25: end
26: update 𝑅𝐿(𝑃𝑟𝑜𝑏) according to Equation (7).
27: Return parent population 𝑃𝑜𝑃

𝑅𝐿(𝑝𝑟𝑜𝑏) refers to the sampling probabilities obtained from the learned reinforce-
ment learning model. The larger the difference between the current loss and the loss esti-
mated by the reinforcement learning model, the more reasonable it will be to change the
module. The value of 𝑤௧௨ for the 𝑖 − 𝑡ℎ block increases if it has been changed fre-
quently, thus increasing the stability of the creation process by avoiding changes to the
block. This reduces frequent changes during the creation process. To shorten the search
time and minimize frequent changes, the 𝐸𝑝𝑜𝑐ℎ is also proposed. A flowchart and pseu-
docode outlining the overall approach are shown in Figure 3 and Algorithm 1, respec-
tively. 𝑅𝐿(𝑝𝑟𝑜𝑏)(௧)() = ௦௦(௨)ି௦௦(ௗ௧)௪ೌ್ೠ∗ா , (7)

4.2. Reinforcement Learning Network for Supported Genetic Algorithm
The reinforcement learning network (RLNet)’s action is to choose changes that can

significantly improve the module. Reinforcement learning changes the gene encoding to

RL(prob) refers to the sampling probabilities obtained from the learned reinforcement
learning model. The larger the difference between the current loss and the loss estimated by
the reinforcement learning model, the more reasonable it will be to change the module. The
value of wtabu for the i-th block increases if it has been changed frequently, thus increasing
the stability of the creation process by avoiding changes to the block. This reduces frequent
changes during the creation process. To shorten the search time and minimize frequent
changes, the Epoch is also proposed. A flowchart and pseudocode outlining the overall
approach are shown in Figure 3 and Algorithm 1, respectively.

RL(prob)(i)
(t) =

loss(Cur)− loss(Predict)
wtabu ∗ Epoch

, (7)

4.2. Reinforcement Learning Network for Supported Genetic Algorithm

The reinforcement learning network (RLNet)’s action is to choose changes that can
significantly improve the module. Reinforcement learning changes the gene encoding
to change its structure. The difference with GA is that GA does not consider improved

Remote Sens. 2024, 16, 2287 9 of 20

convergence speed, while reinforcement learning considers the convergence speed for im-
proved performance. The proposed method can efficiently find fast and effective modules
by separating roles to find structures that can achieve fast convergence.

In Algorithm 2, RLNet is used as a training algorithm for Stage I. To begin, determine
the required M and capacity N for reinforcement learning. Next, initialize the Q function
and network weight. The memory holds the updated information, improved loss, and
extracted features as inputs. s1 sets each state θ1, which is a feature extracted from the
input camera and LiDAR backbone. The DQN-based [56] action At is taken from the
CNN literature mentioned above. RLNet training is stopped once the loss is lower than a
predetermined threshold. The population can be utilized when the change in loss decreases,
and the backbone may have different standards for this.

Policy*(s) = argamax{Q(a, s)}, (8)

Q(a, s)← Q(a, s) + α·
(
rs + γmaxa′Q

(
a′, s′

))
, (9)

Q is a state-dependent action function, and Equation (8) was constructed to maximize Q.
The reward of reinforcement learning is Equation (9), also constructed to maximize Q. There is
a certain probability that it will act the opposite of rs, and this value is minimal. The action that
maximizes Q is determined at time t, and this is the CNN literature that will be changed to At.

The action At plays a crucial role in calculating rewards and penalties when it comes to
reinforcement learning. This type of learning involves taking actions and updating rewards
and penalties accordingly to achieve a specific goal. In the case of this paper, the goal of
RLNet is to determine whether the loss has decreased more or less than expected. To make
this determination, the gene module Pt−1 and the Ot module, both of which are affected by
the action, must be saved and evaluated through learning. Reinforcement learning reward
Equation (10) is determined through loss prediction.

Algorithm 2: Reinforcement Learning Network Training Method

Input: Embedding feature θk Output: Action At

Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 22

Algorithm 2: Reinforcement Learning Network Training Method

Input : Embedding feature 𝜃 Output : Action 𝐴௧

1: Stage I)
2: Initialize replay memory 𝑀 to capacity N
3: Initialize action-value function 𝑄 with random weights
4: Initialize threshold
5: Initialize update-iter
6: for episode = 1, max do
7: Initialize sequence 𝑠ଵ = {𝜃ଵ} and preprocessed sequenced 𝜙ଵ=𝜙(𝑠ଵ)
8: for t = 1, T do
9: With probability 𝑒 selection a random action 𝑎௧
10: Otherwise select 𝐴௧ = 𝑚𝑎𝑥𝑄∗(𝜙(𝑠௧), 𝑎; 𝜃)
11: Execute action 𝐴௧ in source dataset
12: Change the module 𝑂௧// select CNN literature
13: Evaluation of object detection networks with modified modules (𝑃௧, 𝑂௧)
14: Training object detection network
15: if update-iter then
16: Observe reward according to Eq. (11).
17: Update Reinforcement learning Network (RLNet)
18: else
19: Freeze Reinforcement Learning Network (RLNet) Weight
20: end
21: end
22: if Loss < threshold then
23: Stop training RLNet
24: Next Stage II
25: end
26: end

The purpose of the reinforcement learning network is to improve loss. 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝐷𝑖𝑓𝑓 ቀ𝐿𝑜𝑠𝑠௩(𝑃௧ିଵ, 𝑂௧)ቁ = 𝐿𝑜𝑠𝑠௩(𝑃௧ିଵ) − 𝐿𝑜𝑠𝑠௩(𝑂௧), (10)

𝑅𝑒𝑤𝑎𝑟𝑑𝑠 = ൜ 1 𝑖𝑓 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 > 0 𝑎𝑛𝑑 𝐿𝑜𝑠𝑠(𝑃௧) < 𝐿𝑜𝑠𝑠(𝑂௧)0.5 𝑖𝑓 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 > 0 𝑎𝑛𝑑 𝐿𝑜𝑠𝑠(𝑃௧) > 𝐿𝑜𝑠𝑠(𝑂௧), 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = −1 𝑖𝑓 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 < 0
(11)

Rewards are determined by comparing the learning loss of the previous module with
that of the currently changed module. Reinforcement learning aims to find module con-
figurations that converge faster than genetic algorithms; therefore, if the module 𝑂௧ com-
posed of predictions has more significant improvement than the gene module 𝑃௧, a re-
ward of 1 is given. If reinforcement learning can accurately predict loss, imposing a pen-
alty when the current module is improved is desirable. However, in this paper, the goal
is to search modules efficiently. If a penalty is given just because the prediction module 𝑂௧ has improved less than the gene module 𝑃௧ , the performance of the reinforcement
learning-based module may decline. So, there is an improvement, but the current module
converges faster, and only half the reward is given. A penalty is given when the loss is
updated without improvement.

4.3. Search Strategy for Fast Convergence Module
To find a globally optimal solution to an optimization problem, designing the objec-

tive function and constraints is important. The problem with NAS is that the search space

Remote Sens. 2024, 16, 2287 10 of 20

The purpose of the reinforcement learning network is to improve loss.

Decision = Di f f
(

LossAvg(Pt−1, Ot)
)
= Lossavg(Pt−1)− Lossavg(Ot), (10)

Rewards =
{

1 i f Decision > 0 and Loss(P t)< Loss(O t)
0.5 i f Decision > 0 and Loss(P t)> Loss(O t)

,

Penalty = −1 i f Decision < 0
(11)

Rewards are determined by comparing the learning loss of the previous module
with that of the currently changed module. Reinforcement learning aims to find module
configurations that converge faster than genetic algorithms; therefore, if the module Ot
composed of predictions has more significant improvement than the gene module Pt, a
reward of 1 is given. If reinforcement learning can accurately predict loss, imposing a
penalty when the current module is improved is desirable. However, in this paper, the goal
is to search modules efficiently. If a penalty is given just because the prediction module
Ot has improved less than the gene module Pt, the performance of the reinforcement
learning-based module may decline. So, there is an improvement, but the current module
converges faster, and only half the reward is given. A penalty is given when the loss is
updated without improvement.

4.3. Search Strategy for Fast Convergence Module

To find a globally optimal solution to an optimization problem, designing the objective
function and constraints is important. The problem with NAS is that the search space for
the global optimal solution has a wide range of objective functions and constraints, so it
takes a long time. In this study, GA-based NAS was selected to solve problems with fast
convergence and performance, and the search space is still enormous. To assist with this, we
proposed a NAS algorithm using reinforcement learning. The important point is that if the
value is large based on a certain probability RL(prob), the structure proposed using RLNet
is added to the sample and then, the optimal solution is found using nondominated sort.
Since the module proposed via reinforcement learning may not always be nondominant,
all proposed outputs must be evaluated. The fitness function evaluates performance and
convergence, Frames Per Second (FPS) and is given in Equation (12).

FitnessGA_RL = −α ∗ Loss + β ∗ FPS + γ ∗ Convergence(loss, Q), (12)

Loss is an improvement of the network and includes classification and box regression
for detection as learning. As learning improves, the loss should become smaller. So, we
gave it a negative value so that it improves as the value becomes smaller. We think about
calculating fitness for convergence like making a prediction. For a prediction, two methods
were used in parallel. First, we compared the current loss and the previous loss using
Equation (13), as used in reinforcement learning.

Convergence(loss, Q) = |Lcur − Lpredict|, (13)

Our reinforcement learning predicts loss improvement for each work of the CNN
literature (1–8). Our learning strategy is to predict the loss for each configuration change
and select the module with the highest change. Convergence(loss, Q) included a small value
as a fitness function to control uncertainty in the calculated value. Through this equation,
the fitness function can contain the possibility of improvement for the next generation.
Lastly, FPS refers to calculation speed, and as the amount of calculation increases, FPS
decreases. Our goal is to maximize the fitness function.

5. Experiment Setup and Evaluation of the Proposed Method

In this section, we first describe our implementation details. Then, we compare our
proposed NAS with NSGA-Net and other modules. NSGA-Net compares the efficiency and

Remote Sens. 2024, 16, 2287 11 of 20

performance of the module creation process. GPU-Day is used to evaluate the efficiency of
the production process.

5.1. Implementation Details

The search itself is repeated five times with different initial random seeds. We use
the EfficientDet [57] loss function for learning the associated weights for each architecture.
All experiments are performed on Nvidia 3080Ti GPU cards. The experimental dataset
used the Dense dataset [4], and the composition of the train, validation, and test sets is
summarized in Table 1. Stage I uses only the T1 dataset, while Stage II utilizes all datasets.
In other words, the T1 dataset refers to the source data described in the Method Overview
Section, and the T1-T6 datasets refer to the target data.

Table 1. Dataset size used for training, testing, and validation.

Dataset Environmental Condition (Light, Weather) Training Validation Testing

T1 Daytime, Clear 2183 399 1005

T2 Daytime, Snow 1615 226 452

T3 Daytime, Fog 525 69 140

T4 Nighttime, Clear 1343 409 877

T5 Nighttime, Snow 1720 240 480

T6 Nighttime, Fog 525 69 140

Total 8238 1531 3189

The performance is evaluated using mean average precision (mAP). We have applied
the PASCAL VOC 11-point interpolation method to compute the average precision (AP)
for each class. Later, the average is computed using mean average precision across all the
classes. In our case, there are two object class labels, i.e., pedestrian and vehicle. So, we
compute the AP for each class using Equation (14):

APlabel(obj) =
1
11∑r∈{0, 0.1, ..., 1} Pinterp(r), (14)

where label = {vehicle, pedestrian}, obj is the index of class values in the label, and P
corresponds to the precision at each interpolated recall r. The mAP is computed using
Equation (15). The IoU threshold was set to 0.5.

mAP0.5 =
1
n
(APPedestrian + APVehicle), (15)

Here, n is the number of class labels.
Figure 5 shows the specific structure of the network used in the experiment, using

EfficientDet. EfficientDet proposed a BiFPN layer to efficiently and quickly converge
learning. In this paper, a comparative experiment was conducted by adding a module
to the EfficientDet structure for efficient module testing. The overall structure of the
object detection network used EfficientDet, but to prove its effectiveness, experiments were
conducted using ResNet [1], Efficientnet [58], and ResT [59] backbone.

In order to add a module to EfficientDet for module evaluation, the feature map size
had to be changed to a specific size. We created a feature map of a specific size using channel
attention used in CBAM. Figure 5a illustrates the process and (b) indicates the specific
feature map size used in the experiment. k is the kernel size of 2d convolution in Figure 5b.
First, from the bottom, we calculate F(i)

C,L, a recalibration process for a total of three feature

maps. The detailed process of F(i)
C,L is described in Section 4.1, and it was concatenated and

input into the BiFPN layer to use the EfficientDet structure without change. EffcientDet

Remote Sens. 2024, 16, 2287 12 of 20

extracts five feature maps from the backbone and inputs them into the BiFPN Layer, but
in this paper, modules for three feature maps were created. When applying GA to find a
CNN-based module, the sizes of W and H of the fourth and fifth feature maps were tiny, so
it did not help improve performance. The image used RGB data, and the LiDAR data used
the Range Image proposed by Laser-Net [60], which is a projection of the size of the image.
Image pixels were resized to 896 for learning and evaluation.

Remote Sens. 2024, 16, x FOR PEER REVIEW 13 of 22

The performance is evaluated using mean average precision (mAP). We have applied
the PASCAL VOC 11-point interpolation method to compute the average precision (AP)
for each class. Later, the average is computed using mean average precision across all the
classes. In our case, there are two object class labels, i.e., pedestrian and vehicle. So, we
compute the AP for each class using Equation (14): 𝐴𝑃() = ଵଵଵ ∑ 𝑃௧(𝑟)∈{,.ଵ,…,ଵ} , (14)

where 𝑙𝑎𝑏𝑒𝑙 = {𝑣𝑒ℎ𝑖𝑐𝑙𝑒, 𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛}, obj is the index of class values in the 𝑙𝑎𝑏𝑒𝑙, and 𝑃
corresponds to the precision at each interpolated recall 𝑟. The mAP is computed using
Equation (15). The IoU threshold was set to 0.5. 𝑚𝐴𝑃.ହ = ଵ (𝐴𝑃ௗ௦௧ + 𝐴𝑃), (15)

Here, n is the number of class labels.
Figure 5 shows the specific structure of the network used in the experiment, using

EfficientDet. EfficientDet proposed a BiFPN layer to efficiently and quickly converge
learning. In this paper, a comparative experiment was conducted by adding a module to
the EfficientDet structure for efficient module testing. The overall structure of the object
detection network used EfficientDet, but to prove its effectiveness, experiments were con-
ducted using ResNet [1], Efficientnet [58], and ResT [59] backbone.

Figure 5. Describes implementation details. Backbone is displayed in the table with the EfficientDet
structure. (a) Attention techniques are used as a process to fuse features of different sizes within the
middle layer. (b) Size of experimental feature map.

In order to add a module to EfficientDet for module evaluation, the feature map size
had to be changed to a specific size. We created a feature map of a specific size using
channel attention used in CBAM. Figure 5a illustrates the process and (b) indicates the
specific feature map size used in the experiment. 𝑘 is the kernel size of 2d convolution in
Figure 5b. First, from the bottom, we calculate 𝐹,(), a recalibration process for a total of
three feature maps. The detailed process of 𝐹,() is described in Section 4,1, and it was
concatenated and input into the BiFPN layer to use the EfficientDet structure without
change. EffcientDet extracts five feature maps from the backbone and inputs them into the
BiFPN Layer, but in this paper, modules for three feature maps were created. When ap-
plying GA to find a CNN-based module, the sizes of 𝑊 and 𝐻 of the fourth and fifth

Figure 5. Describes implementation details. Backbone is displayed in the table with the EfficientDet
structure. (a) Attention techniques are used as a process to fuse features of different sizes within the
middle layer. (b) Size of experimental feature map.

Table 2 shows the experimental hyperparameters. Search space is the parameter of
the initial GA gene block, and the block composition consists of up to six nodes. The
initial channel is extracted from the backbone as described in Figure 5b and is a conv
channel. Learning optimization is a dropout and update method to prevent the overfitting
of learning, and when the dropout rate (rdropout

)
is less than 0.5, overfitting problems often

occur. Adam [61] optimization was applied to gradient descent for network learning, and
the search strategy is a parameter for the regeneration process of GA. As the population size
grew, there was a problem of overfitting or increased learning instability, and in this paper,
experiments showed that the number 10 was the most stable and that learning and network
architecture search functioned normally. Crossover and mutation are the probabilities of
the combination and the change of two selected genes, and α, β, and γ are the effects of
each element in the fitness evaluation and have the greatest evaluation of loss.

Lastly, as reinforcement learning parameters, alpha and beta suggest the ratio of loss
and convergence of reinforcement learning predictions. A batch is not a batch of images
and LiDAR data; it refers to the size of the episode. What is remarkable is that batch was
used in reinforcement learning to increase learning stability. However, the batch was not
used in the NAS module creation and object detection network learning. To evaluate the
creation time (GPU-Days) and learning convergence time of an object detection network,
the influence of batch must be reduced.

Remote Sens. 2024, 16, 2287 13 of 20

Table 2. Hyperparameter setting.

Categories Parameters Settings

Search space Initial channel
Maximum nodes

160
6

Learning optimizer
Dropout rate

(
rdropout

)
Maximum epochs
Learning rate schedule

0.5
500

ADAM [61]

Search strategy

Population size
Crossover probability
Mutation probability
α (Loss)
β (FPS)
γ (Convergence)

10
0.3
0.1
0.8
0.1
0.1

Reinforcement
Learning

Batch size
Gamma
εstart

εend

τ
Learning rate

128
0.99
0.9
0.05

10,000
1 × 10−4

5.2. Effectiveness and Efficiency of Proposed Method

Table 3 shows the results of an experiment by changing the backbone, comparing the
method proposed in the modified EfficientDet-b3 with the existing hand-crafted module. In
addition, we evaluated performance, FPS, and convergence speed by comparing the existing
modules CBAM and AFAM, which were manually designed by experts. By changing the
backbone to ResNet and ResT, we verified whether module search using reinforcement
learning efficiently generates modules even if the backbone is changed. CBAM [10] is an
efficient attention mechanism that combines features emphasized in channel and spatially
to improve performance in various tasks through refined calibration. The proposed module
improved performance compared to the CBAM module, reduced network learning time,
and improved performance.

Table 3. Result of object detection with different existing modules and backbones on Dense dataset.

Backbone Fusion
Module (C, L)

FPS
(Frame/s) Top1-mAP (%) Number of Epochs to Convergence

ResNet

None 15 0.275 16
CBAM 12 0.278 28(+12)
AFAM (CBAM + MMTM) 10 0.293 29(+13)
Propose 11 0.292 20(+4)

Efficientnet-b3

None 15 0.414 28
CBAM 12 0.388 18(−10)
AFAM (CBAM + MMTM) 10 0.419 27(−1)
Propose 11 0.434 24(−4)

ResT

None 5 0.247 35
CBAM 4 0.299 40(+5)
AFAM (CBAM + MMTM) 4 0.319 45(+10)
Propose 3 0.334 31(−4)

We conducted a comparative experiment with the existing research, AFAM, which
requires contrastive learning and uncertainty calculation. In this paper, only the module’s
structure was used without calculating the uncertainty of AFAM. The module configuration
of AFAM is a fusion of CBAM and MMTM and determines the camera’s or LiDAR’s weight
according to uncertainty to construct a recalibrated feature map. Here, without calculating

Remote Sens. 2024, 16, 2287 14 of 20

uncertainty, the features FC,L extracted from each backbone were input to the AFAM
module, and then, two recalibrated feature maps F′C and F′L with weights for the two
sensors were created. None is a concatenation method without an intermediate module,
corresponding to (b) in Figure 1.

In the case of ResNet, concatenation at the intermediate level is more efficient than
configuring modules. Experimental results show performance improvement when adding
modules, and overall learning time increases. Efficientnet-b3 is the best backbone for
the EfficientDet structure. Therefore, the performance and convergence results were the
most efficient. CBAM focuses on features for each sensor, and AFAM proposes methods
to recalibrate backbone features extracted from both sensors. When extracting with the
Efficientnet backbone, recalibrating the two features performed excellently. Based on the
experimental results, the features of the two sensors increase by 0.3% when recalibrating.
In Transformer-based backbone ResT, MLP-based CBAM and AFAM improved learning
performance, but the learning time increased accordingly. Only modules found through
NAS achieved faster performance and learning convergence. Unlike ResNet, we were able
to confirm that the attention module achieves efficient performance improvement in the
Transformer-based backbone.

Table 4 shows the experimental results to verify the effectiveness of the module. In
this paper, we designed a module that uses NAS to support object detection networks in
adverse weather environments. The comparative experiment used intermediate fusion
methods and EA-based NSGA-NET and EEEA. In the case of EEEA, when looking for a
lightweight model by setting a specific threshold in NSGA-NET, an early exit was proposed
to reduce GPU-Days dramatically. However, as a result of applying it through experiments,
in order to set the threshold, it was necessary to perform learning at least once and find an
appropriate threshold for early exit to operate. Otherwise, there was no difference between
NSGA-NET and GPU-Days. In Table 4, only the best results are written.

Table 4. Evaluating the efficiency and effectiveness of modules created using evolutionary methods.

Backbone Module
Search Method Components GPU-Days FPS (Frame/s) Top1-mAP (%)

Number of
Epochs to

Convergence

ResNet

None - - 15 0.275 16
NSGA-NET GA 4 11 0.288 22(+6)

EEEA GA + Rule 0.2 13 0.280 17(+1)
Propose GA + RL 3 11 0.292 20(+4)

Efficientnet-b3

None - - 15 0.414 28
NSGA-NET GA 4 11 0.428 25(−3)

EEEA GA + Rule 0.2 12 0.381 22(−6)
Propose GA + RL 3 11 0.434 24(−4)

ResT

None - - 5 0.247 35
NSGA-NET GA 8 3 0.322 33(−2)

EEEA GA + Rule 0.5 4 0.283 30(−5)
Propose GA + RL 7 3 0.334 31(−4)

In the case of ResNet, the modules found based on genes improved performance like
the hand-crafted modules CBAM and AFAM, but the overall learning time increased. In the
case of Efficientnet-b3, the performance of the attention module has been improved, and
the convergence speed can also be confirmed to have been increased. Through experiments,
it can be confirmed that the attention module operates most effectively in the EfficientDet
structure. Similarly, in ResT, the attention module shows significant results in terms of
learning time and performance improvement.

Overall, through all experiments, it was confirmed that ResNet’s backbone attention
module improves performance but increases learning time. In the case of Efficientnet
and ResT, the configuration of the attention module was able to simultaneously increase

Remote Sens. 2024, 16, 2287 15 of 20

learning time and performance. In the case of CBAM, the results show deviations such as
performance decreases or increases, while AFAM has fewer deviations, but the learning
time increases. In the case of NAS based on a genetic algorithm, NSGA-NET can reliably
find modules. However, it takes a lot of GPU-Days and to solve this problem, EEEA has
been proposed. Nevertheless, in EEEA, there were many cases where no performance
improvement was achieved or the extent of the improvement was minimal. For early exit,
it is judged that it is not possible to find a module with fast performance and convergence
speed due to limitations in parameter size. Therefore, assistance with the proposed method,
reinforcement learning, can contribute to reliably finding effective and efficient modules.

5.3. Ablation Study

A limitation of NAS research is that network reproducibility is difficult. In this study,
the training loss steadily decreased, but the validation loss diverged, causing frequent
overfitting. The reason is that learning stability decreased as the proposed method repeated
module search simultaneously with learning. As one of the stable convergence methods of
learning, Dropout [62], a regulation technique, is simple but can increase learning stability.
Setting a high dropout rate for convergence in the middle layer is adequate. In the case
of existing AFAM and CBAM, learning was stable regardless of rdropout, but learning was
unstable in the evolutionary method.

Figure 6 shows the learning stability and performance of the proposed method for each
rdropout. When rdropout = 0.1, performance deteriorates due to low learning stability in the
NAS that learns while changing the module configuration. Overall, the stability of learning
is an essential factor in module search. As the value of rdropout increases, the learning
stability is secured, and a module with performance that meets the purpose can be found.
However, at rdropout = 0.7, the stability of learning and the convergence speed increase
simultaneously, increasing GPU-Days. The problem of learning stability, a limitation of
NAS research, was compensated for with dropout, but sometimes, it was impossible to
find a module with fast convergence.

Remote Sens. 2024, 16, x FOR PEER REVIEW 17 of 22

Figure 6. The proposed method achieved the best performance at 𝑟ௗ௨௧ = 0.5 and experimental
results by dropout rate.

Figure 7 shows the average learning time. If EfficientDet uses only cameras, it con-
verges very quickly. However, as explained later, the performance is lower than the sensor
fusion result. Our experiments were based on the simple fusion EfficientDet (C, L). Hand-
crafted CBAM and AFAM took a longer overall learning time than NAS. The characteris-
tics of the two modules are that they are based on MLP, so learning takes a lot of time. The
modules found through NAS comprise the CNN literature, enabling efficient learning
from image-based data. For this reason, we found a module with fast learning conver-
gence. CNN-based NAS studies such as NSGA have advantages in terms of training time.

Figure 7. Networks’ average training time, unit: hour. The red line represents the average, and the
box represents the deviation.

Figure 8 illustrates the practical implications of our research, showing the results of
AFAM with the slightest deviation as the average and variance values for mAP, a perfor-
mance indicator from an effective perspective. CBAM and AFAM are based on MLP and
may result in slight deviations. This is a significant finding as it demonstrates that the
MLP-based module can effectively reduce learning deviation. NSGA and EEEA show sig-
nificant differences in performance. EEEA limits the size of parameters to find efficient
modules. Therefore, performance decreases but learning time is advantageous. On the
other hand, the proposed method shows similar means and deviation accuracy as NSGA.
This problem is with a wide search space, such as GA-based research. In the context of
object detection, where CNN-based modules may exhibit large learning deviations, this is
a crucial insight. It highlights the high probability of overfitting and the need for appro-
priate regulation techniques such as dropout.

Figure 6. The proposed method achieved the best performance at rdropout = 0.5 and experimental
results by dropout rate.

Figure 7 shows the average learning time. If EfficientDet uses only cameras, it con-
verges very quickly. However, as explained later, the performance is lower than the sensor
fusion result. Our experiments were based on the simple fusion EfficientDet (C, L). Hand-
crafted CBAM and AFAM took a longer overall learning time than NAS. The characteristics
of the two modules are that they are based on MLP, so learning takes a lot of time. The
modules found through NAS comprise the CNN literature, enabling efficient learning from
image-based data. For this reason, we found a module with fast learning convergence.
CNN-based NAS studies such as NSGA have advantages in terms of training time.

Figure 8 illustrates the practical implications of our research, showing the results
of AFAM with the slightest deviation as the average and variance values for mAP, a
performance indicator from an effective perspective. CBAM and AFAM are based on MLP
and may result in slight deviations. This is a significant finding as it demonstrates that

Remote Sens. 2024, 16, 2287 16 of 20

the MLP-based module can effectively reduce learning deviation. NSGA and EEEA show
significant differences in performance. EEEA limits the size of parameters to find efficient
modules. Therefore, performance decreases but learning time is advantageous. On the
other hand, the proposed method shows similar means and deviation accuracy as NSGA.
This problem is with a wide search space, such as GA-based research. In the context of
object detection, where CNN-based modules may exhibit large learning deviations, this is a
crucial insight. It highlights the high probability of overfitting and the need for appropriate
regulation techniques such as dropout.

Remote Sens. 2024, 16, x FOR PEER REVIEW 17 of 22

Figure 6. The proposed method achieved the best performance at 𝑟ௗ௨௧ = 0.5 and experimental
results by dropout rate.

Figure 7 shows the average learning time. If EfficientDet uses only cameras, it con-
verges very quickly. However, as explained later, the performance is lower than the sensor
fusion result. Our experiments were based on the simple fusion EfficientDet (C, L). Hand-
crafted CBAM and AFAM took a longer overall learning time than NAS. The characteris-
tics of the two modules are that they are based on MLP, so learning takes a lot of time. The
modules found through NAS comprise the CNN literature, enabling efficient learning
from image-based data. For this reason, we found a module with fast learning conver-
gence. CNN-based NAS studies such as NSGA have advantages in terms of training time.

Figure 7. Networks’ average training time, unit: hour. The red line represents the average, and the
box represents the deviation.

Figure 8 illustrates the practical implications of our research, showing the results of
AFAM with the slightest deviation as the average and variance values for mAP, a perfor-
mance indicator from an effective perspective. CBAM and AFAM are based on MLP and
may result in slight deviations. This is a significant finding as it demonstrates that the
MLP-based module can effectively reduce learning deviation. NSGA and EEEA show sig-
nificant differences in performance. EEEA limits the size of parameters to find efficient
modules. Therefore, performance decreases but learning time is advantageous. On the
other hand, the proposed method shows similar means and deviation accuracy as NSGA.
This problem is with a wide search space, such as GA-based research. In the context of
object detection, where CNN-based modules may exhibit large learning deviations, this is
a crucial insight. It highlights the high probability of overfitting and the need for appro-
priate regulation techniques such as dropout.

Figure 7. Networks’ average training time, unit: hour. The red line represents the average, and the
box represents the deviation.

Remote Sens. 2024, 16, x FOR PEER REVIEW 18 of 22

Figure 8. Network’s average mAP. The red line represents the average, and the box represents the
deviation.

Also, our research uncovers the complex nature of NAS studies. While they hold
promise for high performance, there are instances where the performance falls short of
the baseline network. This variability in learning performance presents a significant chal-
lenge. Even with the implementation of dropout, further research is necessary to identify
modules with consistently good performance and to address reproducibility problems.

Next, Table 5 is an experiment to check the effect of fusion prediction on the gene
generation process in reinforcement learning. Using ResNet and Efficientnet backbone in
the EfficientDet structure, a comparative experiment was conducted between the cases
where only loss and FPS are included in fitness and adding predicted convergence. The
comparative experiments confirmed that accuracy and performance were slightly im-
proved. Although the difference in values is not significant, it has been verified that rein-
forcement learning results are involved in the gene generation process by influencing the
fitness function, and through this, convergence speed and slight performance improve-
ment can be achieved. As the population grows and becomes more diverse, the impact of
reinforcement learning will become much more significant.

Table 5. Result of including the prediction loss of reinforcement learning in the genetic algorithm’s
fitness function. w/: with.

Backbone Fitness Top1-Acc
Number of Epochs to

Convergence

EfficientDet-b3
Loss, FPS 0.406 25

w/Convergence (Loss, Q) 0.424 24
ResNet-

EfficientDet
Loss, FPS 0.290 21

w/Convergence (Loss, Q) 0.292 20

Figure 9a–d show the qualitative results of the EfficientDet, CBAM-EfficientDet, and
AFAM-EfficientDet papers using cameras only and the proposed method. Camera-based
networks and other modules may see inaccurate bounding boxes in Day, Clear situations.
Since CBAM and AFAM used the MLP-based squeeze and excitation [20] module, errors
frequently occurred when the vehicle was truncated. However, since the proposed
method generates modules from the 2D CNN literature, it shows robust results. Object
detection performs well both Day and Night in foggy situations that require fusion during
adverse weather situations. In particular, we could confirm that the vehicle’s bounding
box was accurately found even at night. However, an interesting result is that the false
detection rate increases in the 2D CNN literature-based modules like camera-based net-
works in Day and Fog situations.

Figure 8. Network’s average mAP. The red line represents the average, and the box represents
the deviation.

Also, our research uncovers the complex nature of NAS studies. While they hold
promise for high performance, there are instances where the performance falls short of the
baseline network. This variability in learning performance presents a significant challenge.
Even with the implementation of dropout, further research is necessary to identify modules
with consistently good performance and to address reproducibility problems.

Next, Table 5 is an experiment to check the effect of fusion prediction on the gene
generation process in reinforcement learning. Using ResNet and Efficientnet backbone in
the EfficientDet structure, a comparative experiment was conducted between the cases
where only loss and FPS are included in fitness and adding predicted convergence. The
comparative experiments confirmed that accuracy and performance were slightly improved.
Although the difference in values is not significant, it has been verified that reinforcement
learning results are involved in the gene generation process by influencing the fitness
function, and through this, convergence speed and slight performance improvement can be
achieved. As the population grows and becomes more diverse, the impact of reinforcement
learning will become much more significant.

Remote Sens. 2024, 16, 2287 17 of 20

Table 5. Result of including the prediction loss of reinforcement learning in the genetic algorithm’s
fitness function. w/: with.

Backbone Fitness Top1-Acc Number of Epochs to
Convergence

EfficientDet-b3
Loss, FPS 0.406 25

w/Convergence (Loss, Q) 0.424 24

ResNet-
EfficientDet

Loss, FPS 0.290 21

w/Convergence (Loss, Q) 0.292 20

Figure 9a–d show the qualitative results of the EfficientDet, CBAM-EfficientDet, and
AFAM-EfficientDet papers using cameras only and the proposed method. Camera-based
networks and other modules may see inaccurate bounding boxes in Day, Clear situations.
Since CBAM and AFAM used the MLP-based squeeze and excitation [20] module, errors
frequently occurred when the vehicle was truncated. However, since the proposed method
generates modules from the 2D CNN literature, it shows robust results. Object detection
performs well both Day and Night in foggy situations that require fusion during adverse
weather situations. In particular, we could confirm that the vehicle’s bounding box was
accurately found even at night. However, an interesting result is that the false detection
rate increases in the 2D CNN literature-based modules like camera-based networks in Day
and Fog situations.

Remote Sens. 2024, 16, x FOR PEER REVIEW 19 of 22

Figure 9. Object detection performance qualitative results. (a) Only camera feature-based object de-
tection result; (b–d) camera-LiDAR fusion-based result; (b) with CBAM module; (c) with AFAM
module; (d) proposed module using reinforcement learning and genetic algorithm.

6. Conclusions
Object detection is a crucial part of autonomous navigation in dynamic environ-

ments. A lot of research has been conducted in this area, which has led to the development
of object detection modules based on sensor fusion. However, these modules are challeng-
ing in handling frequent training to handle adverse weather conditions and extreme light-
ing changes. To address these shortcomings, a new method has been proposed which uses
a genetic algorithm to ensure diversity and reinforcement learning for optimization. This
method improves object detection accuracy and enables module search with fast conver-
gence speed. Experiments conducted on a benchmark dataset show that this proposed
method improves overall detection accuracy and reduces learning convergence time.

The study focuses on improving neural networks’ performance and convergence
speed for object detection in adverse weather conditions. The proposed method affects
real-world scenarios in a learning environment with various situations and contributes to
creating effective modules for object detection. However, reproducibility difficulties and
deviations in learning performance are problems. In the future, this study aims to expand

Figure 9. Object detection performance qualitative results. (a) Only camera feature-based object
detection result; (b–d) camera-LiDAR fusion-based result; (b) with CBAM module; (c) with AFAM
module; (d) proposed module using reinforcement learning and genetic algorithm.

Remote Sens. 2024, 16, 2287 18 of 20

6. Conclusions

Object detection is a crucial part of autonomous navigation in dynamic environments.
A lot of research has been conducted in this area, which has led to the development of
object detection modules based on sensor fusion. However, these modules are challenging
in handling frequent training to handle adverse weather conditions and extreme lighting
changes. To address these shortcomings, a new method has been proposed which uses a
genetic algorithm to ensure diversity and reinforcement learning for optimization. This
method improves object detection accuracy and enables module search with fast conver-
gence speed. Experiments conducted on a benchmark dataset show that this proposed
method improves overall detection accuracy and reduces learning convergence time.

The study focuses on improving neural networks’ performance and convergence speed
for object detection in adverse weather conditions. The proposed method affects real-world
scenarios in a learning environment with various situations and contributes to creating
effective modules for object detection. However, reproducibility difficulties and deviations
in learning performance are problems. In the future, this study aims to expand research to
secure uniform object detection performance in a frequent data learning environment and
generalize the model through the evaluation of various datasets by considering the issue
of reproducibility.

Author Contributions: Conceptualization, T.-L.K. and T.-H.P.; methodology, T.-L.K. and T.-H.P.;
software, T.-L.K.; validation, T.-L.K. and T.-H.P.; formal analysis, T.-L.K. and T.-H.P.; investigation,
T.-L.K. and T.-H.P.; resources, T.-H.P.; data curation, T.-L.K.; writing—original draft preparation,
T.-L.K.; writing—review and editing, T.-L.K.; visualization, T.-L.K.; supervision, T.-H.P.; project
administration, T.-H.P.; funding acquisition, T.-H.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Innovative Human Resource Development for Local Intellec-
tualization program through the Institute of Information & Communications Technology Planning &
Evaluation (IITP) grant funded by the Korean government (MSIT) (IITP-2024-2020-0-01462).

Data Availability Statement: Data available in a publicly accessible repository [4,7,10,14,16].

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June 26–1 July 2016; pp. 770–778.
2. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of

the Computer Vision–ECCV (ECCV), Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37.
3. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
4. Bijelic, M.; Gruber, T.; Mannan, F.; Kraus, F.; Ritter, W.; Dietmayer, K.; Heide, F. Seeing through fog without seeing fog: Deep

multimodal sensor fusion in unseen adverse weather. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Seattle, WA, USA, 16–18 June 2020; pp. 11682–11692.

5. Gu, R.; Zhang, S.-X.; Xu, Y.; Chen, L.; Zou, Y.; Yu, D. Multi-modal multi-channel target speech separation. IEEE J. Sel. Top. Signal
Process. 2020, 14, 530–541. [CrossRef]

6. Li, Y.; Yu, A.W.; Meng, T.; Caine, B.; Ngiam, J.; Peng, D.; Shen, J.; Lu, Y.; Zhou, D.; Le Quoc, V.; et al. DeepFusion: Lidar-Camera
Deep Fusion for Multi-Modal 3D Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 17182–17191.

7. Joze, H.R.V.; Shaban, A.; Iuzzolino, M.L.; Koishida, K. MMTM: Multimodal transfer module for CNN fusion. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 16–18 June 2020; pp. 13289–13299.

8. Menghani, G. Efficient deep learning: A survey on making deep learning models smaller, faster, and better. ACM Comput. Surv.
2023, 55, 1–37. [CrossRef]

9. Menghani, G. Microsoft coco: Common objects in context. In Proceedings of the Computer Vision–ECCV (ECCV), Zurich,
Switzerland, 6–12 September 2014; pp. 740–755.

10. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the Computer Vision–
ECCV (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

11. Kim, T.-L.; Arshad, S.; Park, T.-H. Adaptive Feature Attention Module for Robust Visual–LiDAR Fusion-Based Object Detection
in Adverse Weather Conditions. Remote Sens. 2023, 55, 3992. [CrossRef]

https://doi.org/10.1109/JSTSP.2020.2980956
https://doi.org/10.1145/3578938
https://doi.org/10.3390/rs15163992

Remote Sens. 2024, 16, 2287 19 of 20

12. Kim, T.-L.; Park, T.-H. Camera-lidar fusion method with feature switch layer for object detection networks. Sensors 2022, 22, 7163.
[CrossRef] [PubMed]

13. Gao, S.; Li, Z.-Y.; Han, Q.; Cheng, M.-M.; Wang, L. RF-Next: Efficient receptive field search for convolutional neural networks.
IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 2984–3002. [CrossRef] [PubMed]

14. Lu, Z.; Whalen, I.; Dhebar, Y.; Deb, K.; Goodman, E.D.; Banzhaf, W.; Boddeti, V.N. Multiobjective evolutionary design of deep
convolutional neural networks for image classification. IEEE Trans. Evol. Comput. 2020, 25, 277–291. [CrossRef]

15. Angeline, P.J.; Saunders, G.M.; Pollack, J.B. An evolutionary algorithm that constructs recurrent neural networks. IEEE Trans.
Neural Netw. 1994, 5, 54–65. [CrossRef] [PubMed]

16. Termritthikun, C.; Pholpramuan, J.; Arpapunya, A.; Nee, T.P. EEEA-Net: An Early Exit Evolutionary Neural Architecture Search.
Eng. Appl. Artif. Intell. 2021, 104, 104397. [CrossRef]

17. Tenorio, M.; Lee, W.-T. Self organizing neural networks for the identification problem. Adv. Neural Inf. Process. Syst. 1988, 1. Avail-
able online: https://proceedings.neurips.cc/paper/1988/hash/f2217062e9a397a1dca429e7d70bc6ca-Abstract.html (accessed on
18 June 2024).

18. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

19. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA, 20–25 June 2009.

20. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141.

21. Cui, T.; Zheng, F.; Zhang, X.; Tang, Y.; Tang, C.; Liao, X. Fast One-Stage Unsupervised Domain Adaptive Person Search. arXiv
2024, arXiv:2405.02832.

22. Peng, J.; Zhang, X.; Wang, Y.; Liu, H.; Wang, J.; Huang, Z. ReFID: Reciprocal Frequency-aware Generalizable Person Re-
identification via Decomposition and Filtering. ACM Trans. Multimed. Comput. Commun. Appl. 2024, 20, 1–20. [CrossRef]

23. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9
December 2017; pp. 6000–6010.

24. Rekesh, D.; Koluguri, N.R.; Kriman, S.; Majumdar, S.; Noroozi, V.; Huang, H.; Hrinchuk, O.; Puvvada, K.; Kumar, A.; Balam, J.;
et al. Fast conformer with linearly scalable attention for efficient speech recognition. In 2023 IEEE Automatic Speech Recognition
and Understanding Workshop (ASRU); IEEE: New York, NY, USA, 2023; pp. 1–8.

25. Zong, Z.; Song, G.; Liu, Y. Detrs with collaborative hybrid assignments training. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 6748–6758.

26. Hu, J.C.; Cavicchioli, R.; Capotondi, A. Exploiting Multiple Sequence Lengths in Fast End to End Training for Image Captioning.
In 2023 IEEE International Conference on Big Data (BigData); IEEE: Sorrento, Italy, 2023; pp. 2173–2182.

27. Li, C.; Qian, Y. Deep audio-visual speech separation with attention mechanism. In Proceedings of the ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; IEEE: New York,
NY, USA, 2020; pp. 7314–7318.

28. Iuzzolino, M.L.; Koishida, K. AV(se)2: Audio-visual squeeze-excite speech enhancement. In Proceedings of the ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; IEEE: New
York, NY, USA, 2020; pp. 7539–7543.

29. Yang, X.; Zhang, H.; Cai, J. Learning to collocate neural modules for image captioning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 4250–4260.

30. Li, J.; Wen, Y.; He, L. Scconv: Spatial and channel reconstruction convolution for feature redundancy. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 6153–6162.

31. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018;
pp. 8697–8710.

32. Bender, G.; Kindermans, P.J.; Zoph, B.; Vasudevan, V.; Le, Q. Understanding and simplifying one-shot architecture search. In
Proceedings of the International Conference on Machine Learning (PMLR), Stockholm Sweden, 10–15 July 2018; pp. 550–559.

33. Liu, H.; Simonyan, K.; Yang, Y. DARTS: Differentiable architecture search. In Proceedings of the International Conference on
Learning Representations (ICLR), New Orleans, LA, USA, 6–9 May 2019.

34. Loni, M.; Sinaei, S.; Zoljodi, A.; Daneshtalab, M.; Sjödin, M. DeepMaker: A multi-objective optimization framework for deep
neural networks in embedded systems. Microprocess. Microsyst. 2020, 73, 102989. [CrossRef]

35. Sun, Y.; Xue, B.; Zhang, M.; Yen, G.G. Automatically Designing CNN Architectures Using the Genetic Algorithm for Image
Classification. IEEE Trans. Cybern. 2020, 50, 3840–3854. [CrossRef]

36. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern (CVPR), Boston, MA, USA, 7–12 June 2015;
pp. 1–9.

37. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

https://doi.org/10.3390/s22197163
https://www.ncbi.nlm.nih.gov/pubmed/36236258
https://doi.org/10.1109/TPAMI.2022.3183829
https://www.ncbi.nlm.nih.gov/pubmed/35714090
https://doi.org/10.1109/TEVC.2020.3024708
https://doi.org/10.1109/72.265960
https://www.ncbi.nlm.nih.gov/pubmed/18267779
https://doi.org/10.1016/j.engappai.2021.104397
https://proceedings.neurips.cc/paper/1988/hash/f2217062e9a397a1dca429e7d70bc6ca-Abstract.html
https://doi.org/10.1109/4235.996017
https://doi.org/10.1145/3643684
https://doi.org/10.1016/j.micpro.2020.102989
https://doi.org/10.1109/TCYB.2020.2983860

Remote Sens. 2024, 16, 2287 20 of 20

38. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural
Inf. Process. Syst. 2012, 1097–1105. Available online: https://dblp.org/rec/conf/nips/KrizhevskySH12.html (accessed on 18
June 2024).

39. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? The kitti vision benchmark suite. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Providence, Phode Island, 16–21 June 2012;
pp. 3354–3361.

40. Wang, H.; Wang, C.; Li, Y.; Chen, H.; Zhou, J.; Zhang, J. Towards Adaptive Consensus Graph: Multi-View Clustering via Graph
Collaboration. In IEEE Transactions on Multimedia; IEEE: New York, NY, USA, 2022.

41. Liang, M.; Yang, B.; Chen, Y.; Hu, R.; Urtasun, R. Multi-task multi-sensor fusion for 3d object detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019;
pp. 7345–7353.

42. Ku, J.; Mozifian, M.; Lee, J.; Harakeh, A.; Waslander, S.L. Joint 3d proposal generation and object detection from view aggregation.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October
2018; pp. 1–8.

43. Vora, S.; Lang, A.H.; Helou, B.; Beijbom, O. Pointpainting: Sequential fusion for 3d object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 16–18 June 2020; pp. 4606–4612.

44. Heinzler, R.; Schindler, P.; Seekircher, J.; Ritter, W.; Stork, W. Weather influence and classification with automotive lidar sensors.
In Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 1527–1534.

45. Sebastian, G.; Vattem, T.; Lukic, L.; Burgy, C.; Schumann, T. RangeWeatherNet for LiDAR-only weather and road condition
classification. In Proceedings of the 2021 IEEE Intelligent Vehicles Symposium (IV), Nagoya, Japan, 11–17 July 2021; pp. 1527–1534.

46. Heinzler, R.; Piewak, F.; Schindler, P.; Stork, W. CNN-Based Lidar Point Cloud De-Noising in Adverse Weather. IEEE Robot Autom.
Lett. 2020, 5, 2514–2521. [CrossRef]

47. Seppänen, A.; Ojala, R.; Tammi, K. 4DenoiseNet: Adverse Weather Denoising from Adjacent Point Clouds. IEEE Robot. Autom.
Lett. 2022, 8, 456–463. [CrossRef]

48. Cai, B.; Xu, X.; Jia, K.; Qing, C.; Tao, D. Dehazenet: An end-to-end system for single image haze removal. IEEE Trans. Image
Process. 2016, 25, 5187–5198. [CrossRef] [PubMed]

49. Hasirlioglu, S.; Riener, A. A general approach for simulating rain effects on sensor data in real and virtual environments. IEEE
Trans. Intell. Veh. 2019, 5, 426–438. [CrossRef]

50. Shao, Y.; Liu, Y.; Zhu, C.; Chen, H.; Li, Z.; Zhang, J. Domain Adaptation for Image Dehazing. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2808–2817.

51. Wu, A.; Li, W.; Zhou, W.; Cao, X. Instance-Invariant Domain Adaptive Object Detection via Progressive Disentanglement. IEEE
Trans. Pattern Anal. Mach. Intell. 2021, 44, 4178–4193. [CrossRef]

52. Wu, A.; Li, W.; Zhou, W.; Cao, X. Vector-Decomposed Disentanglement for Domain-Invariant Object Detection. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp. 9342–9351.

53. Wu, A.; Deng, C. Single-Domain Generalized Object Detection in Urban Scene via Cyclic-Disentangled Self-Distillation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022;
pp. 847–856.

54. Simonyan, K.; Zisserman, A. Very deep convolutional networks for largescale image recognition. In Proceedings of the 3rd
International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.

55. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

56. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M.A. Playing Atari with Deep
Reinforcement Learning. arXiv 2013, arXiv:1312.5602.

57. Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790.

58. Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th
International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.

59. Zhang, Q.-L.; Yang, Y.-B. ResT: An Efficient Transformer for Visual Recognition. Adv. Neural Inf. Process. Syst. 2021, 34,
15475–15485.

60. Meyer, G.P.; Laddha, A.; Kee, E.; Vallespi-Gonzalez, C.; Wellington, C.K. LaserNet: An Efficient Probabilistic 3D Object Detector
for Autonomous Driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA, USA, 15–20 June 2019; pp. 12677–12686.

61. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
62. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks

from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://dblp.org/rec/conf/nips/KrizhevskySH12.html
https://doi.org/10.1109/LRA.2020.2972865
https://doi.org/10.1109/LRA.2022.3227863
https://doi.org/10.1109/TIP.2016.2598681
https://www.ncbi.nlm.nih.gov/pubmed/28873058
https://doi.org/10.1109/TIV.2019.2960944
https://doi.org/10.1109/TPAMI.2021.3060446

	Introduction
	Related Works
	Method Overview
	Efficient Module Design Method
	Genetic Algorithm for Neural Architecture Search
	Reinforcement Learning Network for Supported Genetic Algorithm
	Search Strategy for Fast Convergence Module

	Experiment Setup and Evaluation of the Proposed Method
	Implementation Details
	Effectiveness and Efficiency of Proposed Method
	Ablation Study

	Conclusions
	References

