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Abstract: Accurate measurement and estimation of forest carbon sinks and fluxes are essential for
developing effective national and global climate strategies aimed at reducing atmospheric carbon
concentrations and mitigating climate change. Various errors arise during forest monitoring, espe-
cially measurement instability due to seasonal variations, which require to be adequately addressed
in forest ecosystem research and applications. Seasonal fluctuations in temperature, precipitation,
aerosols, and solar radiation can significantly impact the physical observations of mapping equipment
or platforms, thereby reducing the data’s accuracy. Here, we review the technologies and equipment
used for monitoring forest carbon sinks and carbon fluxes across different remote sensing platforms,
including ground-based, airborne, and spaceborne remote sensing. We further investigate the uncer-
tainties introduced by seasonal variations to the observing equipment, compare the strengths and
weaknesses of various monitoring technologies, and propose the corresponding solutions and recom-
mendations. We aim to gain a comprehensive understanding of the impact of seasonal variations on
the accuracy of forest map data, thereby improving the accuracy of forest carbon sinks and fluxes.

Keywords: seasonal variations; forest; carbon sink; carbon flux; remote sensing platforms

1. Introduction

To better understand the implications of current and future climate change, the direct
effects of human intervention on ecosystems, and the ability to make accurate predictions, it
is imperative to continuously monitor forest carbon storage and flux. This is a crucial issue
for land-based climate change mitigation initiatives [1]. The science of forest management
heavily relies on data collection, which is the foundation for monitoring forest carbon
sinks and fluxes. Advances in observation technology have increased the precision of data
collection. Different equipment is needed to observe forest structural features at different
scales, and mapping instruments have long been used to track forest carbon fluxes and
sinks [2].

Early forestry surveys used calipers, Vernier calipers, Wye-level prisms, and other
diameter-at-breast-height measurement devices to measure individual trees [3]. Significant
data mistakes arose from this approach’s subjective and arbitrary nature. As surveying
and mapping technology advanced, protractors replaced visual observation methods. Re-
searchers began to use sample perimeter measurement instruments such as the compass,
total station, and theodolite to set up standard plots utilizing the square grid method and
measure the circumference of each tree to calculate the amount of forest stock. However,
the types of forest parameters measured by this method were limited. With the advance-
ment of forestry surveying instruments, high-precision electro-optical instruments such
as electronic theodolites, dendrometers, increment borers, and total stations have become
commonplace [4] (Figure 1). Around the world, a range of high-precision, real-time, record-
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able tree-measuring devices are now being developed. These devices not only significantly
increase labor efficiency but also reduce data inaccuracy [5].
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Today, standard methods for data analysis and forest monitoring include remote 
sensing [6], high-precision electro-optical sensors, Geographic Information Systems (GIS), 
Global Positioning Systems (GPS), the Internet of Things (IoT) [7], and modeling [8]. The 
first step is to select remote sensing platforms and sensors based on the monitoring area 
to monitor forest parameters using remote sensing technology. Ground-based platforms 
are suitable for monitoring forest samples and can be equipped with sensors such as spec-
trometers, cameras, and radars, which are characterized by close-range remote sensing, 
determining the spectral characteristics and images of various features. Data collected by 
ground-based platforms can be used to calibrate and support aeronautical and aerospace 
remote sensing [9]. 

Aerial remote sensing is chosen for observations at the regional scale. The aerial plat-
form is suspended in the atmosphere (troposphere and stratosphere) at an altitude of less 
than 80 km, characterized by low-flight altitude, better ground resolution, mobility and 
flexibility, fewer constraints imposed by ground conditions, shorter cycle time, and con-
venient data recovery [10]. Aerial remote sensing platforms include manned aircraft, 
drones, and balloons carrying a wide range of sensors, including cameras, video cameras, 
Light Detection and Ranging (LiDAR), hyperspectral imagers, microwave radar, and 
other sensors [11]. The spaceborne remote sensing platform allows for macro, integrated, 
dynamic, and rapid observations of the Earth. 

It is worth mentioning that LiDAR has a wide range of applications in forestry and 
ecology. It can be used for digital elevation model generation, forest structure parameter 
extraction, forest ecosystem parameter inversion, and microhabitat diversity monitoring 
[12]. LiDAR can be mounted on various platforms in the sky and on the ground. Ground-

Figure 1. Diagram of monitoring instruments for forest carbon sources. Traditional methods include
annual observations after harvesting of trees (a). Terrestrial laser scanning methods and terrestrial
photogrammetry (b). Unmanned aerial remote sensing measurements at low and medium altitudes
(c). High-altitude remote sensing (d).

Today, standard methods for data analysis and forest monitoring include remote
sensing [6], high-precision electro-optical sensors, Geographic Information Systems (GIS),
Global Positioning Systems (GPS), the Internet of Things (IoT) [7], and modeling [8]. The
first step is to select remote sensing platforms and sensors based on the monitoring area
to monitor forest parameters using remote sensing technology. Ground-based platforms
are suitable for monitoring forest samples and can be equipped with sensors such as
spectrometers, cameras, and radars, which are characterized by close-range remote sensing,
determining the spectral characteristics and images of various features. Data collected by
ground-based platforms can be used to calibrate and support aeronautical and aerospace
remote sensing [9].

Aerial remote sensing is chosen for observations at the regional scale. The aerial
platform is suspended in the atmosphere (troposphere and stratosphere) at an altitude of
less than 80 km, characterized by low-flight altitude, better ground resolution, mobility
and flexibility, fewer constraints imposed by ground conditions, shorter cycle time, and
convenient data recovery [10]. Aerial remote sensing platforms include manned aircraft,
drones, and balloons carrying a wide range of sensors, including cameras, video cameras,
Light Detection and Ranging (LiDAR), hyperspectral imagers, microwave radar, and
other sensors [11]. The spaceborne remote sensing platform allows for macro, integrated,
dynamic, and rapid observations of the Earth.

It is worth mentioning that LiDAR has a wide range of applications in forestry and
ecology. It can be used for digital elevation model generation, forest structure parameter ex-
traction, forest ecosystem parameter inversion, and microhabitat diversity monitoring [12].
LiDAR can be mounted on various platforms in the sky and on the ground. Ground-based
LiDAR can acquire leaf and single-tree scale information, including location, diameter at
breast height (DBH), tree height, number of plants, and understory vegetation informa-
tion [13]. Scholars used high-end products (TLS and UAV LiDAR) in managed forests of
Central Europe to assess how fusion can increase tree structure. They found that the fusion
of LiDAR technology based on TLS and UAV-LS can significantly reshape the modeled tree
structures in all cases (broadleaves and conifers). This led to improved estimates of all tree
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metrics (crown and stem), opening the way for several precision forestry applications [14].
Satellite-mounted LiDAR is applicable at global, regional, and spot scales to obtain mean
height, biomass, and carbon stocks for forest parameters [15]. These advantages are fully
reflected in forestry surveys. LiDAR mainly utilizes near-infrared and visible light bands,
with a wavelength ranging from 250 nm to 11 µm [16]. Its slight laser beam emission
angle allows it to emit a very narrow beam with concentrated energy and good coherence,
resulting in high resolution. Even smaller-scale targets can produce detectable echo signals,
which provides a unique advantage for detecting small targets. In addition, LiDAR has
excellent immunity to electromagnetic interference [17].

Due to various factors interfering with the actual observation process, the certainty
of forest parameters is often weakened. This results in a certain degree of inaccuracy
and error in the final observation results, which significantly impacts scientific research
and decision-making [18]. Instrumental and technological factors are among the major
causes of uncertainty. Common remote sensing techniques, such as active and passive
remote sensing, can produce errors in the accuracy of the equipment used, the algorithms
used to receive and process the signals, and other aspects. For example, limitations in
spatial and temporal resolution can result in the loss of some detailed information [19]. In
addition, the same geographic target may have different inversion results in different sensor
observations due to sensor performance characteristics, operating modes, etc. [20]. The
characteristics of the ground may also introduce uncertainty. Factors such as forest type,
species, age, stand density, etc., can affect the results of remote sensing observations [21].
Natural environmental factors are also important factors affecting the accuracy of remote
sensing observations. For example, seasonal changes, meteorological conditions, and the
atmosphere’s state all impact the signals received by the sensors, which, in turn, affects the
accuracy of data processing and parameter estimation [22]. There is a lack of research on
the effects of seasonal changes on physical observation processes using instruments.

In this regard, our work provides an overview of the equipment that has been widely
employed over the past five years to measure carbon sinks and fluxes in forest ecosystems
across the globe (Tables 1 and 2). We summarize the various detection instruments currently
in use worldwide from three perspectives and discuss the effects of seasonality on the
physical observation process. An instrumental approach to measuring carbon sinks and
fluxes is presented. To contribute to global forest observations, we provide readers with
a concise handbook for operating the instruments, focusing on how the usage of each
device varies at different scales. The content of this study covers four main parts. First,
this article reviews the primary methods for measuring carbon sinks and fluxes in forest
ecosystems, subdivided into non-real-time monitoring and real-time monitoring. Next, this
article elaborates on using ground-based LiDAR to provide readers with clear guidelines
and references in practical operations. In the third part, we focus on the application of
airborne LiDAR and give a detailed analysis of its advantages and challenges in measuring
carbon sinks and fluxes. Finally, this article discusses the importance of spaceborne remote
sensing in global forest observation.

Table 1. Comparison of forest carbon sink research methods.

Categorization Methods Instrumentation Scale Advantages Limitations

Direct
measurement

Traditional
measurement

methods

Diameter tape;
calipers; Blume–Leiss;
ultrasonic altimeter;

Abney level;
clinometer; Santos

inclinometer; DQL-9
altimeter compass.

sample plot Low cost of
equipment

Equipment does not store
data in real time and relies

on manual operation.

New sample survey
methodology

Electronic protractor;
handheld total

station.
sample plot

The device can
acquire multiple
parameters and

record the data in
real time.

Instruments are not widely
available.
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Table 1. Cont.

Categorization Methods Instrumentation Scale Advantages Limitations

Remote sensing
measurements

Optical measurement
methods

Theodolite; total
station. sample plot

High-precision
equipment, simple
operation, real-time

data recording.

Limited measurement
range, expensive

equipment, and limited
penetration capability.

LiDAR

Airborne LIDAR;
backpack LIDAR;

ground-based
LIDAR.

local/strip
/sample plot

High precision, high
efficiency, strong

penetration.

High cost, sensitivity to
environmental conditions,

limited penetration
capability, complex data
processing, high energy

consumption, line-of-sight
limitations.

Photogrammetric
methods

Aerial cameras;
panoramic cameras;

infrared sensors.

local/strip
/sample plot

Flexibility,
controllability, low

cost.

The effect of light and
weather, large amount of

data, cumbersome
post-processing, and

limited accuracy.

Remote sensing of
forestry

Optical remote
sensing; SAR.

global/regional/
local

High spatial
resolution,

multi-spectral
information,
non-contact

measurements
(Optical remote

Sensing). Penetration
capability,

all-weather, all the
time (SAR).

Optical remote sensing is
susceptible to weather,

light-dependent, and has
limited penetration

capabilities.
High equipment costs, large
data volumes, sensitivity to

electromagnetic
interference, limited depth
penetration, noise issues

(SAR).

Table 2. Comparison of forest carbon flux research methods.

Methods Principle Instrumentation Application Range

Eddy covariance

Measurement of gas
concentrations and flow

velocities above forests using
3D anemometers and infrared

gas analyzers, with net
ecosystem carbon exchange

(NEE) obtained by calculating
covariates.

3D Sonic anemometer (CAST3,
Campbell Scientific, Inc. Logan, UT,

USA), CO2/H2O infra-red gas
analyzer; data collector (CR1000,

Campbell Scientific, Inc. Logan, UT,
USA); atmospheric temperature
and humidity sensors (HMP45C,

Vaisala, Helsinki, Finland);
open-path or closed-path infrared
gas analyzer (Li-7500, Li-Cor Inc.,

Lincoln, Nebraska, USA); net
radiation sensor (CNR4,

Kipp&Zonen, Delft, Holland); soil
temperature sensors (109, Campbell
Scientific, Inc., Logan, Utah, USA);

soil moisture content sensors
(CS616, Campbell Scientific, Inc.,

Logan, Utah, USA).

Regional and global

The box method Physiological;
mathematical calculations.

Infra-red gas analyzer;
gas chromatograph.

Low-vegetation ecosystems
such as farmland and

grasslands

Remote sensing

Sensors;
electromagnetic radiation;

digital imaging;
laser.

Terra;
aqua;

landsat.
Large area
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Table 2. Cont.

Methods Principle Instrumentation Application Range

Biomass method

Use the sample plot data to
obtain the average biomass per

unit area of vegetation and
multiply the average biomass
by the area of the forest type.

Electronic balances; weighing
stations; biomass sample collection

tools.
Wide range of applications

Modeling approach

Indirect calculation of systemic
carbon fluxes based on

long-term observations in
multiple sites or studies of

carbon stocks in small
individuals and scale

transformations.

-- Wide range of applications

Chemical method Alkali absorption Gas chromatograph (GC);
infra-red gas analyzer (IRGA). Wide range of applications

-- indicates no data.

2. Basic Measurements of Forest Carbon Sinks and Fluxes

Monitoring methods for forest ecosystems can be categorized into two main types:
non-real-time tracking; and real-time monitoring. Non-real-time tracking refers to moni-
toring over years or decades, while real-time monitoring refers to monitoring over weeks.
Inventory and system modeling inference methods are non-real-time tracking methods,
while remote sensing and atmospheric inversion are real-time monitoring methods. Inven-
tory method: This method involves obtaining standard wood biomass through destructive
sampling and modeling the anisotropic growth of biomass using easily measurable vari-
ables such as diameter at breast height (DBH) and tree height. This method is widely
used in carbon cycling studies within forest ecosystems. However, it is labor-intensive
and challenging to implement on a large scale [23,24]. System Modeling Inference utilizes
methodological modeling strategies and standard nonparametric algorithms to predict
forest carbon stocks and fluxes. It includes K-nearest neighbors, artificial neural networks,
random forests, support vector machines, and maximum entropy [25]. Remote Sensing:
Remote sensing technology has become prevalent with the introduction of freely available
Landsat data. Time-series analysis of medium-resolution satellite imagery provides de-
tailed information on landscape changes over time. Intensive time-series analysis improves
the quality and accuracy of remotely sensed data, expanding the types of surface changes
that can be monitored. Several Landsat and Sentinel 2 satellites currently in orbit allow for
the observation of forest carbon over large areas of the Earth every few days [26]. Atmo-
spheric Inversion: This technique involves estimating carbon dioxide fluxes by measuring
the concentration of CO2 in the atmosphere and modeling its transport and dispersion. It
provides a top–down approach to understanding carbon fluxes over large spatial scales.

To study the spatial and temporal characteristics of carbon dioxide fluxes in forest
ecosystems, methods using remote sensing techniques can be primarily classified into two
major categories. Indirect Estimation Methods: This includes estimating forest carbon
stocks through the forest biomass method and determining the forest ecosystem carbon
dioxide fluxes through changes in carbon stocks. These methods focus on monitoring forest
carbon stocks to estimate the absorption or release of carbon dioxide. Direct Monitoring
Methods: This involves monitoring using meteorological satellites or specialized CO2
greenhouse gas observation satellites. These technologies directly observe the carbon
exchange processes between forest ecosystems and the atmosphere.

To measure and monitor carbon dioxide fluxes more accurately, researchers have
adopted several approaches, further divided into bottom–up methods, including den-
drochronological and inventory methods, isotope methods, chemical flux methods, and
box methods [27]. These methods estimate carbon fluxes by collecting data from the
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ground level, emphasizing detailed measurements at a local scale. Top–down measure-
ments include remote sensing techniques, atmospheric inversion techniques [28], ecological
modeling, and the eddy covariance method (EC) [29]. These methods use data collected
from above or at a distance to estimate carbon fluxes on a larger scale, providing a macro-
scopic understanding of the carbon cycle in the entire ecosystem. Furthermore, these
methods can also be categorized based on the timeliness of monitoring and real-time de-
tection methods, such as the box method, EC method, remote sensing, isotope, chemical
flux, and atmospheric inversion methods, that provide immediate data about the current
state of carbon fluxes. Non-real-time Monitoring Methods, such as dendrochronological
and ecological modeling methods, do not provide immediate data but are valuable for
analyzing long-term trends. By reorganizing the content into more clearly defined groups
and descriptions, this section is made clearer for the reader to understand the variety of
monitoring methods and their applications.

In this paper, the monitoring of carbon sinks in forest ecosystems mainly refers to
the above-ground part, and the standard methods, instruments, scope of application, and
evaluation used to monitor forest carbon sinks are shown in Table 1. The methods, scope of
application, and evaluation of forest carbon fluxes are shown in Table 2.

3. Ground-Based Remote Sensing
3.1. Methods of Observation

The sensor is on a ground platform such as vehicle-mounted, boat-mounted, handheld,
fixed or movable elevated platforms, backpacks, and other wearables. Ground-based
observation of forest carbon stocks can be carried out using traditional instruments for
measuring DBH and tree height, optical measuring instruments, and new sample plot
survey instruments, as well as the more brilliant Terrestrial Photogrammetry Technology
(TPT), which refers to the technology of using a camera to take images of the object to
be measured on the ground (within a range of 100 m), calibrate the images, and measure
the size, shape and location of the object. TPT is a technology that uses a camera on the
ground (within 100 m) to capture images of the object to be measured, calibrate the captured
images, and measure the object’s size, shape, and position. This technology works in a
non-contact measurement mode, and the photogrammetry imaging of the target can be
completed without the use of any specialized remote sensing platform, which has a wide
range of applicability and is especially suitable for the measurement of objects in harsh
environments or targets that are not easy to approach [30].

TPT includes telephotogrammetry, close-range photogrammetry (CPR), and aerial
photogrammetry. Due to the varying degrees of missing canopy information caused by tree
shading in forest stands and the limitations of computerized 3D modeling techniques and
segmentation methods, the combination of sub-canopy CPR and TLS provides a solution
for estimating the structural parameters of individual trees. Panagiotidis et al. (2016) [31]
studied structure-from-motion accuracy using CRP in comparison with TLS to analyze
DBH-height influence on error behavior. They found the lowest error (in point matching
between the two different point clouds) near the ground. That also means that the error
was negligible for all DBH estimations but not for the height, where the error was higher
at higher stem portions (more significant error ~11 cm). That was mainly because of the
inability of the camera during the alignment process to convert from 2D to 3D because of
fewer matching points at that level. Of course, this depends on several parameters, like
the latest technological advancements in hardware–software and the forest structure. The
current state-of-the-art 3D scanning method for forestry is Terrestrial Laser Scanning (TLS),
which was introduced to the field of forest mapping in the early 2000s [14], where the sensor
calculates the distance of an object by analyzing the laser pulses it sends and receives, and
which has been used to measure the height and diameter of trees [32]. This technology is
characterized by high accuracy, wide acquisition range, and simple operation [33]. Close-
up photogrammetry can also obtain tree measurement factors by taking images using
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smartphones [34]. The online simultaneous localization and mapping (SLAM) system was
effectively implemented by Fan and his colleagues [35].

Ground-level forest carbon flux monitoring utilizes the EC, relaxed eddy accumulation
(REA), box, and inventory methods. The most used instrument in carbon flux studies is
the eddy covariance meter (Mobile Carbon Flux Platform) [36], and one of the most widely
used methods is the eddy covariance method, which can be accurate down to 30 min
and over periods of more than ten a. The EC method measures the exchange of CO2
and other greenhouse gases between the atmosphere and the ecosystems by continuously
sampling the air at a stationary point and measuring the change in the gas concentration.
The EC method measures the exchange of carbon dioxide and other greenhouse gases
between the atmosphere and ecosystems by continuously sampling air at a fixed point and
measuring changes in gas concentrations [37]. Calculation of carbon fluxes is based on
measurements of vertical wind speed, carbon dioxide concentration, water vapor, and other
gases. EC is still limited to a few gases due to the need for faster response gas analyzers,
high energy consumption, and low signal-to-noise ratio [38]. These problems have been
solved by the advent of the REA technique, which is commonly used to measure the
fluxes of various atmospheric tracers over ecosystems by collecting air from upstream and
downstream air streams into separate tanks, reducing the need for fast-response analyzers.
After collecting the air for a predetermined period, the slow-response analyzer analyzes
the tracer gas concentration in the tanks to calculate the average flux [39]. The box method
is commonly used to monitor GHGs in forest soils on a time scale of h-a. The box method
is categorized into static and dynamic box methods, of which the static box method is
one of the most commonly used. The inventory method, which is suitable for monitoring
long-term changes in carbon fluxes at various scales, obtains standard wood biomass
through destructive sampling and models biomass isokinetic growth with easy-to-measure
variables, also known as the isokinetic growth method. Researchers used the EC and
inventory methods to estimate carbon fluxes in upland mixed grasslands and seasonally
flooded forests. The results showed that the estimates of carbon fluxes obtained by the two
methods were essentially identical [40].

3.2. Impact of Seasonal Variations on Observation Equipment

The data’s quality and completeness mainly depend on the measurement instruments
used. The sensors could not acquire data on understory structure during the summer and
fall due to canopy shading, which was not conducive to understory biomass measure-
ments [41]; the advent of portable mobile observational instruments has facilitated the
development of physiological and ecological studies of plant responses to global change by
making it possible to move from indoor ex vivo analyses to field in situ in vivo measure-
ments [42]. When observing temperate forests, the instruments are affected by seasonal
changes, with lower temperatures in winter, mainly when working in mountainous areas,
where the temperature decreases by 0.65 ◦C for every 100 m of elevation gain and where
battery life and endurance of the instruments are the most significant problems. Close-
up photogrammetry requires a linear laser transmitter and a camera with a source pixel
sensor, which limits its use in daily practice, and the accuracy of the measurements may
be affected by sunlight exposure. In natural environments, LiDAR signals are not stable
enough, and the coded spot of the laser is easily covered by sunlight [34]. The classical
exterior SLAM algorithm is highly dependent on lighting and texture, and its performance
is severely affected when the ambient lighting changes or the scene lacks texture. Although
the SLAM algorithm may be affected by the lack of sensor scale, extracting the sensor scale
can improve the performance of the SLAM algorithm. Failure to remove depth information
can lead to loss of map points and system initialization failure, while interference from
dynamic objects, occlusions, reflections, etc., can degrade system performance [35]. When
laser scanning and forest reconstruction are performed in dense forests, shadows can im-
pede measurements and make volumes unobservable. When applying TLS in relatively
dense forest stands, 25–30 m between laser scans and about 10–20 m from the ground
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is recommended to reduce seasonally induced measurement errors [33]. However, TLS
is limited by line-of-sight obstacles and scanning angles and cannot capture information
on the backside of objects. Moreover, segmenting a single tree and filtering out leaves,
bushes, and depressions is necessary before reconstructing the tree structure from the
point cloud [43]. Thus, TLS and ground-based LiDAR systems can work in tandem to
acquire structural parameters of the upper and lower vegetation layers in forests with tall,
dense trees.

4. Airborne Remote Sensing
4.1. Methods of Observation

Forest carbon sinks and stocks within the aerial observation area can be selected
from both manned and unmanned platforms, which can carry various sensors, such as
cameras, video cameras, LiDAR, hyperspectral imagers, microwave radar, and others.
Unmanned Aerial Vehicle Lidar (UAV) and Airborne Laser Scanning (ALS) are often the
ideal technical means to perform these tasks [44]. The UAV can carry a hyperspectral sensor
(to identify tree species) [45], a visible digital camera (to identify tree height and biomass
measurements) [46], a multi-spectral sensor (to identify canopy structure and determine
attributes) [47], a thermal infrared camera (to identify canopy structure and determine
attributes) [48], and LiDAR (to identify canopy structure, characteristics, and biomass
delineation) [49]. UAV-based imaging can achieve satisfactory temporal, spatial, and
spectral resolution compared to satellite and ground-based remote-sensing techniques [50].
UAV photography outperforms other imaging acquisition techniques when measuring
objects from small to medium spatial scales [51]. Cameras mounted on uncrewed aerial
vehicles should typically have a resolution of more than 10 megapixels and can capture
still or moving images during daylight hours [52]. Photogrammetric techniques can also
be combined with algorithms such as machine learning and neural networks to estimate
carbon sinks or with various sensors for biomass and carbon sink monitoring [53].

ALS is an aircraft platform consisting of a laser scanner, a Global Navigation Satellite
System (GNSS), and an inertial system [54], which is primarily used for the rapid acqui-
sition of three-dimensional information on a regional scale [55]. ALS is an active remote
sensing technique that utilizes laser pulses to measure the backscatter time and intensity
of 3D targets on the Earth’s surface [56]. However, LIDAR equipment has limitations
such as high cost, large data volume, and susceptibility to weather and cloud cover. In
contrast, Digital Aerial Photography (DAP) advantages are especially prominent at low
and medium altitudes, with accurate colors in aerial images, distinct image texture features,
high resolution, low cost, flexibility, efficiency [57], and the flexibility, efficiency, and low
cost of DAP using UAVs as a mounting platform is well-suited for use in economically
underdeveloped areas for use [58]. As a result, researchers often use LiDAR in combination
with DAP to improve the accuracy of estimates [59]. The primary sensors for UAV detec-
tor gas piggybacking are the IR sensor, metal–semiconductor sensor, fluorescent sensor,
electrochemical sensor, and EC, and EC is widely used [60]. Tethered balloons, fixed-wing
UAVs, and rotary-wing UAVs are also widely used for monitoring low- and medium-
altitude forest carbon fluxes [61]. Tethered balloons controlled by electric winches can carry
sensing and sampling equipment for meteorological parameters and air pollutants. Still,
their most significant limitations are their inability to maneuver and sensitivity to wind.
Lightweight fixed-wing aircraft have the advantage of more excellent range and cargo
capacity. However, their failure to hover and fly vertically and the potential for engine
exhaust interference impose limitations on forest carbon flux measurements. Rotary-wing
UAVs are more suitable for scientific research and civil flights due to their greater payload
capacity and ability to transport a variety of instruments [62].

4.2. Impact of Seasonal Variations on Observation Equipment

Factors such as high cost and no-fly management policy for human-crewed aircraft
have limited the popularization and application of large airborne LiDAR in forest resources



Remote Sens. 2024, 16, 2293 9 of 17

survey and management [63]. With the development of low-cost UAV technology and
the production of inexpensive LiDAR devices that can be mounted on small aircraft,
opportunities have opened up for the development of relatively inexpensive Unmanned
Airborne Laser Scanning (UAVLS). UAVLS has the potential to become a considerable
airborne LiDAR complementary or alternative potential. However, small UAVs are light in
mass and small in size, and in the windy season, the in-flight attitude is greatly affected
by wind speed. The general surveying and mapping UAVs can withstand the effects of
winds of less than five levels [64]. In addition, UAVs are demanding in terms of take-off
and landing environments. Despite the availability of catapult equipment to reduce the
difficulty of take-off, there are still specific site requirements for landing. The quality of
images captured by optical cameras is more responsive to light and shadows in different
seasons, such as in the tropics, where optical sensor data are unavailable due to cloud
cover. For this reason, the solution proposed by the researchers is to develop UAV tilt
photography, in which the UAV carries multiple cameras at different tilt angles to make
up for the shortcomings of the traditional orthophoto that only contains image data from
above and 3D reconstruction of the two-dimensional (2D) image through different angles
to generate point cloud data ultimately. Compared to 3D laser scanning technology, UAV
tilt photography can quickly and extensively acquire information on the top of the tree
canopy. However, some challenges may be encountered during the measurement process,
such as unbalanced piggyback platforms, scanner motion, harsh atmospheric conditions,
and slope problems. However, uncertainty in spectral values, complex stand structure,
shading caused by tall trees, and hyperspectral variation in the same vegetation type may
also reduce the accuracy of the data. To overcome these problems, textured images or
object-based methods can be considered for processing, which is expected to solve the
above issues. UAVs also have limitations related to extreme conditions; airborne ash and
debris can infiltrate the rotor blades of the UAV; high temperatures and hot air can damage
equipment and limit flight altitude; high-speed air currents make it very difficult to pilot
the UAV and increase the risk of losing or crashing the equipment, and sweltering weather
conditions can affect battery performance [65].

Air humidity also significantly impacts the quality of the radiometric image; the
higher the humidity, the greater the scattering of light. In response and in conjunction
with real-time weather sites, the researchers have developed a dedicated smartphone
application. This cell phone program can predict the optimal time for drone flights and
display cloudiness percentages and rainfall probabilities. They can also measure the value
of geomagnetic disturbances caused by solar activity [52].

5. Spaceborne Remote Sensing
5.1. Methods of Observation

Sensors on board spacecraft such as satellites, spaceships, space laboratories, etc. Inte-
grating remote sensing technology with forestry surveys has enabled the observation of
global forest carbon sinks [66]. The first is optical remote sensing, including MODIS, Land-
sat TM, Landsat ETM, Landsat OLI, SPOT, and Quick Bird, and the second is remote sensing
microwave radar, which utilizes electromagnetic radiation in the microwave spectral range
to collect data on the Earth’s land, oceans, and atmosphere. Depending on the form of data
used, they are classified as Synthetic Aperture Radar (SAR), Interferometric Synthetic Aper-
ture Radar (InSAR), and Polarized Interferometric Synthetic Aperture Radar (PolInSAR).
Then, there is LIDAR, categorized into waveform LIDAR and point cloud LIDAR, where
waveform LIDAR is more advantageous than other forest resources in estimating forest
structural parameters due to the high penetrating power of the laser pulses it emits. The
laser pulses emitted are brilliant, giving waveform LiDAR an unparalleled advantage over
other forest resource surveying techniques. Earth observation satellites such as ICESat,
the Geoscience Laser Altimetry System (GLAS), GF-7, the Global Ecosystem Dynamics
Investigation LiDAR (GEDI), the Land Ecosystem Carbon Monitoring Satellite (LECMS),
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and the Multiple Footprint Observation Satellite (MFOS) have all received LiDAR data
from the ICESat), and other Earth observation satellites have received waveform LiDAR.

However, each of the three remote sensing monitoring techniques mentioned above
has its limitations; Landsat, with its extensive archive of free data, has become an essential
source of data for estimating biomass and carbon sinks; however, optical sensor data
are suitable for retrieving horizontal vegetation structure, such as vegetation type and
canopy cover, and are not ideal for estimating vertical vegetation structure. It is worth
noting that some optical sensor data, such as Advanced Land Observing Satellite (ALOS),
Panchromatic Remote Sensing Instrument for Stereo Mapping (PRISM), Terra Advanced
Spaceborne Thermal Emission and Reflection Radiometer (Terra ASTER), and SPOT, have
stereoscopic observation capabilities that can be used to determine the height of vegetation
canopies, thereby improving the performance of biomass and carbon sink estimates. In
contrast to the limitations of optical sensor data, SAR can penetrate the forest canopy to
a certain depth, is sensitive to vegetation water content, and is not affected by weather,
especially in areas where cloud cover makes it difficult to collect high-quality optical remote
sensing data [67]. However, biomass estimation is complicated because radar data reflect
the surface roughness of land cover rather than the differences between vegetation classes.
Passive optical remote sensing techniques are plagued by critical issues such as signal
saturation and algorithmic uncertainty, which limit the use of standard products derived
from satellite imagery to detect subtle canopy cover changes, especially in dense tropical
forests that are largely intact. Addressing the strengths and limitations of these three
monitoring approaches, researchers have combined remote sensing data obtained from
different methods to estimate forest carbon sinks [68].

Forest carbon fluxes were estimated using ecological modeling and atmospheric in-
version methods [69], in which data were obtained from different carbon satellites. The
Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY)
detector on ENVIronmental SATellite (ENVISAT) is the first onboard detector to use the
short-wave infrared absorption band as the detection band. Based on SCIAMACHY, carbon
monitoring satellites have been launched one after another to improve accuracy, such as
Greenhouse gases Observing SATellite (GOSAT) found by Japan in 2009, Orbiting Carbon
Observatory-2 (OCO-2) launched by the U.S. in 2014, GOSAT established by the U.S. in
2010, and GOSAT launched by Japan in 2011. OCO-2 was launched by Japan in 2009;
OCO-2 was established by the U.S. in 2014, and the Chinese Carbon Dioxide Observa-
tion Satellite Mission (TanSat) was launched by China in 2016. All of these satellites
in orbit are in the Earth’s low orbit (LEO). Subsequent launches of China’s meteorolog-
ical satellites Fengyun-3D (FY-3D) (2017) and Gaofen-5 (2018) hyperspectral satellites,
Japan’s Greenhouse gases Observing Satellite-2 (GOSAT-2) (2018), the U.S. Orbiting Carbon
Observatory-3 (OCO-3) (2019), and France’s MicroCarb (2021) carbon monitoring satellites,
considerably improved their detection accuracy, but their coverage and resolution are still
problematic and unsuitable for monitoring carbon sources and sinks at regional or more
minor scales. In addition, there is another class of carbon monitoring satellites mainly
focusing on improving detection resolution and coverage through methodological and
technological innovations, namely, the S5P satellite (Sentinel-5 Precursor) launched by the
European Space Agency (2017), Sentinel-5 (2021), Geostationary Carbon Cycle Observa-
tory (GeoCarb) (2022), China’s Atmospheric Environment Monitoring Satellite (AEMS)
(2021), High-precision Greenhouse gases Monitoring Satellite (HGMS) (2023), and the
Franco-German Methane Remote Sensing LiDAR Mission (MERLIN) (2024) [70].

5.2. Impact of Seasonal Variations on Observation Equipment

Atmospheric conditions, to varying degrees, affect the satellite physical monitoring
program. Under seasonal variations, clouds, aerosols, precipitation, and snowfall are the
main factors affecting monitoring. Cloud cover is a necessary item in the image metadata
information, and most data distribution platforms for optical satellite imagery use cloud
cover as a basis for data screening [71]. Only a few types of images provide both cloud and
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cloud-shadow annotation information corresponding to the image, and the accuracy of
cloud-shadow monitoring is low, with the widely used Fmask method of cloud-shadow
monitoring only reaching about 70% accuracy [72]. Especially in the tropics, where only a
few days of the year are cloud-free [71], monitoring of the surface by optical remote sensors
is often hampered by clouds, especially in the Amazon Basin, where precipitation exceeds
2000 mm/year and where high-resolution radiometers (AVHRRs) and MODIS are unable
to provide sufficient clear-sky observations over the Amazonian forest to generate reliable
statistics to summarize vegetation dynamics. Although studies have proposed advanced
atmospheric correction algorithms (MAIAC) that can increase clear-sky observations by
a factor of 2 to 5 over traditional methods, clear-sky observations may still need to be
available during critical composite cycles [73]. The presence of clouds and their cast
shadows lengthens the cycle time for obtaining adequate full-coverage data over large
surface areas, thus reducing the frequency of surface monitoring using remote sensing
techniques. Since optical satellites are passive sensors, they can only collect meaningful
imagery during daylight hours and, therefore, have a shorter potential revisit time than
active sensors such as synthetic aperture radar or LiDAR, which poses a challenge for
high-frequency remote sensing to monitor forest carbon sinks and fluxes. Cloudiness
also affects sensor data collection, creating considerable data gaps in spatial and temporal
domains. Dense cloud cover can completely disrupt the signal reflected by optical remote
sensing and obscure the view of the surface below. Multi-spectral, multi-temporal, and
recovery techniques are traditional techniques for reconstructing missing information
in remotely sensed data. Multi-spectral methods apply to haze and thin cirrus clouds,
where the optical signal is partially absorbed and partially reflected depending on the
wavelength. The advantage of multi-spectral methods is that the information in the original
scene can be utilized without additional data. However, these methods are limited to
thin translucent clouds. Multi-temporal methods recover cloudy scenes by integrating
information from reference images taken under clear skies. Multi-temporal methods are
the most popular because they replace corrupted pixels with truly cloud-free observations.
Researchers have recently begun utilizing powerful data-driven deep learning methods to
solve the cloud cover problem [74]. Unlike dense clouds, thin clouds do not completely
obscure the background so that background information can be recovered [75]. Globally,
the average daily cloud cover over land, estimated from continuous observations by remote
sensing satellites, is about 55 percent, with a distinct seasonal cycle. Therefore, methods for
monitoring and masking clouds and cloud shadows are needed, including consideration of
haze. The recent implementation of the Unmanned Aerial Hyperspectral Imaging System
(UAV-HSI), which allows for the acquisition of ultra-high spatial and temporal resolution
images at low altitudes below low-level clouds, provides new opportunities for optical
remote sensing research [76].

Passive remote sensing is limited by daylight hours, cannot observe the daily cycle
or high latitudes in winter, and will be affected by the interference of cloud cover and
aerosols. Atmospheric aerosol is a multiphase system consisting of the atmosphere and
a variety of solid or liquid particles suspended in the lower troposphere below 5 Km, in
which the particle size is between 0.001 and 100 µm. Examples include soot, dust, sea
salt, clouds, and precipitation particles. Aerosol optical thickness is most significant in the
spring, second in the summer, and most minor in the fall and winter. Aerosols can directly
affect solar radiation through scattering (sulfuric acid particles), which alters the number of
cloud condensation nucleation particles and changes albedo and cloud lifetimes. The signal
attenuation of the Normalized Difference Vegetation Index (NDVI) is also related to the
atmosphere’s aerosol content; the more turbid the atmosphere, the greater the attenuation.
It has been shown that MODIS misclassifies large-scale dense aerosols as “clouds” in
hazy weather [77]. In addition, some gas molecules in the atmosphere selectively absorb,
scatter, and refract laser light, resulting in loss of laser light. Dramatic changes in the
atmosphere’s physical properties can lead to changes in illumination and scintillation.
Atmospheric turbulence increases the chance of optical refraction. Transmission of the laser
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beam through turbulence leads to phenomena such as wavefront aberration, laser intensity
scintillation, beam broadening, drift, etc., which reduces the laser beam’s energy to reach
the target, etc. All these factors degrade the performance of the LIDAR detection system.

6. Conclusions and Outlook

The innovation and application of forestry mapping equipment continue, and the
data acquisition of forest ecosystems has gradually transformed from a rough and manual
way to a precise and electronic direction. Relying on the background of GPS, RS, and
GIS mapping technology, the precision forestry innovation system established through
professional integration and innovation, combined with ecology, forestry, economic man-
agement, and intelligent technology, has promoted the development of global change
ecology. The traditional instruments for measuring breast diameter and tree height are
single-functioned on the ground scale. They cannot realize automatic data recording and
saving, and adding optical measuring instruments has improved the precision and effi-
ciency of single-tree mapping. On this basis, some new sample survey instruments have
emerged that can collect multiple parameters of trees. With broad applicability, non-tact
ground photogrammetry technology TPT is especially suitable for measuring objects such
as targets in harsh environments or those that are not easily approachable. TLS is currently
regarded as the most advanced 3D scanning method for forestry. The types of forest carbon
flux monitoring instruments are few and fixed, and the instruments are mainly used to
detect the concentration of CO2. In the low to medium altitude range, UAVs can have mul-
tiple sensors. UAV-based imaging can achieve satisfactory temporal, spatial, and spectral
resolution compared to ground-based instruments and satellite remote sensing techniques.
Still, the measurement accuracy could be higher than that of ground-based instruments. In
high-altitude monitoring, technologies based on optical remote sensing, microwave radar
remote sensing, and laser radar remote sensing play a key role. Optical remote sensing
technology has been widely adopted as a critical data source for biomass and carbon sink
estimation due to the open and accessible nature of the data. Data quality may fluctuate
due to data saturation and weather conditions. Optical sensors are mainly suitable for
horizontal vegetation structures and cannot measure parameters such as vertical vegetation
structures and canopy heights.

Fluctuations in particles such as temperature, light, wind speed, cloud cover, and
aerosols caused by seasonal changes can significantly affect the physical observation process
of mapping equipment and produce errors. Temperature changes can affect the range of
the batteries in the instruments. Light from different seasons affects the image quality of
optical cameras in photogrammetry and drowns out the coded spot emitted by the laser,
resulting in a less stable LiDAR signal. UAV tilt photography solves this problem. The
UAV carries multiple cameras to shoot at different tilt angles, which makes up for the
shortcomings of traditional orthophotos that only contain image data from above and 3D
reconstruction of 2D images through different angles, ultimately generating point cloud
data. However, the attitude of small UAVs in flight is greatly affected by wind speed in
windy seasons, and general surveying and mapping UAVs can only withstand the effects
of winds below level 5. UAVs still have some significant challenges and limitations when
faced with extreme conditions.

The presence of clouds and their cast shadows lengthens the cycle time for acquiring
adequate full-coverage data over large surface areas, thus reducing the frequency of surface
monitoring using remote sensing techniques. The number of clouds also affects the col-
lection of data by the sensors, creating considerable data gaps in the spatial and temporal
domains. Thick clouds can completely disrupt the reflective signal in optical remote sensing
and hinder the observation of the surface below. Seasonal variations in aerosols interfere
with remote sensing monitoring, with the optical thickness of aerosols being the most
significant in the spring, followed closely by summer, and relatively low in the fall and
winter. Not only can aerosols scatter solar radiation, thus affecting the propagation path
of sunlight, but the presence of aerosols is directly related to the attenuation of the atmo-
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spheric NDVI signal, and dust in the spring of the Northern Hemisphere leads to a decrease
in the value of NDVI. In addition, various atmospheric components, such as dust, smoke,
rain, snow, and carbon dioxide, may interfere with the LiDAR detection system and affect
its performance and accuracy. This paper comprehensively analyzes various measurement
instruments employed at different research scales and their observation biases under other
seasonal conditions. It aims to provide researchers with in-depth references and solutions.
Researchers are expected to develop new observation instruments and algorithms while
taking seasonal factors into full consideration to improve the accuracy and reliability of
data further.

In the future of forest carbon sink monitoring technology, microwave remote sensing
technology is further improved, with increasing resolution down to the sub-meter level,
showing multi-polarization and multi-mode. The spatial resolution and spectral resolution
of star-borne sensors have been greatly improved. Hyperspectral remote sensing and
high spatial resolution remote sensing will be significantly developed; the integration of
laser ranging and satellite positioning technology and video satellites makes 3D real-time
imaging possible. The functions of professional image processing software are constantly
being improved, such as the ability to read various data formats, the ability to process radar
data, three-dimensional display and analysis, and compatibility with GIS software and
databases. In terms of information extraction, fractal theory, wavelet transform, Artificial
Neural Network (ANN), Genetic Algorithm (GA), morphology, Artificial Intelligence (AI),
and other methods make information processing and analysis more intelligent and will be
more closely integrated with GIS, GNSS, Data Processing System (DPS), AI, and Computer
Vision (CV) and play a more significant role in various fields.

Based on the integrated remote sensing observation technology of “sky–space–earth”
(Table 3), it can carry out integrated monitoring and assessment of multi-circle, multi-
scale, multi-angle, and multi-detection media on a global scale, synchronously collect
rich multi-source, multi-modal, and massive remote sensing data such as multi-spectral,
hyperspectral, SAR, LiDAR, etc., and construct a remote sensing intelligent service cloud
platform based on cloud architecture, big data, distributed storage/computing, artificial
intelligence, and other technologies. In the future, based on cloud architecture, big data,
distributed storage/computation, artificial intelligence, and other technologies, it will
build a cloud platform for remote sensing intelligent services and unify the management,
processing, analysis, release, and real-time sharing services to form an intelligent remote
sensing cloud platform for collaborative observation, technology exchange, data sharing,
facility networking, and other intelligent remote sensing platforms.

Table 3. Comparison of remote sensing platforms.

Property Ground Platforms Aviation Platforms Space Platforms

Conceptual Sensor on the ground
Remote sensing platforms suspended in

the atmosphere (troposphere,
stratosphere) below 80 km altitude.

Remote sensing platform located at an
altitude of 80 km above sea level.

Functions and features

Close-range remote sensing,
determination of spectral
properties, and images of

various features

Low-flight altitude, better ground
resolution, maneuverability, less

restricted by ground conditions, shorter
cycle time, easy data recovery.

Macroscopic, integrated, dynamic, and
rapid observation of the Earth.

High-altitude sounding rockets are not
limited by orbits, are flexible in their

application, and are launched and
recovered in a short period of time. They
are costly and obtain little information.
Spacecraft have large load capacity, can
carry many kinds of instruments, timely

maintenance, and convenient data
recovery, but short flight time. The space

shuttle is flexible and economical.
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Table 3. Cont.

Property Ground Platforms Aviation Platforms Space Platforms

Sensors on board
Geophysical spectrographic

instruments, cameras,
radars, etc.

Cameras, video cameras, LiDAR,
hyperspectral imagers, microwave radar,

and many other sensors.

Equipped with optical sensors, microwave
sensors, etc.

Example

Tripod: 0.75–2.0 m;
determination of spectral
characteristics of various

features, ground photography,
scanning.

Remote sensing tower:
determination of fixed targets

and dynamic monitoring;
height of about 6 m.

Mobile platforms: remote
sensing vehicles, boats.

Portable: wearable

Aircraft: Specially designed or
converted from ordinary aircraft.

Low-altitude aircraft: below 2 km above
the ground, lower troposphere;

helicopters can be as low as about 10 m.
Medium-altitude aircraft: altitude of

2 km–6 km, middle troposphere
High altitude airplane: altitude of

12 km–30 km
Balloons: low-altitude balloons

(troposphere), high-altitude balloons
(stratosphere, 12 km–40 km)

High-altitude exploration rockets:
generally at an altitude of 300 km–400 km,

between airplanes and artificial Earth
satellites.

Spacecraft: Apollo; Gemini; Mir space
station; Shenzhou series, etc.

Space Shuttle: Columbia; Challenger;
Endeavor; Discovery, etc.

Artificial Earth satellites: Environmental
satellites are categorized into three types

according to their operational orbital
altitude and lifespan:

low-altitude short-lived satellite:
altitude 150 km–350 km; life 1–3 weeks;

high resolution; mostly used for military
reconnaissance;

medium-altitude long-lived satellite:
altitude 350 km–1800 km; life expectancy
of more than 1 year, such as land satellites,
ocean satellites, meteorological satellites;

high-altitude long-lived satellite:
geosynchronous satellites or geostationary

satellites with an altitude of 36,000 km,
such as communication satellites and

meteorological satellites.
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