
Citation: Cui, K.; Wang, C.; Zhou, F.;

Liu, C.; Gao, Y.; Feng, W. Fast

Algorithm of Passive Bistatic Radar

Detection Based on Batches

Processing of Sparse Representation

and Recovery. Remote Sens. 2024, 16,

2294. https://doi.org/10.3390/

rs16132294

Academic Editor: Dusan Gleich

Received: 30 April 2024

Revised: 5 June 2024

Accepted: 18 June 2024

Published: 23 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Fast Algorithm of Passive Bistatic Radar Detection Based on
Batches Processing of Sparse Representation and Recovery
Kai Cui 1 , Changlong Wang 1,*, Feng Zhou 1, Chunheng Liu 1, Yongchan Gao 1 and Weike Feng 2

1 Key Laboratory of Electronic Information Countermeasure and Simulation Technology, Ministry of Education,
Xidian University, Xi’an 710071, China; cuikai7308@163.com (K.C.); fzhou@mail.xidian.edu.cn (F.Z.);
lchxidian@126.com (C.L.); ycgao@xidian.edu.cn (Y.G.)

2 Air Defense and Antimissile School, Air Force Engineering University, Xi’an 710051, China;
fengweike007@163.com

* Correspondence: clw_xjtu@163.com

Abstract: In the passive bistatic radar (PBR) system,methods exist to address the issue of detecting
weak targets without being influenced by non-ideal factors from adjacent strong targets. These
methods utilize the sparsity in the delay-Doppler domain of the cross ambiguity function (CAF) to
detect weak targets. However, the modeling and solving of this method involve substantial memory
consumption and computational complexity. To address these challenges, this paper establishes a
target detection model for PBR based on batch processing of sparse representation and recovery.
This model partitions the CAF into blocks, identifies blocks requiring processing based on the
presence of targets, and improves the construction and utilization of the measurement matrix. This
results in a reduction in the computational complexity and memory resource requirements for sparse
representation and recovery, and provides favorable conditions for parallel execution of the algorithm.
Experimental results indicate that the proposed approach increases the number of blocks by a factor
of four, and reduces the number of real multiplications by approximately an order of magnitude.
Hence, compared with the traditional approach, the proposed approach enables fast and stable
detection of weak targets.

Keywords: passive bistatic radar (PBR); cross ambiguity function (CAF); sparse representation; sparse
recovery; fast calculation

1. Introduction

Passive bistatic radar (PBR) is a radar system that operates in a receive-only mode.
It detects and tracks targets by utilizing signals emitted from illuminators of opportunity
(IOs) [1,2]. In the conventional PBR system using correlation detection, signal processing op-
erations are performed, including reference signal purification [3], clutter cancellation [4,5],
and cross ambiguity function (CAF) computation [6]. The peak of CAF reflects the bistatic
time delay and Doppler frequency, corresponding to the target’s position and velocity
information [7]. As PBR receives signals from IOs and has a separated transmitter–receiver
structure, it possesses advantages such as interference resistance, anti-stealth capabilities,
resistance to low-altitude penetration, cost-effectiveness and efficient spectrum utilization.
Common IOs include frequency modulation (FM) [8], digital audio broadcasting (DAB) [9],
digital video broadcasting terrestrial (DVB-T) [10], digital terrestrial multimedia broad-
casting (DTMB) [11], digital video broadcasting satellite (DVB-S) [12], global system for
mobile communications (GSM) [13], beidou navigation satellite system (BDS) [14], global
positioning system (GPS) [15], and so on. However, as these signals are not specifically
designed for PBR, their ambiguity functions do not exhibit a spike-like nature. As shown
in Figure 1, taking DVB-T, DTMB, and 5th generation mobile communication technology
(5G) downlink signals as examples, their ambiguity functions show mainlobe and sidelobe
widening. Additionally, due to the special frame structures of these signals, there are side
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peaks in the ambiguity functions [16–18]. These non-ideal factors pose challenges in the
weak targets detection.

(a) DVB-T (b) DTMB (c) 5G downlink signal

Figure 1. The ambiguity function properties of different signals are not ideal spike-like. (a) DVB-T.
(b) DTMB. (c) 5G downlink signal.

Sparse representation and recovery techniques have been widely applied in various
fields such as communication [19–21], image [22–24], and radar [25–27]. In the field of
PBR, the two technologies are utilized for weak target detection. Among them, the authors
of [28,29] applied sparse representation and recovery techniques to PBR target detection.
However, their models relied on the orthogonality between subcarriers of orthogonal
frequency-division multiplexing (OFDM) and the cyclic prefix of OFDM symbols. As a
result, the applicable types of signals were limited. References [30–35] utilised the sparsity
of surveillance signals in the delay-Doppler domain for the sparse recovery of CAF. These
approaches based on this idea have the characteristic of wide applicability and have been
widely adopted. Based on the source of the measurement matrix, the research results
based on this idea can be classified into the following categories: (1) The measurement
matrix is constructed by adding different delays and Doppler frequencies to the reference
signal [30–33]. (2) Based on the computation of CAF, the Doppler-shifted Fourier transform
matrix is derived as the measurement matrix [34]. (3) The measurement matrix consists of
CAFs with different delays and Doppler frequencies [35]. Among these, Method (1) has
a simple construction of the measurement matrix and a lower computational complexity.
However, it demands a higher signal-to-noise ratio (SNR) for the surveillance signal,
resulting in a poor detection performance for weak targets. Method (2) exhibits a better
detection performance for weak targets than Method (1) because of coherent accumulation.
In this method, it divides the signal into multiple batches and randomly utilizes some of
them. In this way, memory resources and computational complexity are saved. However,
utilization of the Doppler dimension is reduced, lowering the detection performance for
weak targets. Although Method (3) achieves the best detection performance for weak targets
among the three methods, its measurement matrix has a large scale. So, the requirements
of memory resources is hard to guarantee. Additionally, each sample of the measurement
matrix needs to be calculated through the computation of CAF by adding delays and
Doppler frequencies to the reference signal. Hence, this method consumes a significant
amount of computational resources during the measurement matrix construction stage,
affecting the real-time performance.

Therefore, this paper proposes a target detection method for PBR based on batches
processing of sparse representation and recovery. This method partitions CAF into blocks,
selects blocks that contain targets, and improves the construction and utilization of the
measurement matrix. Compared with Method (3), this method maintains the detection
performance for weak targets while reducing the memory resource and computational
requirements. Hence, this method provides favorable conditions for the parallel execution.
The effectiveness of this method is validated in the experimental results.
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2. Signal Model

The schematic diagram of the idealized PBR system is shown in Figure 2. The system
has two antennas to receive the reference signal and surveillance signal, respectively.
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Figure 2. The schematic diagram of the idealized PBR system.

In a PBR system, the idealized baseband reference signal ure f (t) comprises two com-
ponents: the baseband signal from IO and noise. Its expression is given by

ure f (t) = Are f u(t − τ0) + nre f (t) (1)

where Are f is the amplitude of the reference signal, u(t) is the baseband signal from the IO,
τ0 is the time delay between IO and radar, and nre f (t) is the noise in the reference channel.

The baseband surveillance signal usurv(t) received by radar comprises four com-
ponents: the reference signal component, multipath clutter, target echo, and noise. Its
expression is given by

usurv(t) = Asurvu(t − τ0) +
K

∑
k=1

Aku(t − τk) +
P

∑
p=1

Apu
(
t − τp

)
ej2π fpt + nsurv(t) (2)

where Asurv is the amplitude of the reference signal component; K is the number of multi-
path clutter components; Ak is the amplitude of the k-th multipath clutter; τk is the time
delay of the k-th multipath clutter; P is the number of targets; Ap is the amplitude of the
p-th target echo, τp and fp are the time delay and Doppler frequency of the p-th target echo,
respectively; and nsurv(t) represents the noise in the surveillance signal.

To obtain the position and velocity of the target, the PBR system suppresses the
reference signal and multipath clutter components in the surveillance signal. Subse-
quently, it estimates the target’s position and velocity by identifying the delay and Doppler
frequency corresponding to the peak of the CAF. Let u′

surv(t) represent the idealized
surveillance signal with the reference signal and multipath clutter components suppressed.
The expression is

u′
surv(t) =

P

∑
p=1

Apu
(
t − τp

)
ej2π fpt + nsurv(t) (3)
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So the expression of CAF is

χ(τ, fd) =
∫ T

0
u∗

re f (t − τ)u′
surv(t)e−j2π fdtdt

=
P

∑
p=1

A∗
re f Apχp(τ, fd) + nχ(τ, fd)

= A∗
re f

P

∑
p=1

Ap

∫ T

0
u∗(t − τ0 − τ)u

(
t − τp

)
e−j2π( fd− fp)tdt + nχ(τ, fd)

(4)

where τ and fd are the delay and Doppler frequency, respectively; T is the integration time;
χp(τ, fd) is the CAF of the p-th target; and nχ(τ, fd) represents the impact of noise on the
CAF calculation. Equation (4) indicates that the CAF between the reference signal and the
surveillance signal can be represented as a linear combination of the CAFs between the
reference signal and copies of itself with added delays and Doppler frequencies. This forms
the basis for the sparse representation of CAF.

3. Fast Batches Processing of Sparse Representation and Recovery in
Delay-Doppler Domain
3.1. Fast Batches Processing of Sparse Representation

In this section, we introduce the fast algorithm of batches processing of sparse repre-
sentation and recovery in the delay-Doppler domain. The flowchart is shown in Figure 3.
The steps of this algorithm are summarized at the end of this section.
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Figure 3. The flowchart for fast batches processing of sparse representation and recovery in the
delay-Doppler domain.

To construct a sparse representation model for CAF, it is assumed that there could be
a surveillance signal on each unit in the delay-Doppler domain. Let {τ1, τ2, · · · , τL}, and
{ fd1, fd2, · · · , fdM} represent the sets of delay and Doppler frequency, respectively. Where
L and M are the number of delay units and Doppler frequency units, respectively. The
expression for CAF in (4) can be written as

χ(τ, fd) =
M

∑
m=1

L

∑
l=1

σm,lχm,l(τ, fd) + nχ(τ, fd) (5)

where σm,l represents the amplitude gain under the delay τl and the Doppler frequency fdm
of the surveillance signal, and it can be expressed as
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σm,l =


Ap

Are f
, (τl , fdm) =

(
τp − τ0, fp

)
0 , others

(6)

χm,l(τ, fd) represents the CAF between the reference signal ure f (t) and a copy of itself
with added delay and Doppler frequency ure f (t − τl)ej2π fdmt, and it can be expressed as

χm,l(τ, fd) =
∫ T

0
u∗

re f (t − τ)ure f (t − τl)e−j2π( fd− fdm)tdt (7)

Let aS ∈ CLM×1 be a column vector formed by slicing and stacking the CAF χ(τ, fd)
along each Doppler frequency unit, expressed as

aS = [χ(τ1, fd1) χ(τ2, fd1) · · · χ(τL, fd1) χ(τ1, fd2) · · · χ(τl , fdm) · · · χ(τL, fdM)]T (8)

Different reference signal copies are generated by adding various delays and Doppler
frequencies to the reference signal ure f (t). These copies are then processed with the ref-
erence signal using CAF, and arranged in a similar manner to form a column vector.
This process is repeated for each Doppler frequency unit. Consequently, this forms the
measurement matrix BS ∈ CLM×LM, expressed as

BS = [χ1,1 χ1,2 · · · χ1,L χ2,1 · · · χm,l · · · χM,L] (9)

where χm,l represents a copy of the CAF obtained by adding the delay τl and Doppler
frequency fdm to the reference signal. It can be expressed as follows:

χm,l =

[
χm,l(τ1, fd1) χm,l(τ2, fd1) · · · χm,l(τL, fd1) χm,l(τ1, fd2)

· · · χm,l(τl , fdm) · · · χm,l(τL, fdM)

]T

(10)

The sparse vector σm,l formed by the amplitude gains σS ∈ CLM×1 can be expressed as

σS = [σ1,1 σ1,2 · · · σ1,L σ2,1 · · · σm,l · · · σM,L ]T (11)

Therefore, aS can be expressed as

aS = BSσS + n (12)

where n ∈ CLM×1 represents the impact of noise on CAF.
Equation (12) represents the sparse representation model of CAF. However, when

the delay-Doppler domain is large, the size of the measurement matrix BS becomes large,
imposing high computational and memory resource requirements. Therefore, we propose
improvements to the sparse representation model to reduce computational and memory
resource usage.

Let the CAF matrix AS ∈ CL×M be the rearranged form of CAF χ(τ, fd) before being
organized into the column vector aS, i.e.,

AS =


χ(τ1, fd1) χ(τ1, fd2) · · · χ(τ1, fdM)
χ(τ2, fd1) χ(τ2, fd2) · · · χ(τ2, fdM)

...
...

. . .
...

χ(τL, fd1) χ(τL, fd2) · · · χ(τL, fdM)

 (13)
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AS is divided into R × C equally sized sub-blocks, each with dimensions L′ × M′,
where L = RL′ and M = CM′. Then, AS can be expressed as

AS =


AS,1,1 AS,1,2 · · · AS,1,C
AS,2,1 AS,2,2 · · · AS,2,C

...
...

. . .
...

AS,R,1 AS,R,2 · · · AS,R,C

 (14)

Without loss of generality, consider the case where, for any r ∈ {1, 2, · · · , R}, and
c ∈ {1, 2, · · · , C}, there are targets present in the (r, c)-th sub-block AS,r,c ∈ CL′×M′

. Let{
τr,c,1, τr,c,2, · · · , τr,c,L′

}
and

{
fr,c,1, fr,c,2, · · · , fr,c,M′

}
represent the delay and Doppler fre-

quency corresponding to AS,r,c. Then, AS,r,c can be expressed as

AS,r,c =


χ(τr,c,1, fr,c,1) χ(τr,c,1, fr,c,2) · · · χ

(
τr,c,1, fr,c,M′

)
χ(τr,c,2, fr,c,1) χ(τr,c,2, fr,c,2) · · · χ

(
τr,c,2, fr,c,M′

)
...

...
. . .

...
χ
(
τr,c,L′ , fr,c,1

)
χ
(
τr,c,L′ , fr,c,2

)
· · · χ

(
τr,c,L′ , fr,c,M′

)
 (15)

Let aS,r,c ∈ CL′M′×1 be the column vector form of AS,r,c , i.e.,

aS,r,c =

[
χ(τr,c,1, fr,c,1) χ(τr,c,2, fr,c,1) · · · χ

(
τr,c,L′ , fr,c,1

)
χ(τr,c,1, fr,c,2)

· · · χ
(
τr,c,l′ , fr,c,m′

)
· · · χ

(
τr,c,L′ , fr,c,M′

) ]T

(16)

The measurement matrix BS,r,c ∈ CL′M′×L′M′
corresponding to aS,r,c is expressed as

BS,r,c =
[
χr,c

1,1 χr,c
1,2 · · · χr,c

1,L′ χr,c
2,1 · · · χr,c

m′ ,l′ · · · χr,c
M′ ,L′

]
(17)

where χr,c
m′ ,l′ ∈ CL′M′×1 represents a copy of the CAF obtained by adding the delay τr,c,l′

and Doppler frequency fr,c,m′ to the reference signal. It can be expressed as

χr,c
m′ ,l′ =

χm′ ,l′(τr,c,1, fr,c,1) χm′ ,l′(τr,c,2, fr,c,1)

· · · χm′ ,l′
(
τr,c,L′ , fr,c,1

)
χm′ ,l′(τr,c,1, fr,c,2)

· · · χm′ ,l′
(
τr,c,l′ , fr,c,m′

)
· · · χm′ ,l′

(
τr,c,L′ , fr,c,M′

)


T

(18)

From (7) and (18), it can be observed that the peak position of the CAF copy χr,c
m′ ,l′ is

only related to m′ and l′, and is independent of r and c. Therefore, when performing sparse
recovery for each aS,r,c, the measurement matrix BS,r,c can be reused. In other words, after
obtaining BS,1,1, for any r and c, use BS,1,1 instead of BS,r,c.

However, as constructing BS,1,1 requires calculating L′M′ CAFs, even constructing
only BS,1,1 involves a huge computational load. For any m′ and l′, the difference between
different CAF copies χr,c

m′ ,l′ lies only in the different peak positions. Therefore, we propose
a method of self ambiguity function cropping to construct the measurement matrix BS,1,1
and reduce the computational load.

Let the self ambiguity function of the reference signal ure f (t) be χre f (τ, fd), i.e.,

χre f (τ, fd) =
∫ T

0
u∗

re f (t − τ)ure f (t)e−j2π fdtdt (19)
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Suppose the matrix Are f ∈ C(2L′M′−1)×(2L′M′−1) formed by χre f corresponds to the de-

lay and Doppler frequency
{

τ
re f
−L′+1, τ

re f
−L′+2, · · · , τ

re f
L′−1

}
, and

{
f re f
−M′+1, f re f

−M′+2, · · · , f re f
M′−1

}
,

where
(

τ
re f
0 , f re f

0

)
= (0, 0). Then, Are f can be expressed as

Are f =


χre f

(
τ

re f
−L′+1, f re f

−M′+1

)
χre f

(
τ

re f
−L′+1, f re f

−M′+2

)
· · · χre f

(
τ

re f
−L′+1, f re f

M′−1

)
χre f

(
τ

re f
−L′+2, f re f

−M′+1

)
χre f

(
τ

re f
−L′+2, f re f

−M′+2

)
· · · χre f

(
τ

re f
−L′+2, f re f

M′−1

)
...

...
. . .

...
χre f

(
τ

re f
L′−1, f re f

−M′+1

)
χre f

(
τ

re f
L′−1, f re f

−M′+2

)
· · · χre f

(
τ

re f
L′−1, f re f

M′−1

)

 (20)

Let the matrix form of the CAF copy χ1,1
m′ ,l′ be X1,1

m′ ,l′ ∈ CL′×M′
, then X1,1

m′ ,l′ can be
obtained by cropping from Are f , i.e.,

X1,1
m′ ,l′ =


χre f

(
τ

re f
1−l′ , f re f

1−m′

)
χre f

(
τ

re f
1−l′ , f re f

2−m′

)
· · · χre f

(
τ

re f
1−l′ , f re f

M′−m′

)
χre f

(
τ

re f
2−l′ , f re f

1−m′

)
χre f

(
τ

re f
2−l′ , f re f

2−m′

)
· · · χre f

(
τ

re f
2−l′ , f re f

M′−m′

)
...

...
. . .

...
χre f

(
τ

re f
L′−l′ , f re f

1−m′

)
χre f

(
τ

re f
L′−l′ , f re f

2−m′

)
· · · χre f

(
τ

re f
L′−l′ , f re f

M′−m′

)

 (21)

Therefore, χ1,1
m′ ,l′ can be expressed as

χ1,1
m′ ,l′ =


χre f

(
τ

re f
1−l′ , f re f

1−m′

)
χre f

(
τ

re f
2−l′ , f re f

1−m′

)
· · · χre f

(
τ

re f
L′−l′ , f re f

1−m′

)
χre f

(
τ

re f
1−l′ , f re f

2−m′

)
· · · χre f

(
τ

re f
L′−l′ , f re f

M′−m′

)


T

(22)

BS,1,1 can be expressed as

BS,1,1 =
[
χ1,1

1,1 χ1,1
1,2 · · · χ1,1

1,L′ χ1,1
2,1 · · · χ1,1

m′ ,l′ · · · χ1,1
M′ ,L′

]
(23)

So far, we have completed the rapid construction of the measurement matrix. To estab-
lish the sparse representation model, let σS,r,c ∈ CL′M′×1 be the sparse vector corresponding
to the (r, c)-th sub-block, i.e.,

σS,r,c =
[
σr,c

1,1 σr,c
1,2 · · · σr,c

1,L′ σr,c
2,1 · · · σr,c

m′ ,l′ · · · σr,c
M′ ,L′

]T
(24)

Therefore, the sparse representation model for the (r, c)-th sub-block is given by

aS,r,c = BS,1,1σS,r,c + nr,c (25)

where nr,c ∈ CL′M′×1 represents the impact of noise on the (r, c)-th sub-block.
Let the sparse matrix ΣS,r,c ∈ CL′×M′

be the matrix form of the sparse vector σS,r,c, i.e.,

ΣS,r,c =


σr,c

1,1 σr,c
2,1 · · · σr,c

M′ ,1
σr,c

1,2 σr,c
2,2 · · · σr,c

M′ ,2
...

...
. . .

...
σr,c

1,L′ σr,c
2,L′ · · · σr,c

M′ ,L′

 (26)
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Therefore, the sparse matrix ΣS ∈ CL×M corresponding to the CAF matrix AS is
given by

ΣS =


ΣS,1,1 ΣS,1,2 · · · ΣS,1,C
ΣS,2,1 ΣS,2,2 · · · ΣS,2,C

...
...

. . .
...

ΣS,R,1 ΣS,R,2 · · · ΣS,R,C

 (27)

Here, we have completed the rapid construction of the sparse representation model
for CAF. The main steps are as follows:

1. Compute CAF for reference signal ure f (t) and surveillance signal usurv(t) to obtain
AS. Divide AS into equally sized blocks: AS,1,1 · · · AS,R,C.

2. Transform the CAF blocks AS,1,1 · · · AS,R,C into vector form, denoted as aS,1,1 · · · aS,R,C.
3. Compute the self ambiguity function for the reference signal ure f (t) to obtain Are f .

Crop Are f to obtain CAF copies X1,1
1,1 · · · X1,1

M′ ,L′ .

4. Convert the CAF copies X1,1
1,1 · · · X1,1

M′ ,L′ into vector form, i.e., χ1,1
1,1 · · · χ1,1

M′ ,L′ .

5. Join the vectorized CAF copies χ1,1
1,1 · · · χ1,1

M′ ,L′ to obtain the measurement matrix BS,1,1.
6. Use the measurement matrix BS,1,1 to perform sparse recovery on the vectorized CAF

blocks aS,1,1 · · · aS,R,C, to obtain sparse vectors σS,1,1 · · · σS,R,C.
7. Convert the sparse vectors σS,1,1 · · · σS,R,C into matrix form, i.e., ΣS,1,1 · · · ΣS,R,C.
8. Join the sparse matrices ΣS,1,1 · · · ΣS,R,C to obtain the sparse matrix ΣS corresponding

to AS.

3.2. Target Detection Based on Sparse Recovery

The solution to sparse vectors requires sparse recovery. In recent years, many sparse
recovery algorithms [36–44] have been applied to address this issue. However, these
algorithms need the measurement matrix to satisfy the restricted isometry property (RIP)
condition, and the verification of RIP condition is an NP-hard problem. Therefore, we
employed a sparse recovery algorithm based on the l0 pseudonorm iterative solution [45]
to reduce the theoretical limitations. This algorithm uses the following pseudonorm as a
replacement for the l0 norm:

∥x∥gα
=

D

∑
d=1

gα(xd), x ∈ RD×1 (28)

In (28) , xd represents the d-th element of x. Where gα(x) is

gα(x) =
|x|√

x2 + α
(29)

The relationship between gα(x), x, and α is shown in Figure 4. Obviously, as α
approaches 0, the properties of gα(x) tend to 0 norm.

Because the domain of definition of gα(x) is a set of real numbers, Equation (25) needs
to be converted into real form.

ar,c =

[
Re(aS,r,c)

Im(aS,r,c)

]
(30)

B1,1 =

[
Re(BS,1,1) − Im(BS,1,1)
Im(BS,1,1) Re(BS,1,1)

]
(31)

σr,c =

[
Re(σS,r,c)
Im(σS,r,c)

]
(32)

In summary, based on (25) and (30) (32), when the influence of noise is neglected,
we have

ar,c = B1,1σr,c (33)
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Therefore, as long as we obtain the sparse vector σr,c ∈ R2L′M′×1 and recover σS,r,c
from σr,c, the positions of the non-zero values in σS,r,c can determine the cells in the (r, c)-th
sub-block where the surveillance signal exists.
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Figure 4. The relationship between gα(x), x, and α. As α approaches 0, the properties of gα(x) tend to
0 norm.

To estimate the sparse vector σr,c, consider the following problem

min
σr,c∈R2L′M′×1

∥σr,c∥gα

s.t. ar,c = B1,1σr,c

(34)

According to the derivation in reference [45], the expression for iteratively solving σr,c
can be obtained as

σr,c = Γ(σr,c)BT
1,1

(
B1,1Γ(σr,c)BT

1,1

)†
ar,c (35)

where Γ(σr,c) ∈ R2L′M′×2L′M′
is a diagonal matrix, and its element at the i-th row and i-th

column is given by

Γ(σr,c)i,i =
|σr,c,i|

gα
′(σr,c,i)

=
|σr,c,i|

(
σ2

r,c,i + α
)1.5

α
(36)

where σr,c,i is the i-th element of σr,c.
By analyzing (35), it can be observed that this equation is formulated as a fixed-point

iteration. Performing a finite number of iterations on (35) yields the solution σ∗
r,c, indicating

that the iteration is convergent.

4. Experimental Results

To validate the proposed approach for fast batches processing of sparse representation
and recovery in the delay-Doppler domain, experiments are conducted using simulated
and field signals with α = 0.1. The experimental setup is as follows: first, the effectiveness
of the proposed approach is verified using simulated signals. Second, the proposed ap-
proach is further validated by detecting two ship targets. Finally, a comparison of the real
multiplication times is performed between the traditional and the proposed approach to
highlight its computational efficiency advantage.
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4.1. Simulation Results

Simulations are conducted using a DVB-T signal in 2K mode with quadrature phase
shift keying (QPSK) as the symbol mapping scheme. The simulation parameters are
presented in Table 1.

Table 1. Simulation Parameters.

Parameters Values Parameters Values

Carrier frequency 600 MHz Target 1 RCS 1 m2

Sample rate 10 MHz Target 2 RCS 10 m2

Integration time 0.25 s Target 3 RCS 5 m2

IO coordinate (200 km, 0, 0.15 km) Transmitter power 1 kW
PBR coordinate (0, 0, 5 m) Transmitter gain 12.5 dB

Target 1 coordinate (80 km, 20.1 km, 9.9 km) Receiver gain 16 dB
Target 2 coordinate (80 km, 20 km, 10 km) Receiver bandwidth 10 MHz
Target 3 coordinate (100 km, −23 km, 10 km) Receiver temperature 298.15 K

Target 1 velocity (45 m/s, 96 m/s, 0)
Target 2 velocity (50 m/s, 80 m/s, 0)
Target 3 velocity (70 m/s, 30 m/s, 0)

Based on the parameters in Table 1, the delay for Target 1 and Target 2 are both 17.1 µs,
while the delay for Target 3 is 20.6 µs. The Doppler frequencies of Target 1, Target 2,
and Target 3 are −76.3 Hz, −62.7 Hz, and 26.8 Hz, respectively. Therefore, the delay for
Targets 1 and 2 are the same, and their Doppler frequencies are close. The CAF result of the
simulated signals is shown in Figure 5. It can be observed that all three targets appear in
the delay-Doppler domain. Among them, Target 1 and Target 2 are closely located in the
delay-Doppler domain, indicating the need for the separation of the two targets.
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Figure 5. The CAF result of the simulated signals.

As the 13 dB detection threshold can guarantee a detection probability of 90% and a
false alarm probability of 10−6, the iterative initial value σ0

r,c ∈ R2L′M′×1 is set as

σ0
r,c =

[
σ0

S,r,c

0L′M′×1

]
(37)

where the elements of σ0
S,r,c ∈ RL′M′×1 corresponding to values greater than 13 dB in aS,r,c

are set to 1, and all other elements are set to 0. When σ0
S,r,c = 0L′M′×1, the sparse recovery
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operation is not performed on the (r, c)-th CAF block. In other words, the iterative result is
σ∗

r,c = 02L′M′×1.
Under different values of R and C, the sparse recovery results of the simulated signals

are shown in Figure 6.
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Figure 6. The sparse recovery results of the simulated signals. (a) Sparse recovery result with
R = 1, C = 2. (b) Doppler frequency direction of the sparse recovery result with R = 1, C = 2.
(c) Sparse recovery result with R = 2, C = 2. (d) Doppler frequency direction of the sparse recovery
result with R = 2, C = 2. (e) Sparse recovery result with R = 4, C = 4. (f) Doppler frequency
direction of the sparse recovery result with R = 4, C = 4.

From Figure 6, it can be observed that under different sub-block partitioning schemes,
both Target 1 and Target 2 are separated in the delay-Doppler domain. Therefore, the sparse



Remote Sens. 2024, 16, 2294 12 of 17

recovery approach allows for the detection of weak targets, overcoming the influence of
non-ideal factors from CAF.

4.2. Actual Test Results

In this section, the proposed approach is further validated using field signals. The
field signals are obtained from reference [34] and collected using two Yagi-Uda antennas.
One antenna is directed towards a DVB-T tower located in Sendai, Japan, and the other
antenna is directed towards two ships entering the harbor. The signal has a carrier frequency
of approximately 509 MHz, a sampling rate of 2.048 MHz, and an integration time of 0.07 s.
To improve the experimental results of the field signal, the extensive cancellation algorithm
(ECA) [46] is used for clutter suppression in the surveillance signal, and the radon fourier
transform (RFT) [47] algorithm is used for motion compensation. The CAF result of the field
signals is shown in Figure 7. It can be observed that the widening of the strong target peak
covers the weak target peak in the Doppler domain, resulting in difficulties in detecting the
weak target.
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Figure 7. The CAF result of the field signals.

Under different values of R and C, the sparse recovery results of the field signals are
shown in Figure 8.
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Figure 8. Cont.
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Figure 8. The sparse recovery results of the field signals. (a) Sparse recovery result with R = 1, C = 2.
(b) Doppler frequency direction of the sparse recovery result with R = 1, C = 2. (c) Sparse recovery
result with R = 2, C = 2. (d) Doppler frequency direction of the sparse recovery result with
R = 2, C = 2. (e) Sparse recovery result with R = 4, C = 4. (f) Doppler frequency direction of the
sparse recovery result with R = 4, C = 4.

As shown in Figure 8, under different sub-block partitioning schemes, the sparse
recovery approach separates the two targets in the delay-Doppler domain. It enables the
detection of the weak target without being affected by the non-ideal factors of CAF.

4.3. Comparison Results of Calculation Amount

In order to quantify the computational complexity of the proposed approach, we
perform a theoretical calculation of the real multiplications for the traditional approach
used in references [35] (i.e., (12)) and the optimized approach presented in this paper.
For simplicity in the calculation, only cases where L, M, L′, and M′ are powers of 2
are considered.

When the calculation of CAF employs the equivalent pulse compression method [7],
according to the principles of the fast fourier transform (FFT), the number of real multipli-
cations for CAF results of size l × m is given by

CCAF(l, m) = 6m(2l − 1)log2(2l − 1) + 2mllog2(m) + 4m(2l − 1) (38)

The number of real multiplications for the traditional sparse representation approach is

C1 = (LM + 1)CCAF(L, M) (39)
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The number of real multiplications for the optimized sparse representation approach is

C′
1 = CCAF(L, M) + CCAF

(
2L′ − 1, 2M′ − 1

)
(40)

Based on the method of computing the Moore–Penrose pseudoinverse using singular
value decomposition in Matlab, the number of real multiplications for sparse recovery of
l × m-sized CAF results after k iterations is approximately

CR(l, m) ≈ k
(

40l3m3 + 16l2m2 + 12lm
)

(41)

The number of real multiplications for sparse recovery using the traditional sparse
representation approach is approximately

C2 = CR(L, M) (42)

The number of real multiplications for sparse recovery using the optimized sparse
representation approach is approximately

C′
2 = RCCR

(
L′, M′) (43)

Therefore, the number of real multiplications for the traditional sparse representation
and recovery approach is approximately

Call = C1 + C2 (44)

The number of real multiplications for the optimized sparse representation and recov-
ery approach is approximately

C′
all = C′

1 + C′
2 (45)

Under different values of L, M, R, and C, we calculate the number of real multi-
plications for both the traditional and the optimized sparse representation approaches
(according to (39) and (40)). The results are shown in Figure 9.
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Figure 9. The number of real multiplications for the sparse representation approach. (a) L = M.
(b) L = 4M. (c) 4L = M.

From Figure 9, it can be observed that compared with the traditional sparse repre-
sentation approach, the optimized sparse representation approach requires an order of
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magnitude fewer real multiplications. Moreover, as L and M increase, the optimized sparse
representation approach saves even more on the number of real multiplications.

Additionally, based on (44) and (45), we calculate the number of real multiplications
for both the traditional and the optimized sparse representation and recovery approaches.
The results are shown in Figure 10.

From Figure 10, it can be observed that when R and C are each doubled, the number of
real multiplications decreases by approximately one order of magnitude. Therefore, for any
sparse recovery approaches with a time complexity of O

(
l3m3), the optimization approach

can play a similar role in reducing the computational complexity.
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Figure 10. The number of real multiplications for the sparse representation and recovery approaches.
(a) L = M. (b) L = 4M. (c) 4L = M.

5. Conclusions

This paper addresses the challenges in detecting weak targets for PBR and the high
computational demands of traditional sparse representation approaches. It proposes an
PBR target detection model based on batch sparse representation and recovery. The model
processes CAF into blocks, filters out blocks that require sparse representation and recovery
based on whether targets exist in them, and improves the construction and utilization of
the measurement matrix. Through the above processes, both weak target detection and
computational efficiency are achieved. Compared with traditional approaches that rely on
the sparsity of the delay-Doppler domain to detect weak targets, this approach requires
fewer memory resources and computational complexity, while achieving an excellent
weak target detection performance. In the sparse recovery process of CAF, the use of
an iterative sparse recovery algorithm based on the l0 pseudonorm avoids the challenge
of verifying the RIP conditions, providing a more stable theoretical basis for the sparse
recovery results. Experimental results demonstrate that, compared with the traditional
approach, the proposed optimization approach achieves fast and stable detection of weak
targets. As the number of blocks increases four-fold, the number of real multiplications
decreases by approximately one order of magnitude. Therefore, the proposed optimization
approach effectively realizes the fast and stable detection of weak targets. Furthermore,
the sparse recovery for all blocks can be executed in parallel, laying the foundation for
improving the algorithm’s real-time performance.
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