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Abstract: The persistent increase in forest pest outbreaks requires timely detection methods to
monitor the disaster precisely. However, early detection is challenging due to insufficient temporal
observation and subtle tree changes. This article proposed a novel framework that collaborates
multi-source remote sensing data and uses a change detection algorithm to archive early detection
of infestation caused by Dendrolimus tabulaeformis Tsai et Liu (D. tabulaeformis) attacks. First, all
available Sentinel-2 images with less than 20% cloud cover were utilized. During periods with long
intervals (>16 days) between Sentinel-2 images, Landsat-8 images with less than 20% cloud cover were
downscaled to a spatial resolution of 10 m using a deep learning algorithm to meet the requirement
for a high temporal frequency of clear observations. Second, the spectral index differences between
healthy and infested trees were examined to address the challenge of detecting subtle changes in
pest attacks. The Enhanced Vegetation Index (EVI) was selected for early defoliation detection. On
this basis, the EWMACD (Exponentially Weighted Moving Average Change Detection) algorithm,
which is sensitive to subtle changes, was enhanced to improve the capability of detecting early
D. tabulaeformis attacks. The assessment showed that the overall accuracy of the change detection
(F1 score) reached 0.86 during the early stage and 0.88 during the late stage. The temporal accuracy
(Precision) was 84.1% during the early stage. The accuracy significantly improved compared to using
a single remote sensing data source. This study presents a new framework capable of monitoring
early forest defoliation caused by D. tabulaeformis attacks and offering opportunities for predicting
future outbreaks and implementing preventive measures.

Keywords: forest defoliation pest; a pest outbreak; data fusion; multi-source time series data; EWMACD

1. Introduction

Chinese pine (Pinus tabulaeformis) is one of the endemic coniferous species in China.
With increasing stand age and environmental changes, forest pests and pathogens, espe-
cially Chinese pine Caterpillar (Dendrolimus tabulaeformis Tsai et Liu, D. tabulaeformis) have
become increasingly severe and have killed a significant number of pine trees [1]. This has
resulted in substantial losses and persistent threats to forestry, impacting services, structure,
carbon, and functionality of forest ecosystems [2–4]. D. tabulaeformis is a defoliating pest
with a rapid rate of spread [5]. Widespread defoliation could potentially occur in just one
month [6]. Therefore, early warning for D. tabulaeformis is crucial for timely intervention.
Because of the widespread coverage of pine forests and the high spread area of this pest
infestation, traditional forestry inventory methods, such as trapping of larvae, are difficult
to conduct and the spatiotemporal observation scale of the results is insufficient [7].

Previously, monitoring forest pests typically used hyperspectral data or high-spatial-
resolution multispectral data [2,8]. However, the limited time frequency and high cost
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make it usually not suitable for large-scale analysis. The changes in crowns caused by
pest infestation are gradual and subtle. It could be best characterized through time series
analysis [9]. Some scholars have applied time series data with coarse spatial resolution
but high temporal resolution, such as MODIS [10–12]. This method sacrifices spatial
resolution, making it difficult to delineate the area of infestation. Due to its free availability
and long-term monitoring capabilities, Landsat data is frequently used for forest pest
monitoring [13–15]. However, the influence of cloud cover can sometimes result in the
actual revisit period of Landsat data exceeding 16 days. Missing one image could lead
to missing the entire early stage of pest infestation (≈30 days). With the launch and
free data access of the Sentinel-2A and -2B sensors, Sentinel-2 data is widely used for
pest monitoring [16–18]. However, the insufficient data spatiotemporal resolution used
in current research limits the spatiotemporal accuracy of pest monitoring. The location
provided by studies based on coarse spatial resolution images is not accurate enough. The
studies based on finer spatial resolution images have the potential to improve identification
accuracy, such as the results from Daniele et al. [18], and the monitoring results are close
to monthly temporal resolution. There is still room for improvement in the monitoring
frequency, which is crucial for early pest infestation detection.

To address the insufficient spatiotemporal resolution of observations from a single
data source, some scholars have advanced their research by integrating multi-source remote
sensing data to obtain denser time series data. Shang et al. [19] near-real-time monitored
forest disturbance with harmonized Landsat-7, -8 and Sentinel-2 data. Christopher et al. [20]
utilized a Harmonized Landsat Sentinel-2 (HLS) dataset with a temporal resolution of
7 days to monitor forest changes in high-latitude regions. However, previous studies
mostly resampled the finer-resolution image to match the coarser-resolution image when
integrating data with different spatial resolutions. This approach sacrifices the image’s
spatial resolution in exchange for higher temporal resolution [21]. Currently, deep learning-
based super-resolution reconstruction is one of the most popular image fusion methods,
enabling images to be collaborative at high spatial resolution. Zhang et al. [22] utilized
deep learning to fuse Sentinel-2 and Landsat images to track small-scale tropical forest
disturbances and mapped the disturbance with a spatial resolution of 10 m. It detected 11%
to 21% more disturbance areas compared to using Sentinel-2 or Landsat-7/8 time series
alone. Therefore, using deep learning algorithms to downscale low-resolution data and
collaborate with high-spatial-resolution data can increase observation frequencies, thereby
timely monitoring early pest infestations.

Because the subtle and gradual changes are difficult to detect, current research has
developed change detection algorithms sensitive to pest infestations to detect early forest
pest outbreaks. Huo et al. [23] proposed a novel vegetation index to detect early European
spruce bark beetle infestations based on Sentinel-1 and -2 images. The method achieved
identification accuracy ranging from 0.80 to 0.82 during the early stages of infestation.
Vojtěch et al. (2021) [24] utilized the random forest algorithm to conduct classification
between healthy and bark-beetle-infected trees based on Sentinel-2 images, achieving a
78% overall accuracy in the classification. Christopher et al. [20] employed the BEAST
algorithm to monitor forest changes in high-latitude regions. The results indicate that
this method can serve as an early warning signal for changes caused by pest infestation.
However, most of the aforementioned methods still need improvement in terms of sen-
sitivity to early pest infestations. In studies such as [13], over 50% of Landsat pixels are
detected during the transition period between green (early stage) and red/gray stages
after being infested, which greatly affects the response speed and accuracy. In studies such
as [24–26], the accuracies of green-attack (early) stages detection are significantly lower
than red or grey-attack stages, which could reach 90% [27,28]. These studies point to a large
insufficient in early infestation detection. Identifying such subtle changes often requires
more sensitive approaches. The EWMACD (Exponentially Weighted Moving Average
Change Detection) algorithm is a change detection algorithm sensitive to subtle changes
based on time series data. It has been used to identify minor disturbances in forests, such as
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selective logging [29,30]. Research has also confirmed the potential of using the EWMACD
algorithm for detecting pest infestations [31]. Therefore, the EWMACD algorithm has the
feasibility to monitor early D. tabulaeformis infestation.

The objective of this study is to achieve early warning of D. tabulaeformis infestations
through collaborative multi-source remote sensing time series data and apply EWMA
(Exponentially Weighted Moving Average) change detection algorithm. By collaborating
Sentinel-2 and Landsat-8 data, higher temporal resolution time series could be obtained,
enabling timely and spatially explicit monitoring of D. tabulaeformis infestation. On this
basis, sensitive features of infestation are extracted, and the EWMA change detection
algorithm, which is sensitive to subtle changes, is applied to achieve early warning and
accurate detection.

2. Materials and Methods
2.1. Study Area

The study area, the mid-west part of Lingyuan City, is located in Liaoning Province, China
(Figure 1). Lingyuan City has a total forest area of 136,000 hectares, of which 69,600 hectares are
pine forests. The forest in the study area is mostly composed of Pinus tabulaeformis, covering a
total area of 3335 hectares. The average temperature in March 2018 was 6.39 ◦C, and the average
temperature in October 2018 was 16.58 ◦C. As a primary tree species for afforestation on barren
hills, Pinus tabulaeformis forests are predominantly artificial pure forests [32,33]. D. tabulaeformis
infestation broke out in 2018, with one generation occurring each year in the study area.
D. tabulaeformis began climbing trees from mid-March to mid-April after overwintering, feeding
on pine needles in small quantities, marking the early stage of infestation. In mid-June, they
begin pupation, with adults emerging in early July to lay eggs, during which time they do not
harm pine trees. Larvae start appearing from late July to mid-August, feeding extensively on
pine needles, displaying the most severe damage, indicating the late stage of infestation. By
early October, D. tabulaeformis started descending from trees to overwinter.
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Figure 1. Geographic location and Sentinel-2 image of the study area. (a) general location within
China, (b), sketch map of trees being attacked and (c) location of attacked and healthy plots in
validation data, and Sentinel-2 image of the study area acquired in June 2018 (RGB = band Red,
Green, and Blue).

2.2. Data and Pinus Tabulaeformis Forest Mask

Based on the physiological habits of D. tabulaeformis, the study period is determined
to be from 1 March 2018 to 31 October 2018. As described in Section 3.2.2, the change
detection algorithm uses information from the target year and the reference year to detect
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forest pests. Therefore, all Sentinel-2A and -2B images with cloud cover less than 20% in
the study area from 2017 to 2018 were collected, totaling 56 images. Additionally, during
periods with long intervals (>16 days) between Sentinel-2 images, Landsat-8 images with
cloud cover less than 20% in the study area were downscaled, totaling 16 images. The
average revisit period during the study period was approximately 8.6 days. Figure 2 shows
the temporal distribution of all the images used from 2017 to 2018.
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Figure 2. Temporal distribution of available images between 2017 and 2018. The dots represent
Sentinel-2 images, while the triangles represent Landsat-8 images.

Sentinel-2 Top of Atmosphere (TOA) images were obtained from the European Space
Agency (ESA) and then atmospherically corrected using Sentinel Application Platform
(SNAP), and converted into surface reflectance (SR) images. Landsat-8 SR images were
downloaded from the Google Earth Engine (GEE) platform.

Since the focus of this study is on identifying forest pests, and the forest area in the
study area is mostly pure pine forest, the Pinus tabulaeformis forest mask was created
based on the Environmental Systems Research Institute (ESRI) land use/land cover (LULC)
dataset during 2017 and 2018, along with field-collected Pinus tabulaeformis samples, and
used the random forest classification algorithm.

2.3. Training and Validation Data

The training data used for feature selection: a field survey was conducted in October
2018. D. tabulaeformis infestations were identified through visual inspection of pine needle
color and signs of feeding. A total of 5 infestation points and 5 healthy points were collected
through field measurements, and their locations were recorded. The damage level of the
infestation points is severe. Visual interpretation was also conducted based on available
Very High Resolution (VHR) images from Google Earth Pro (GEP) and Sentinel-2 images
obtained from 2017 to 2018. Combining field surveys and visual interpretation, a total of
200 training data points were selected, with 100 infestation points and 100 healthy points.

The validation data used for accuracy assessment: validation data were selected through
visual interpretation based on available VHR images from GEP and Sentinel-2 images from
2017 to 2018. A total of 100 validation points were selected for both the early and late stages of
infestation, with 50 infestation points and 50 healthy points for each stage.

3. Methodology

The overall workflow of this study is illustrated in Figure 3. Firstly, Sentinel-2 images
were preprocessed to obtain surface reflectance data. Then, based on the ESRCNN data
fusion algorithm, Landsat-8 images were fused with Sentinel-2 images to generate a dense
time series with a spatial resolution of 10 m (see Section 3.1). Next, for each pixel, the
Enhanced Vegetation Index (EVI), Normalized Burn Ratio (NBR), Red-Green Index (RGI),
and SWIR2 were calculated. Then the Jeffries–Matusita (JM) distance for the indices in
both healthy and infested points were computed (see Section 3.2.1). EVI was selected
as the optimal input feature and EVI time series data were input into the Exponentially
Weighted Moving Average Change Detection (EWMACD) algorithm. Infestation is detected
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when the EWMA value consistently exceeds the control limit (see Section 3.2.2). Finally,
post-processing is applied to the detection results, followed by an accuracy assessment
(see Section 3.3). The following sections will delve into the key processes in detail.
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3.1. Fusion of Sentinel-2 and Landsat-8

Collaborating multi-source data could enhance the temporal resolution of observations,
enabling timely observation. To harmonize the resolution disparities between images from
different sources, data fusion algorithms could downscale coarse spatial resolution images
to match fine spatial resolution images. Therefore, the ESRCNN algorithm proposed by
Shao et al. [34] based on deep learning for image super-resolution reconstruction can
automatically select the optimal features from one or multiple images for high spatial
resolution reflectance prediction. Compared to previous algorithms such as STARFM and
ATPRK [35,36], ESRCNN improves image quality and preserves the reflectance distribution
of the original images better.

ESRCNN uses fine-resolution Sentinel-2 image as auxiliary data to downscale the
coarse-resolution Landsat-8 image. Firstly, ESRCNN employs an adaptive fusion algorithm,
instead of the simple resampling method, to downscale Sentinel-2 image bands 11–12 from
20 m to 10 m resolution. Secondly, ESRCNN utilizes Landsat-8 panchromatic bands and
Sentinel-2 bands 2–4, 8, and 11–12 to downscale Landsat-8 bands 1–7. This fusion network
is designed to accommodate flexible numbers of Sentinel-2 images as auxiliary datasets. In
this article, for each downscaling of the Landsat-8 image, three auxiliary Sentinel-2 images
are required. Table 1 displays the dates of downscaled Landsat-8 images and auxiliary
Sentinel-2 images.
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Table 1. The dates of downscaled Landsat-8 images and auxiliary Sentinel-2 images.

Landsat Sentinel-2
Date Date1 Date2 Date3

24/1/2017 2/1/2017 12/1/2017 4/2/2017
18/2/2017 12/1/2017 4/2/2017 26/3/2017
13/3/2017 4/2/2017 26/3/2017 15/4/2017
29/3/2017 26/3/2017 15/4/2017 22/4/2017
9/5/2017 15/4/2017 22/4/2017 25/5/2017
1/6/2017 22/4/2017 25/5/2017 14/6/2017

26/6/2017 25/5/2017 14/6/2017 11/7/2017
29/8/2017 5/8/2017 17/9/2017 22/9/2017
9/5/2017 5/8/2017 17/9/2017 22/9/2017

24/11/2017 8/11/2017 3/11/2017 28/11/2017
20/1/2018 2/1/2018 12/1/2018 26/2/2018
2/5/2018 2/1/2018 12/1/2018 26/2/2018

21/2/2018 12/1/2018 26/2/2018 23/3/2018
16/3/2018 26/2/2018 23/3/2018 15/4/2018
1/4/2018 23/3/2018 15/4/2018 2/5/2018

12/5/2018 2/5/2018 7/5/2018 27/5/2018

The data fusion results were evaluated by comparing the spatial distribution and
spectral value between the fused images and the reference images (Sentinel-2 image on the
same or near date). Root Mean Square Error (RMSE) and the Pearson correlation coefficient
(Correlation) were used to assess the accuracy of reflectance values. These two metrics are
widely employed for evaluating the performance of data fusion algorithms.

The RMSE is used to evaluate the spectral difference between the reference image and
the fused image. RMSE is calculated as:

RMSE(R, F) =
1

MN

√√√√ M

∑
i=1

N

∑
j=1

[R(i, j)− F(i, j)]2 (1)

where R represents the reference image, F represents the fused image, M is the number of
pixels on the row, and N is the number of pixels on the column.

Correlation is used to indicate the correlation between the reference image and the
fused image, calculated as:

Correlation(R, F) =
∑M

i=1 ∑N
j=1 [R(i, j)− µ(R)][F(i, j)− µ(F)]√

∑M
i=1 ∑N

j=1[R(i, j)− µ(R)]2∑M
i=1 ∑N

j=1[F(i, j)− µ(F)]2
(2)

where µ refers to the mean value.
To validate the applicability of the ESRCNN algorithm for this study, it was necessary

to have Sentinel-2 images available on dates close to those of the fusion data. Therefore,
we selected Sentinel-2 images collected on 11 July, 16 July, and 31 July 2017 as auxiliary
data to downscale the Landsat-8 image collected on 12 July 2017. The result is shown in
Figure 4. Visually, the downscaled images exhibit finer spatial details across all bands
compared to the original Landsat-8 images. Moreover, the bands closely resemble those of
the neighboring Sentinel-2 images.
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Figure 5 displays the accuracy assessment results of the downscaled image. Comparing
the downscaled images with the original Landsat-8 images and the adjacent date Sentinel-2
images, the RMSE is generally less than 0.1, and the Correlation is generally greater than 0.85.
These metrics indicate that the downscaled images are consistent with the original images in
terms of spectral and spatial characteristics.



Remote Sens. 2024, 16, 2299 8 of 19Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 5. Scatter plot of correlation between downscaled image and (a) Sentinel-2 image, (b) Land-
sat-8 image. 

3.2. Defoliation Detection Algorithm 
3.2.1. Feature Selection 

Selecting features sensitive to D. tabulaeformis infestation is crucial for inputting into 
the change detection algorithm. D. tabulaeformis infestation results in pine defoliation, nee-
dle desiccation, and reduced chlorophyll content. Therefore, we referred to existing stud-
ies and selected several vegetation indices and bands (Table 2) related to water stress, 
color, and needle structure. Using the training dataset, we calculated the Jeffreys–Matusita 
(JM) distance for each candidate feature in both the early and late stages of the damage. 

The JM distance quantifies the separability of selected features between infested and 
healthy pine forests. It ranges from [0, 2], with higher values indicating greater separabil-
ity. The JM distance is calculated as: 

Figure 5. Scatter plot of correlation between downscaled image and (a) Sentinel-2 image, (b) Landsat-8
image.

3.2. Defoliation Detection Algorithm
3.2.1. Feature Selection

Selecting features sensitive to D. tabulaeformis infestation is crucial for inputting into
the change detection algorithm. D. tabulaeformis infestation results in pine defoliation,
needle desiccation, and reduced chlorophyll content. Therefore, we referred to existing
studies and selected several vegetation indices and bands (Table 2) related to water stress,
color, and needle structure. Using the training dataset, we calculated the Jeffreys–Matusita
(JM) distance for each candidate feature in both the early and late stages of the damage.



Remote Sens. 2024, 16, 2299 9 of 19

Table 2. The candidate features to detect D. tabulaeformis infestation.

Index Formulation Indicated Change Reference

EVI 2.5(NIR − Red)
(NIR+6Red − 7.5Blue) − 1

Needle structure [12,37]

RGI Red
Green Coloration [8,27]

NBR NIR − SWIR2
NIR + SWIR2

Moisture stress&
needle structure [38,39]

SWIR2 Moisture stress [13,23]

The JM distance quantifies the separability of selected features between infested and
healthy pine forests. It ranges from [0, 2], with higher values indicating greater separability.
The JM distance is calculated as:

JM = 2(1− e−B) (3)

B =
1
8
(
mi −mj

)2 2
σi

2 + σj
2 +

1
2

ln

(
σi

2 + σj
2

2σiσj

)
(4)

where B represents the Bhattacharyya Distance, mi, mj represent the mean values, while σi, σj
respectively represent the standard deviation of a specific feature within the two categories.

3.2.2. EWMACD Algorithm

EWMACD is an online time series change detection algorithm sensitive to subtle
change. The flowchart of EWMACD is illustrated in Figure 6.
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Specifically, the EWMACD algorithm first establishes the following harmonic model
during training to eliminate the impact of phenological changes on pest monitoring:

yi = a0 +
k

∑
j=1

(
bjcos

(
2πj
D

ti

)
+ cjsin

(
2πj
D

ti

))
+ εi (5)

where yi is EVI value, a0 is the intercept coefficient, k is the order of harmonic function and
set = 2, bj is the coefficient of cosine harmonic, cj is the coefficient of sine harmonic, ti is
Julian date, and i= [1, 2, . . ., N], D is the number of days within a year. εi represents the
regression residual of Julian date. These coefficients are estimated utilizing the ordinary
least squares (OLS) method.
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Secondly, all elements with standardized residual values greater than the specified
threshold were filtered out through the X-Bar value to remove interference from clouds
and outliers and then recalculate the harmonic coefficients:

β̂ =
(
X′trainXtrain

)−1X′traintntrain′ . (6)

where Xtrain is a matrix composed of ntrain ×
(
1 + ci + bj

)
, each harmonic coefficient is

adjusted according to the Julian date. After all elements which standardized residuals
greater than the threshold are filtered out, β̂ is recalculated. Then, the residuals (res) were
calculated as:

res = t− Xβ̂ (7)

where X is the matrix derived from computing the full n×
(
1 + cj + bj

)
. The training period

variance s2 was calculated as:

s2 =
resntrainres′ntrain

ntrain − 1
(8)

where resntrain represent the residual on the training period.
EWMA values were calculated as:

EWMAi = (1− λ)EWMAi−1 + λεi (9)

where the EWMA1 = 0. The smoothing parameter λ ranges from 0 to 1. λ close to 0 indicates
that a greater weight of the historical period data, EWMAi, mainly relies on EWMAi−1.
The λ is set to 0.15 (Figure 7).
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The control limit of EWMA chart were computed as:

CLi = 0± Ls

√
λ

2− λ

[
1− (1− λ)2i

]
(10)
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where L represents the constant control limit, s represents the standard deviation of all
residuals during the training period.

Then, the EWMACDi was calculated as:

EWMACDi = Sign(EWMAi)·int
[∣∣∣∣EWMAi

CLi

∣∣∣∣] (11)

where Sign() is used to obtain the plus-minus sign of EWMAi, || represents the absolute
value, and int[] represents the integer value. The pest infestation was signaled when
EWMACD value less than 0.

It is significant to define smoothing coefficients λwhen using the EWMACD algorithm.
λ represents the weight of historical period data and affects the calculation of control
limits of the EWMA chart, which is directly related to the sensitivity of change detection.
Observing the detection result using differences λ in Figure 7, pest infestation was difficult
to detect when setting λ high, such as λ = 0.2 (Figure 7d). When λwas set low (e.g., λ = 0.1),
a significant increase in misclassified pixels (Figure 7f). Therefore, we will initially set λ to
0.15 as the smoothing coefficient (Figure 7e).

3.3. Accuracy Assessment

To assess the spatial accuracy of early and late detection results of insect damage, the
precision (Precision), recall (Recall), overall accuracy (OA), and F1-score were computed as
accuracy evaluation metrics based on the validation dataset.

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

OA =
TP + TN

TP + FP + TN + FN
(14)

F1− score =
2 ∗ TP

2 ∗ TP + FP + FN
(15)

where TP represents true positive, FP represents false positive, TN represents true negative,
and FN represents false negative.

4. Results
4.1. Feature Selection Results

The time series of each candidate feature, including EVI, NBR, RGI, and SWIR2 were
calculated, as shown in Figure 8. The JM distance for the early and late stages of infestation
was computed, as shown in Table 3. Throughout the entire study period, EVI was the
earliest and most consistent to display spectral differences between healthy and diseased
trees. Also, EVI continuously maintained a higher JM distance. As the aim of this study is
to achieve early detection of insect damage, considering the comprehensive comparison of
time series indices and JM distances, EVI was ultimately chosen as the input feature for
detecting pest infestation.
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Table 3. JM distance of each feature for the early and late stages.

Index JM Distance
(Early Stage)

JM Distance
(Late Stage)

EVI 0.83 1.02
RGI 0.83 0.98
NBR 0.80 1.09
SWIR 0.87 0.86

4.2. Feasibility Analysis of Using EWMACD Algorithm for Pest Detection

Figure 9 shows the time series of EVI and EWMA values for a typical infestation pixel
to evaluate the feasibility of the EWMACD algorithm for pest detection. In mid-March,
the D. tabulaeformis began to return to the pine trees and slightly nibble on the needles,
indicating the early-stage onset of pest infestation. The EWMACD algorithm detected
the pest occurrence starting from 23 March 2018. In mid-June, the D. tabulaeformis started
cocooning and laying eggs after pupating, during which they did not harm the pine trees.
The EWMA value remained unchanged from 16 June to 31 July. In late July, the larvae
began to voraciously eat the needles, leading to a significant decrease in the EWMA value
starting from 10 August. In early October, the D. tabulaeformis began to descend from the
trees to hibernate, and the EWMA value gradually recovered from 14 October onwards,
stabilizing after 24 October. In summary, the EWMACD algorithm effectively detects pine
caterpillar infestation.
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4.3. Assessment of Infestation Detection Accuracy
4.3.1. Overall Detection Results of EWMACD

The output of the EWMACD algorithm is a multi-band raster, with each band repre-
senting the detection results for the corresponding date. Based on the spatial clustering and
temporal persistence of the pest infestation, we applied post-processing to the detection
results. We aggregated all raster values for the early detection period (1 March 2018, to
15 April 2018) to obtain the early detection results, and aggregated all raster values for the
entire study period (1 March 2018, to 31 October 2018) to obtain the late detection results,
while also applying spatial filtering. The early and late detection results of the EWMACD
algorithm for the entire study area are shown in Figure 10. The early damaged area is
approximately 868 hectares, while the late damaged area is approximately 1183 hectares.
Compared to the early stage, the late-stage outbreak shows a trend of spreading from
the center to the surrounding areas, as adult D. tabulaeformis migrate and lay eggs in the
surrounding areas after maturation, leading to the hatching of the next generation of larvae,
which feed on pine needles.
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4.3.2. Assessment of Accuracy in Spatial Domain

The accuracy of the EWMACD algorithm was assessed using validation data. Table 4
presents the spatial accuracy of the early- and late-stage pest infestation detection results.
The F1 score for the early-stage and late-stage detection results of EWMACD were 0.86 and
0.88. The precision of the late-stage results slightly decreased compared to the early-stage
results, indicating a slight increase in misclassification errors, but the other metrics showed
significant improvement, demonstrating overall good detection performance.

Table 4. Spatial accuracy assessment of EWMACD results in detecting early and late stage defoliation.

Early Stage Late Stage
Multi-Source Image Sentinel-2 Image Multi-Source Image Sentinel-2 Image

Precision 0.98 0.6 0.89 0.67
Recall 0.77 0.49 0.87 0.94

OA 0.86 0.59 0.87 0.74
F1 Score 0.86 0.54 0.88 0.78

One of the main sources of commission errors is shadows, which can result from
differences in image acquisition times and cloud cover, as shown in Figure 11. Despite
using Shewhart control charts to remove outliers from the images, the impact of minor
shadows may not be sufficient to be identified and removed by the Shewhart control chart.
Additionally, due to the small smoothing coefficient used, the algorithm is sensitive to
minor changes, leading to some shadows being misclassified as false changes. Figure 11
shows an area of misclassification by EWMACD, where three consecutive images starting
from 2 May 2018 (Figure 11c–e) were affected by thin clouds and shadows, resulting in
healthy pine forests being erroneously labeled as infested pine forests in panel (Figure 11f).
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structure, sparse pine forest pixels have lower overall leaf litter rates and EVI changes are 
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Figure 11. Commission error in infestation detection using the EWMACD algorithm: Continuous
clouds and shadows. (a–c) Sentinel-2 images (R: Red, G: Green, B: Blue), (c–e) images affected by
clouds and shadows, (f) EWMACD detection results on 2 May 2018.

The main source of omission errors is the sparse distribution of pine forests within
individual pixels. Because EVI changes are primarily caused by changes in pine needle
structure, sparse pine forest pixels have lower overall leaf litter rates and EVI changes are
not significant, leading to undetected changes by the EWMACD algorithm. As shown
in Figure 12, in this area with low pine density, compared to Figure 12a, significant tree
discoloration can be observed in the GEP image from 27 September 2018 (Figure 12b) and
the Sentinel-2 image from 4 October 2018 (Figure 12c). However, both the early (Figure 12a)
and late (Figure 12c) detection results show higher omission errors.
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Figure 12. Omission error in infestation detection using the EWMACD algorithm: Sparse distribution
of Pinus tabulaeformis forests. (a–c) shows images from different periods, where (a–c) are Sentinel-2
images and (b) is a GEP image. White patches in (a,c) display the EWMACD detection results.

4.3.3. Assessment of Accuracy in Temporal Domain

We first compared the temporal accuracy of pest detection using synergistic multi-
source data and using Sentinel-2 data alone (Table 4). Apart from the low false negative
error in the late-stage results detected using only the Sentinel-2 time series, multi-source
time series data significantly improved the detection accuracy in both the early and late-
stage pest detection compared to using Sentinel-2 data alone. The lower false negative
error in the late-stage detection results using only Sentinel-2 data was significantly better
than its false positive error, which may be due to the uneven distribution and longer
revisit period of the images. Images were used for model fitting during the study period
in 2017, approximately 18 days, which resulted in the model not effectively distinguishing
between seasonal, trend, and pest-induced changes during the fitting process. It also caused
vegetation phenological changes in 2018 to be identified as pest induced.

In the assessment of temporal domain detection accuracy, the entire early-stage detec-
tion results from 1 March to 15 April 2018 are considered accurate detection. As shown
in Table 5, the accuracy of EWMACD timely monitoring pest infestation was 84.1%. The
EWMACD algorithm shows a timely response to pest infestation, mostly signaling in the
early stage of infestation.

Table 5. Temporal accuracy assessment results.

Late = 0 Late ≤ 3 Late > 3 Total

Detection 37 2 5 44
Proportion 84.1% 4.5% 11.4% 100%

Although the EWMACD algorithm has demonstrated good timely response perfor-
mance, solving the problem of delayed response still poses challenges. The area shown in
Figure 13 for the pest infestation started on 23 March 2018, and it was not until 26 June that
a large area was detected, with a delay of more than three-time steps between them. The
main source of delay detection is insufficient model fitting, resulting in pest infestation not
being marked as changes.
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5. Discussion

This study synergy multisource remote sensing imagery aimed to enhance the tempo-
ral frequency of observations, select sensitive features of D. tabulaeformis infestation, and im-
prove the EWMACD algorithm for early warning and accurate detection of
D. tabulaeformis infestation. However, this method also has its limitations:

Firstly, due to the approximately 40-day time span of early infestation, this study
downscaled Landsat-8 images and synergized them with Sentinel-2 images to improve
the temporal resolution of observations (≤10 days). However, geographical constraints
may still limit achieving the required temporal resolution, especially in cloudy or rainy
areas, where even synergizing multiple sensor data may not be sufficient to observe early
infestations. Sparse imagery may also fail to meet the requirements of the EWMACD
algorithm, affecting its feasibility. Future work could focus on improving the selection of
data sources. For example, previous studies have shown that SAR data can reflect forest
structure and spectral characteristics [40], and infestations can lead to significant changes
in radar signals [41]. Since SAR observations are not affected by cloud cover or rain, using
SAR data or synergizing SAR data with optical time series data could significantly increase
observation frequency and enhance the algorithm’s capability to detect forest pests.

Additionally, the EWMACD algorithm uses single-feature time series data as input,
but many studies have shown that combining suitable bands or indices can better represent
spectral changes of land cover, and synergizing multiple features as algorithm inputs could
potentially improve change detection accuracy [42]. Future work could focus on improving
feature inputs. Some scholars have introduced the MEWMA chart based on the EWMA
control chart [43]. The MEWMA control chart offers a multi-feature approach and has
shown good performance in quality control, offering potential for future research.

Lastly, many studies have demonstrated the correlation between environmental factors
and forest pest outbreaks [44–46]. However, this aspect was not fully explored in this study.
In addition to detecting pests, future research could incorporate environmental factors such
as climate, soil, and vegetation, thereby predicting infestation and improving the early
monitoring accuracy of pest infestation.

6. Conclusions

Timely monitoring of forest pests and accurately mapping their spatial distribution are
crucial for sustainable forest management. In this study, we combined multi-scale remote
sensing images to successfully achieve early detection and mapping of D. tabulaeformis
disasters. As a basis for further detection, we first downscaled Landsat-8 images to a 10 m
spatial resolution using deep learning algorithm ESRCNN instead of simple resampling,
thereby improving the spatial accuracy of pest detection. We collaborated Sentinel-2
and downscaled Landsat-8 images to obtain time series at a higher temporal resolution
for timely observation. Building upon this, we compared the performance of different
indices in identifying early- and late-stage pest infestation, and EVI was selected as the
sensitive feature. Finally, we improved the EWMACD algorithm to enhance its sensitivity
to early D. tabulaeformis infestation. The assessment showed that the overall spatial accuracy
(F1 score) reached 0.86 during the early stage and 0.88 during the late stage. The temporal
accuracy (Precision) was 84.1% during the early stage. The spatial accuracy significantly
improved compared to using a single remote sensing data source (The F1 score in early-stage
detection has improved by about 0.3, and late stage by about 0.1). In summary, these results
demonstrate the effectiveness of our proposed method in early warning and monitoring
of D. tabulaeformis disasters. With frequent outbreaks and expanding the spatial scope of
D. tabulaeformis disasters in recent years, our method can universally monitor forest pests and
provide early warnings, thereby controlling the outbreak of D. tabulaeformis disasters.
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