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Abstract: Landslide susceptibility denotes the likelihood of a disaster event under specific conditions.
The assessment of landslide susceptibility has transitioned from qualitative to quantitative methods.
With the integration of information technology in geological hazard analysis, a range of quantitative
models for assessing landslide susceptibility has emerged and is now widely used. To compare
and evaluate the accuracy of these models, this study focuses on Xupu County in Hunan Province,
applying several models, including the CF model, FR model, CF-LR coupled model, FR-LR coupled
model, SVM model, and RF model, to assess regional landslide susceptibility. ROC curves are
used to evaluate the reliability of the model’s predictions. The evaluation results reveal that the
CF model (AUC = 0.756), FR model (AUC = 0.764), CF-LR model (AUC = 0.776), FR-LR model
(AUC = 0.781), SVM model (AUC = 0.814), and RF model (AUC = 0.912) all have AUC values within
the range of 0.7–0.9, indicating that the overall accuracy of the models is good and can provide a
reference for landslide susceptibility zoning in the study area. Among these, the Random Forest
model demonstrates the best accuracy for landslide susceptibility zoning in the study area. By
extracting the extremely high susceptibility zones from the landslide susceptibility zonings obtained
by six models, a comparative analysis of model adaptability was conducted. The results indicate that
the Random Forest model has the best adaptability under specific conditions in Xupu County.

Keywords: landslide susceptibility; traditional statistical models; logistic regression models; machine
learning models

1. Introduction

Landslide disasters are among the most prevalent natural hazards, characterized by
the movement of rock or soil masses on slopes due to the combined influence of internal
and external factors, as well as the force of gravity, leading to the displacement of the entire
or part of the mass along a weak plane [1]. These disasters are marked by their rapid
occurrence, swift pace, and large scale, resulting in significant and often underestimated
losses of life and property annually. As illustrated in Figure 1, Xupu County is susceptible
to such calamities [2]. In the picture, there is a sign with the symbol of the Chinese character
“stop”, and a number “29 m”, indicating that there is danger ahead, and the vehicle stops
here, 29 m away from the disaster point ahead. Landslide occurrence is influenced by a
multitude of factors, and various methods exist for prediction and research. One impor-
tant direction involves the study of landslides caused by water-sediment transport [3,4]
combined with fault effects [5], while remote sensing image identification is currently
the mainstream approach. The former approach focuses on solving problems through
mechanism research, while the latter belongs to image perception methods. This paper
primarily focuses on the identification of disasters through remote sensing images, aiming
to guide and evaluate disaster response. The assessment of landslide susceptibility forms
the cornerstone of landslide risk management, entailing a comprehensive analysis of the
impact factors to evaluate the likelihood of landslide occurrence within a region. This
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provides essential technical support for the prevention of landslide disasters [6,7]. Cur-
rently, the primary factors influencing landslide susceptibility are selected from categories
such as topographical and morphological factors [8], hydrological factors [9,10], land use
factors, and lithological factors. By identifying landslide-prone areas, relevant departments
can take targeted measures such as strengthening monitoring, implementing engineering
protection, or adjusting land use planning to reduce the probability and potential losses of
landslide occurrence. This study aims to provide a scientific basis for landslide disaster
prevention and mitigation in Xupu County by comparing and analyzing various landslide
susceptibility assessment models and enriching the theoretical and practical knowledge of
landslide disaster prevention and mitigation in the region.
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Figure 1. Landslide Disasters in Xupu County.

Landslide susceptibility models are classified into empirical, traditional statistical, and
machine learning models. Empirical models depend on expert knowledge and are uncertain.
Traditional statistical models are quantitative, using mathematical models that assume
independent factors. Machine learning models use large datasets and computer programs
for data simulation [11,12]. Advances in information technology have led to the integration
of 3S technology with disaster models, enhancing intuitive regional assessments [13].

Hunan Province accounted for 65% of national landslide occurrences with 2561 events.
Landslides can also trigger secondary disasters like debris flows and floods. Table 1 presents
statistics on landslide disasters in Xupu County townships. With distinct seasonal rainfall
patterns, concentrated early summer rainfall, significant terrain relief, and numerous fault
structures, Xupu County has multiple factors triggering landslides, making it suitable as
the study area for this research [14–16].

The Deterministic Coefficient Model (CF) and Frequency Ratio Model (FR), despite
being straightforward traditional statistical models [17], do not suffice for precise landslide
prediction. To overcome their limitations and the challenges of high data demands and
inefficient calculations, they were each combined with the Logistic Regression Model (LR)
to form the CF + LR and FR + LR coupled models [18,19]. These integrations leverage
the strengths of the original models and use logistic regression to mitigate the effects of
hard-to-quantify data, simplifying the process.

This article presents a statistical analysis of geological disasters and landslides in China
from 2011 to 2023, using data from the Natural Resource Statistical Bulletins, National
Geological Disaster Bulletins, and National Geological Disaster Prevention and Control
Work Reports by the Ministry of Natural Resources of China. In 2022, China experienced
5659 geological disasters, including 3919 landslides, resulting in 90 fatalities, 16 missing
persons, and direct economic losses of RMB 1.5 billion.
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Table 1. Landslide Disaster Statistics for Xupu County.

Xupu County
Townships Area/km2 Number of Landslide

Points
Proportion of Total

Disaster Points Landslide Density

Beidou Xi Town 172.8 5 0.045 0.029
Dajiangkou Town 236.4 5 0.045 0.021
Luozhuang Town 205.0 5 0.045 0.024
Gezhi Ping Town 98.9 18 0.162 0.182

Guanyin Pavilion Town 168.7 4 0.036 0.024
Huangmaoyuan Town 114.1 10 0.090 0.088

Junping Town 89.4 2 0.018 0.022
Liangyaping Town 85.0 3 0.027 0.035

Longtan Town 244.5 11 0.099 0.045
Longzhuang Bay 45.2 1 0.009 0.022

Lufeng Town 142.3 2 0.018 0.014
Qiaojing Town 146.9 3 0.027 0.020
Sanjiang Town 287.9 1 0.009 0.003

Shenzi Lake Town 244.1 3 0.027 0.012
Shu Rongxi 59.9 3 0.027 0.050

Shuang Well Town 105.0 2 0.018 0.019
Shuidong Town 145.5 5 0.045 0.034

Sisong Town 85.1 2 0.018 0.023
Taojin Ping Town 68.4 8 0.072 0.117

Tongxi River Town 89.0 4 0.036 0.045
Xiao Henglong 129.7 2 0.018 0.015

Yanxi 139.2 5 0.045 0.036
Youyang 84.0 1 0.009 0.012
Zhongdu 120.6 4 0.036 0.033

Zushi Temple Town 115.9 2 0.018 0.017

This article chooses Xupu County, Hunan Province, as the study area, dividing it
into evaluation units [20]. It uses six models—the CF, FR, CF-LR, FR-LR, Support Vector
Machine, and Random Forest [21,22]—to assess landslide susceptibility. The accuracy of
each model is evaluated and compared using ROC curves to identify the best method for
the region.

2. Study Area

Xupu County is located in the western part of Hunan Province and the northeastern
part of Huaihua City, on the middle reaches of the Yuan River. It shares borders with
Dongkou County and Hongjiang City to the south, Yuanling County and Anhua County
to the north, Xinhua County and Longhui County to the east, and Chenxi County and
Zhongfang County to the west. Its geographical coordinates range from 110◦15′E to
111◦01′E and 27◦19′N to 28◦17′N, covering a total area of 3438 km2, as shown in Figure 2.
It Is In the mid-low mountains and hills of western Hunan, with a subtropical humid
monsoon climate—hot, rainy summers; mild, moist winters; and heavy spring-summer
rainfall. The region has significant climatic variations, microclimates, and vertical climate
differences. Its geology, with frequent structural movements and fault structures, makes it
prone to landslides. The nature of strata and rock formations has a profound impact on the
structure of slopes and the types of accumulated layers, making it a key factor controlling
slope stability. Xupu County has ancient and complex geological conditions, with strata
from the Proterozoic, Lower Paleozoic, Upper Paleozoic, Mesozoic, and Cenozoic eras all
present. Among them, the stratigraphic units of the Upper Sinian System of the Lower
Paleozoic Era, the Doucun Formation, and the Dengying Formation are the most widely
exposed in the study area. This study focuses on Xupu’s landslide susceptibility, using
111 landslide sites as primary data for model assessment.
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3. Methods

Landslides, as random events, are governed by various factors. Modeling has signifi-
cantly enhanced the study of landslides, boosting research precision and depth. This paper
assesses landslide susceptibility in the study area with traditional statistical and machine
learning models, producing susceptibility maps for each. The models’ performance is then
evaluated with ROC curves, with the most accurate model chosen through comparison.

3.1. CF Model

The Deterministic Coefficient Model assumes that the conditions for future landslide
occurrences are consistent with the past. Hence, the risk of landslides can be analyzed
probabilistically based on the prior probability of past landslide occurrences and the
correlation with triggering factors.

CF =

{ ppa−pps
ppa(1−pps)

(ppa ≥ pps)
ppa−pps

pps(1−ppa)
(ppa < pps)

(1)

where ppa represents the ratio of the number of grid cells with geological hazard points
present in feature a to the total number of grid cells in feature a; pps represents the ratio of
the number of grid cells with landslide geological hazard points in the entire study area to
the total number of grid cells in the study area.

3.2. FR Model

The Frequency Ratio method is based on statistical analysis and involves categorizing
influencing factors into intervals. The principle is as follows: Assume the landslide area
is ‘L’ and the influencing factor is ‘F’. ‘F’ is divided into different intervals according to
specific rules, and then the area of landslides falling within these intervals is calculated.
The frequency ratio FjR for the j interval of the influencing factor ‘F’ is:

FjR =
P
(

LFj
)

P
(

Fj
) =

ALFj /AL

AFj /A
=

ALFj /AFj

AL/A
=

P
(

L
∣∣Fj

)
P(L)

(2)
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where P(LFj) denotes the frequency of Fj within the landslide area ‘L’; P(Fj) represents the
frequency of Fj in the entire study area; ALFj signifies the area of Fj within ‘L’; AL is the
total area of ‘L’; AFj indicates the total area of Fj; and ‘A’ stands for the total area of the
study region.

3.3. LR Model

The logistic regression model is a predictive model used for binary or multiclass
classification [23,24]. Its principle involves calculations through functions such as Sigmoid.
The schematic diagram of the Sigmoid function is shown in Figure 3. In this paper, the
levels of various landslide-influencing factors are treated as independent variables, while
the occurrence or absence of landslides is considered the dependent variable [25]. Let ‘P’
represent the probability of a landslide occurring, with its value ranging between [0, 1].
The expression is as follows:

f (x) = a + b1x1 + b2x2 + · · ·+ bnxn (3)

where x1, x2, . . ., xn represent the various landslide influencing factors in the study area;
b1, b2, . . ., bn are the logistic regression coefficients corresponding to these factors, and α is
a constant.
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3.4. SVM Model

The Support Vector Machine (SVM) is a powerful supervised learning technique
utilized for both linear and non-linear classification and regression tasks. Drawing from
the concept of Structural Risk Minimization in statistical learning theory, SVM employs
kernel methods to project data from an original finite-dimensional space into a more
expansive, higher-dimensional space. Within this augmented space, SVM identifies the
optimal hyperplane for classification, which efficiently discriminates between various data
categories, maximizing the margin between different classes. This strategy is particularly
advantageous for problems that are not linearly separable in their original dimensionality.
The schematic diagram of the principle of the Support Vector Machine model is shown in
Figure 4.
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3.5. RF Model

Random Forest (RF) is an ensemble algorithm formed by combining decision
trees [26–28]. An ensemble algorithm refers to one that combines multiple weak learners
to create a strong learner [29]. Its objective is to use the combination of weak learners to
achieve better learning outcomes than what is possible with any single weak learner [30,31].
RF is well-suited for processing high-dimensional data, as it does not require dimensional-
ity reduction or feature selection. It offers fast training speeds, is less prone to overfitting,
and is insensitive to missing values. Even with a significant portion of features missing, RF
can still maintain its accuracy.

3.6. ROC Curve Accuracy Assessment

The Receiver Operating Characteristic analysis can be used to study binary classifica-
tion problems in engineering and scientific fields. Essentially, the ROC analysis method is
a supervised analysis method, where we need to pre-know the labels of the dataset and
the corresponding probability density functions. According to the confusion matrix, the
sensitivity and 1-specificity are calculated using the formula, and the ROC curve is plotted
with 1-specificity as the horizontal coordinate and sensitivity as the vertical coordinate. The
performance of binary classifiers in machine learning is evaluated by the area under the
ROC curve (Area Under the Curve, AUC).

3.7. Susceptibility Assessment
Selection of Landslide Influencing Factors

The occurrence of landslides is influenced by various factors, and their selection and
analysis are essential for susceptibility assessment. This study examines the topography,
landforms, and development types of the area, identifying four factor categories: topo-
graphical and morphological, hydrological, lithological, and land-use, totaling twelve
evaluation factors. Topographical configuration is critical, as it influences soil moisture
and vegetation, affecting landslide occurrence. Lithological factors affect slope material
properties and are primary controllers of slope stability. Hydrological factors influence
slope morphology and stability through erosion and sediment removal. Human activities,
such as road construction, agriculture, and logging, can disturb slope internal forces and
potentially trigger landslides.

3.8. Data Sources and Processing

In this research, elevation, geological, and remote sensing data were collected for
Xupu County. The elevation data were obtained from the ASTER GDEM digital elevation
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model with a 30 M resolution available in the geospatial data cloud; geological data were
sourced from the 1:250,000 scale geological maps provided by the Geological Science
Data Publication System of the China Geological Data Repository; remote sensing data
were acquired from the Landsat 8–9 OLI/TIRS C2 L2 dataset in the geospatial data cloud.
Additionally, regional landslide disaster data were derived from the Geological Disaster
Survey of Xupu County, Hunan Province, conducted by the Chinese Academy of Sciences’
Institute of Resources and Environment. The datasets were processed using ArcGIS 10.8
software: (1) Extracting factors such as rock groups, distance to faults, and distance to roads
from the 1:250,000 geological maps; (2) Utilizing elevation data to derive factors like slope,
aspect, terrain ruggedness, profile curvature, plan curvature, distance to rivers, and the
topographic wetness index; (3) Employing remote sensing data to extract land use types
and vegetation cover factors. Among them: the distance from rivers, the distance from
faults, and the distance from water systems are measured using the equidistant method,
while the other factors are assessed using the natural break point method. The classification
results for these different evaluation factors are illustrated in the accompanying Figures 5–7.
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Figure 7. Different Evaluation Factors Grading Results. (a) Twi, (b) distance to fault, (c) distance to
road, (d) NDVI.

3.9. Utilization of CF + LR Model and FR + LR Model for Landslide Susceptibility Zoning

The study used CF and FR to quantify factor influences at specific intervals, as detailed
in Table 2. SPSS correlation analysis was used to exclude irrelevant variables, resulting in a
dataset of 111 non-landslide and 111 landslide points for training. CF and FR values were
assigned as independent variables in binary logistic regression, with landslide occurrence
as the dependent variable. Regression coefficients (B) indicated the importance of each
factor, with statistical significance determined by the Sig value (<0.05). Variables with
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Sig > 0.05 were removed, and the remaining factors were re-evaluated, confirming their
statistical significance, as shown in Tables 3 and 4.

Table 2. Evaluation Factors FR Values and CF Values.

Factor Categories FR CF Factor Categories FR CF

DEM
/m

106–298 0.888 −0.112

Profile
curvature

0–4.1 0.930 −0.070
298–462 0.991 −0.009 4.1–7.7 1.191 0.161
462–638 0.787 −0.213 7.7–11.5 0.959 −0.041
638–846 1.154 0.133 11.5–15.8 0.721 −0.279

846–1107 1.785 0.440 15.8–21.6 1.190 0.159
1107–1623 0.788 −0.212 21.6–46.1 0.931 −0.069

Slope
/◦

0–7.8 0.486 −0.514

Land-use type

Cultivated land 1.896 0.472
7.8–14.4 1.027 0.027 Woodland 0.589 −0.411

14.4–20.8 1.290 0.225 Grassland 1.153 0.132
20.8–27.5 1.466 0.318 Wetland 0.000 −1.000
27.5–35.7 0.641 −0.359 Waterbody 0.729 −0.271
35.7–66.1 0.760 −0.240 Artificial surface 1.755 0.430

Aspect

Plane 0.000 −1.000
Distance to

road
/m

0–500 1.198 0.165
North 0.795 −0.205 500–1000 1.549 0.354

Northeast 0.668 −0.332 1000–1500 0.550 −0.450
East 0.750 −0.250 1500–2000 1.030 0.030

Southeast 0.658 −0.342 >2000 0.762 −0.238

South 1.538 0.350

Plan curvature

0–15.6 1.517 0.341
Southwest 0.919 −0.081 15.6–27.3 1.008 0.008

West 1.348 0.258 27.3–39.8 1.317 0.241
Northwest 1.308 0.236 39.8–53.1 0.768 −0.232

NDVI

0–0.1 1.709 0.415 53.1–67.1 0.658 −0.342
0.1–0.2 0.531 −0.469 67.1–81.4 0.697 −0.303

0.2–0.4 1.710 0.415

Distance to
fault
/m

0–500 1.424 0.298
0.4–0.6 1.030 0.029 500–1000 1.183 0.154
0.6–0.8 1.108 0.098 1000–1500 1.172 0.147

>0.8 0.705 −0.295 1500–2000 1.130 0.115

Relief amplitude
/m

0–68 0.621 −0.379 >2000 0.650 −0.350

68–118 0.896 −0.104
Rock

classification

Carbonate rock 1.082 0.076
118–160 1.298 0.230 Metamorphic rock 0.645 −0.355
160–203 0.838 −0.162 Clastic rock 0.727 −0.273
203–255 1.369 0.269 Magmatic rock 2.750 0.679

255–536 0.847 −0.153

Twi

<4 0.483 −0.517

Distance to river
/m

0–400 1.584 0.369 4–5.5 1.041 0.039
400–800 0.830 −0.170 5.5–7 1.083 0.076

800–1200 0.710 −0.290 7–8.5 0.831 −0.169
1200–1600 0.995 −0.005 8.5–10 1.714 0.416

>1600 0.724 −0.276 >10 0.619 −0.381

Table 3. Results of Logistic Regression Analysis for CF Models.

Factor B Standard Error Wald Test
Statistic

Degrees of
Freedom Significance Exp(B)

Twi 2.26 0.905 6.24 1 0.012 9.587
Land-use type 1.442 0.411 12.344 1 0 4.231

Rock classification 1.77 0.466 14.457 1 0 5.874
Fault 1.484 0.623 5.672 1 0.017 4.411
River 1.608 0.601 7.165 1 0.007 4.994
Road 2.209 0.635 12.11 1 0.001 9.111

Constant 0.122 0.162 0.569 1 0.451 1.13
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Table 4. Results of Logistic Regression Analysis for FR Models.

Factor B Standard Error Wald Test
Statistic

Degrees of
Freedom Significance Exp(B)

Twi 1.891 0.737 6.591 1 0.01 6.627
Land-use type 1.057 0.286 13.654 1 0 2.877

Rock classification 0.906 0.238 14.487 1 0 2.474
Fault 1.411 0.554 6.492 1 0.011 4.1
River 1.115 0.442 6.353 1 0.012 3.049
Road 2.05 0.538 14.528 1 0 7.771

Constant −8.918 1.445 38.08 1 0 0

3.10. Utilization of RF Model and SVM Model for Landslide Susceptibility Zoning

This research approaches landslide occurrence as a binary classification issue. A
dataset was compiled by identifying 111 landslide occurrences and establishing 50 m buffer
zones around these points, which served as the control areas for generating 800 additional
landslide points (classified as 1). Across the entire study region, 10,000 random non-
landslide points (classified as 0) were created, with those within the 50 m buffers excluded,
leading to a total of 10,722 sample points. To assess model efficacy, the dataset was split
into training and testing subsets. A random 70% of the sample points were allocated to
the training set, while the remaining 30% formed the test set, ensuring the models’ robust
generalization and predictive capabilities across diverse datasets.

In this study, grid search was employed for hyperparameter tuning of the basic
parameters, with the rest set to their default values. Grid search is a method of parameter
optimization that involves iterating over all possible parameter combinations to select the
best-performing combination.

The hyperparameters of Support Vector Machines (SVM) encompass C, kernel, and
gamma. The regularization parameter C signifies the tolerance for data error, governing the
degree of model complexity. The kernel function is responsible for transforming feature
spaces to facilitate data separation, and an appropriate kernel can enhance model efficacy.
gamma is a hyperparameter specific to the Radial Basis Function (RBF), influencing the
scope of impact that individual training samples have on the decision boundary. The tuning
process for SVM model parameters is illustrated in Figure 8, with detailed parameter values
presented in Table 5.
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Table 5. Hyperparameters of SVM.

Type Parameter

C 3
kernel RBF

gamma 0.4

The hyperparameters of Random Forest (RF) include n_estimators (the number of
decision trees), max_depth (the depth of each decision tree), min_samples_split (the mini-
mum number of samples required to split an internal node), and min_samples_leaf (the
minimum number of samples required to be at a leaf node). The meticulous adjustment
of these parameters aims to achieve an optimal balance between model performance and
computational efficiency. The optimization of these parameters is crucial for ensuring the
accuracy and generalization capability of the Random Forest model in landslide suscepti-
bility assessments. The tuning process for RF model parameters is depicted in Figure 9,
and a comprehensive list of parameters is provided in Table 6.
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Table 6. Hyperparameters of RF.

Type Parameter

n_estimators 900
max_depth 10

min_samples_split 2
min_samples_leaf 1

4. Results
4.1. Landslide Susceptibility Zoning Results

GIS spatial analysis tools were employed to derive susceptibility evaluation results
for the CF + LR and FR + LR models by overlaying layers of deterministic coefficient
and frequency ratio values, weighted according to their respective weights. Similarly,
for the RF and SVM models, landslide susceptibility evaluation results were produced
through a weighted overlay of probabilities calculated by machine learning models. The
predicted probabilities of landslides for all models span from 0 to 1. The prediction results
of the six models were classified into five levels using the natural break method: very low
susceptibility (0–0.3), low susceptibility (0.3–0.4), moderate susceptibility (0.4–0.5), high
susceptibility (0.5–0.65), and very high susceptibility (0.65–1), as depicted in Figure 10. The
concentration of existing landslide disaster points in the very high and high susceptibility
zones as determined by the models suggests the validity of the susceptibility zoning
outcomes of these models.
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Figure 10. Results of landslide susceptibility prediction models.

As indicated by the graphs, the regions with very high landslide susceptibility are
primarily concentrated in areas where igneous rocks are the surface layers and along
the banks of rivers, accounting for about 6.5% of the total area of the county. The high
susceptibility areas are also predominantly located in the river buffer zones, representing
approximately 16% of the county’s total area. The areas of moderate, low, and very low
susceptibility are mainly distributed in agricultural and forested regions.

4.2. Model Accuracy Assessment

The predictive models’ ROC curves are depicted in Figure 11. From the ROC curves,
the following Area Under the Curve (AUC) values can be calculated: CF model
AUC = 0.756, FR model AUC = 0.764, CF-LR model AUC = 0.776, FR-LR model
AUC = 0.781, SVM model AUC = 0.814, and RF model AUC = 0.912. The accuracy of
both the RF and CF models slightly improved after coupling with the LR model, indicating
that the multi-model coupling has a better predictive effect than single models. With all
four models’ AUC values falling within the 0.7–1 range, this suggests good overall accuracy
for the models, making them reliable for providing references in landslide susceptibility
zoning of the study area. Among them, the Random Forest model exhibits the highest
accuracy in predicting landslide susceptibility zoning in the study area.
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4.3. Model Adaptability Analysis

Model adaptability analysis assesses a model’s fitness for particular contexts and
applications by examining its output. Due to Xupu County’s complex geology and heavy
rainfall, it is susceptible to landslides. This study focuses on the extremely high suscepti-
bility zones from six zoning maps to gauge model adaptability. The performance of these
models in predicting landslides within these zones is analyzed for practical utility. The iden-
tified extremely high susceptibility areas are depicted in Figure 12, and the corresponding
landslide occurrence counts are summarized in Table 7.

Table 7. Number of Landslide Occurrences.

Model Very High
Susceptibility

High
Susceptibility

Medium
Susceptibility

Low
Susceptibility

Very Low
Susceptibility

FR Model 27 46 15 16 7
CF Model 31 48 13 16 3

FR-LR Model 22 43 25 16 5
CF-LR Model 26 44 25 12 4
SVM Model 51 28 26 5 1
RF Model 81 22 8 0 0

Table 7 reveals substantial variations in landslide frequency among extremely high
susceptibility zones defined by various models. The RF model had the most landslides,
81, and the greatest density in these zones, while the FR-LR model had the fewest, only 22.
These findings, along with prior AUC values from ROC curves, confirm the RF model’s
superior adaptability in Xupu County across different conditions. These data provide us
with an intuitive understanding of the model’s performance.

Figure 12 illustrates that areas with very high susceptibility are predominantly concen-
trated in the southern part of Xupu County, predominantly in regions where the exposed
rocks are igneous. This study highlights this area separately, as shown in Figure 13. Us-
ing the multi-point extraction tool, a comparative analysis of the number of landslide
occurrences in each model area was conducted, and the results are shown in Table 8.
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Table 8. Number of Landslides in the Very High Susceptibility Zone.

Model Number of Landslide Occurrences Area/km2 Landslide Density

FR Model 18 223.5 0.08
CF Model 18 321.9 0.06

FR-LR Model 16 245.9 0.07
CF-LR Model 15 306.2 0.05
SVM Model 28 243.6 0.11
RF Model 31 221.1 0.14

It can be observed that the RF model has the highest number of landslide occurrences
within its very high susceptibility zone, totaling 31 events. Considering the AUC values
obtained from the ROC curves in the previous section as well as the very high suscepti-
bility zoning across the entire Xupu County, it is evident that the RF model demonstrates
the best adaptability within the Xupu County region under both general conditions and
specific circumstances.
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5. Discussion
5.1. Limitations in Landslide Research

The reliance on long-term regional landslide data for susceptibility assessment is
undeniable, yet it brings forth challenges related to data completeness and accuracy. This
study’s use of data from 2001 to 2020 highlights the inherent gaps in certain years and
regions, particularly in high-altitude and jungle areas. The intermittent nature of data
collection, often relying on visual inspections conducted annually or biennially, further
exacerbates these challenges.

The potential omission of minor landslides due to infrequent inspections raises
concerns about the comprehensiveness of the dataset and its ability to capture the full
spectrum of landslide occurrences. This gap in data could lead to underestimations of
landslide susceptibility in certain areas, potentially compromising the effectiveness of
mitigation strategies.

Exploring alternative data sources and methodologies is crucial to address these
limitations. Remote sensing imagery, with its ability to provide frequent and consistent
observations of the landscape, offers a valuable opportunity to supplement traditional data
collection methods. Additionally, crowd-sourced data platforms, leveraging the power of
citizen science, can contribute to more comprehensive and up-to-date landslide information.
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The integration of these alternative data sources requires careful consideration of
data quality, consistency, and compatibility. Developing robust data fusion techniques to
combine information from various sources will be essential for creating a more accurate
and reliable picture of landslide susceptibility in the study area.

5.2. Selection of Landslide Influencing Factors

The selection of landslide influencing factors plays a crucial role in the accuracy and
reliability of susceptibility assessments. This study initially identified twelve potential
factors, encompassing topographic, hydrological, lithological, and land use characteristics.
However, the high correlation observed between several topographic factors and elevation
raises important questions about their redundancy and the need for further refinement.

The decision to exclude elevation based on its strong correlation with other topo-
graphic variables necessitates a deeper exploration of the underlying relationships, even
though elevation is undoubtedly an important driver of landslide susceptibility. It would
be beneficial to consider the possibility of incorporating elevation indirectly through its
impact on other factors.

Furthermore, the significance test employed in the study highlights the importance of
carefully evaluating the relevance of each factor. The exclusion of certain factors based on
statistical significance may not always reflect their true influence on landslide susceptibility.
Exploring alternative methods for assessing factor importance, such as feature importance
analysis in machine learning models, could provide a more comprehensive understanding
of the contributing factors.

The differential approach taken for traditional statistical models (CF-LR and FR-LR)
and machine learning models (SVM and RF) in terms of factor selection raises interesting
questions about model complexity and computational efficiency. The inclusion of additional
factors in the machine learning models may lead to improved predictive performance but
could also increase the risk of overfitting. A more nuanced analysis of the trade-off between
model complexity and accuracy would be valuable in determining the optimal approach
for landslide susceptibility assessment in different contexts.

6. Conclusions

Landslide disasters pose significant hazards due to their sudden, regional, and ex-
plosive nature, coupled with the difficulty of timely prediction. They are a key focus in
the field of disaster prevention and mitigation. This paper, by integrating factors such as
topography, hydrology, lithology, and land use, establishes six landslide prediction models.
Through the analysis of model accuracy, the most precise model suitable for the region is
selected. This outcome can alert relevant departments to formulate preventive measures
early on and serve as a reference for the disaster prevention and mitigation efforts of the
Xupu County government.
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