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Abstract: Accurate monitoring of leaf phenology, from individual trees to entire ecosystems, is
vital for understanding and modeling forest carbon and water cycles, as well as assessing climate
change impact. However, the accuracy of many remote-sensing phenological products remains
difficult to directly corroborate using ground-based monitoring, owing to variations in the observed
indicators and the scales used. This limitation hampers the practical implementation of remote-
sensing phenological metrics. In our study, the start of growing season (SOS) from 2016 to 2021
was estimated for the continental USA using Sentinel-2 images. The results were then matched
with several ground-based spring vegetation phenology metrics obtained by the USA National
Phenology Network (USA-NPN). In this study, we focused on the relationships between the leaf-
unfolding degree (LUD), the SOS, and the factors that drive these measures. Our results revealed that:
(1) the ground-based leaves and increasing leaf size stages were significantly correlated with the SOS;
(2) with the closest match being observed for a leaf spread of 13%; (2) the relationship between the
SOS and LUD varied according to the species and ecoregion, and the pre-season cumulative radiation
was found to be the main factor affecting the degree of matching between the ground observations
and the metrics derived from the Sentinel-2 data. Our investigations provide a ground-based spring
phenology metric that can be used to verify or evaluate remote-sensing spring phenology products
and will help to improve the accuracy of remote-sensing phenology metrics.

Keywords: spring phenology; ground observation; remote-sensing inversion; environmental factors; species

1. Introduction

Plant phenology concerns the biological phenomena associated with plant lifecycles [1].
The study of plant phenology has a long and storied history. Over the past few decades, as
the global climate has warmed and human activities have intensified, significant shifts in
phenological patterns have occurred, and these have attracted the attention of the scientific
community [2,3]. In particular, as remote-sensing technology continues to progress, the
retrieval of phenological information from remote-sensing data, with its advantages of
high temporal and high spatial resolution and the ability to make large-scale observations,
has enabled phenological monitoring to be carried out at regional or even global scales [4].
Commonly referred to as land surface phenology (LSP), this field of study plays a pivotal

Remote Sens. 2024, 16, 2309. https://doi.org/10.3390/rs16132309 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16132309
https://doi.org/10.3390/rs16132309
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-2740-0250
https://orcid.org/0000-0003-4262-1772
https://orcid.org/0000-0001-8456-0547
https://doi.org/10.3390/rs16132309
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16132309?type=check_update&version=1


Remote Sens. 2024, 16, 2309 2 of 26

role in precision agriculture, pest and disease control, natural resource management, en-
vironmental planning and governance, and in the investigations of the impact of climate
change on society [5–7].

Ground-based phenological observations represent a traditional approach to acquir-
ing phenological data through direct monitoring of plant phenomena and provide the
most intuitive data. These datasets are most commonly and effectively utilized as ground
truth for validating outputs derived from remote-sensing data and are irreplaceable in this
regard. Numerous countries and regions have progressively established comprehensive
phenological monitoring networks [8], including Canada’s Plant Watch, the pan-European
Phenological Network, and China’s Phenological Observation Network. Indeed, accompa-
nying the development of LSP, there has been a proliferation of remote-sensing phenological
indices and identification methods [9]. In recent years, researchers have proposed a variety
of remote-sensing phenological indices, including the SOS [10], end of growing season
(EOS) [11], and length of growing season (LOS). Taking the SOS as an example, the methods
of identifying this include the fixed threshold method [12], dynamic threshold method [13],
maximum slope method [14], and moving average method [15]. Considerable disparities
result from the application of these different methods. In a North America study, ten
methods of estimating the SOS were tested, revealing a difference of up to 60 days between
the results obtained using the different methods [16]. The uncertainties arising from using
various phenological indices and identification methods present challenges in comparing
remote-sensing phenological products [9] and assessing their quality or determining the
methods with higher accuracy. Therefore, the validation of remote-sensing phenological
products is an issue that needs to be addressed urgently [17].

Remote-sensing LSP results are most commonly validated using traditional ground-
based phenological observations [18]. However, this approach faces two critical challenges.
Firstly, LSP and ground-based phenological observations differ in terms of spatial scale:
ground-based observations focus on individual plants or species, whereas LSP retrieves
aggregated information related to vegetation growth status at the pixel scale [19]. Within a
pixel, besides the plant species or individual plant that corresponds to the ground-based
observation, there will be a mixture of other vegetation and non-vegetation information.
Secondly, LSP and ground-based phenological observations diverge in terms of the pheno-
logical indicators employed [20]. LSP selects appropriate feature points from vegetation
index time-series as indicators; these may lack explicit biological significance, whereas
traditional ground-based phenological observations mostly concern the phenological stages
related to plant reproduction and growth, such as budburst, increasing leaf size, or flow-
ering. Currently, remote-sensing methods face challenges in accurately identifying these
reproductive phases, and the correspondence between LSP and phenological stages based
on ground observations remains unclear.

The growth stages of plants, such as leaves, increasing leaf size, and flowering are
impacted by environmental factors, including temperature [21,22], irradiance [23], and
precipitation [24,25]. It remains difficult to directly align ground-based phenological
observations at the individual plant level with phenological observations based on remote-
sensing data acquired at landscape or larger scales [3,26,27]. Many attempts have been
made to study the relationship between ground observations of spring phenology and
results obtained by inverting remote-sensing data. For instance, in a study contrasting SOS
derived from SPOT-VEGETATION data with leaf-unfolding stage observed by the Plant
Watch network in Canada, a correlation was found between SOS and the leaf-unfolding
stage of four woody plant species (poplar, red maple, lilac, and larch), with an RMSE
ranging from 13.6 to 15.6 days [28]. Researchers compared the SOS obtained by inverting
MODIS data with ground-based observations of budburst at two specific locations, and
it was observed that the values corresponding to the mean leaf bud opening date lagged
the SOS by 1–17 days [29]. Other researchers [30] extracted the SOS from six major LSP
products and compared them with the leaf-unfolding dates observed by the USA-NPN.
The RMSE between the six products and the ground observations ranged from 17.8 to



Remote Sens. 2024, 16, 2309 3 of 26

31.5 days. There have also been studies [16] in which the SOS obtained from ten different
remote-sensing phenology identification methods was compared with ground observations.
Interestingly, it was discovered that, for eight out of the ten methods, there were substantial
disparities between the remote sensing-derived SOS dates and the ground observations.

Overall, there are considerable differences between the results that have been obtained
in various studies. Although there are instances where LSP and ground observations
demonstrate a high degree of consistency, this agreement tends to be greater for certain
ecological systems [31]. Also, although numerous studies on the relationship between LSP
indicators and ground-based observations have been conducted, these studies have often
focused only on the relationship between budburst or leaf-unfolding dates and the SOS. A
comprehensive analysis of the relationship between all phenological stages and SOS dates
derived from remote-sensing data has yet to be undertaken. In addition, the complexity and
diversity of LSP indicators and extraction methods, coupled with the mismatch between
LSP definitions and spatial scales compared to ground-based phenology, pose significant
challenges to the direct validation of LSP using ground observations. Therefore, it is crucial
to understand the relationship between remote sensing-derived spring phenology and
ground-based observations.

In this study, the combination of Sentinel-2 high-resolution remote-sensing imagery
with ground-based observations from the USA-NPN allowed the relationship between
remotely sensed spring vegetation phenology and ground-based reproductive phenology
observations to be investigated. The relationship between remotely sensed vegetative
spring phenology and ground-based leaf development was also investigated in detail,
thus partially addressing the challenges related to scale and indicator divergence between
LSP and ground-based observations. The results of this research are important to the
understanding of the relationship between LSP and plant growth status; and is also sig-
nificant in that ground-based phenological data were utilized to validate LSP phenology.
Exploration of the driving factors behind the difference between LUD and SOS enables a
deeper understanding of how environmental factors influence the relationship between
LUD and SOS. This research thus provides a theoretical basis for selecting appropriate
ground-based observation data to validate the authenticity of LSP.

2. Data and Methods
2.1. Study Area

The USA-NPN observations used in this research were obtained at sites located throughout
the continental United States, a vast expanse spanning approximately 2,959,064 square miles
and containing a great diversity of geography and climates. The differences in climate are
due to both differences in latitude, as well as the presence of features such as mountains
and deserts. Generally, conditions become warmer toward the south and drier toward the
west. East of 100◦ W, the north of the USA experiences a humid continental climate and
the south a humid subtropical climate. The vast plains to the west experience semi-arid
conditions. Many mountains in the west of the country have a highland climate, with
the Great Basin having an arid climate. The southwest of the USA experiences a desert
climate, the climate of coastal California is Mediterranean, and Oregon, Washington, and
Alaska all have oceanic climates. Ecoregions over the CONUS were obtained from the
Forest & Rangeland Ecosystem Science Center (https://www.usgs.gov/centers/forest-and-
rangeland-ecosystem-science-center (accessed on 31 December 2021)), this study provides
a delineation of ecological regions at four hierarchical levels [32–34]. The largest ecological
systems are referred to as domains; below these are divisions based on precipitation levels
and temperature patterns. These divisions are further subdivided into provinces based
on vegetation and other natural land cover types. At the finest level of detail are sections,
which are subdivisions of provinces based on topographical features. For use in this study,
in order to ensure that there are a sufficient number of station observation data in each
study area for comparative analysis, we consolidated several closely related divisions into
four new ecological divisions (Figure 1).

https://www.usgs.gov/centers/forest-and-rangeland-ecosystem-science-center
https://www.usgs.gov/centers/forest-and-rangeland-ecosystem-science-center
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Figure 1. The four ecological divisions used in this study superimposed on land cover types. The
land cover types shown are Water (WAT), Permanent Snow and Ice (PSI), Evergreen Needleleaf
Forest (ENF), Evergreen Broadleaf Forest (EBF), Deciduous Broadleaf Forest (DBF), Mixed Forest
(MF), Closed Shrublands (CSL), Open Shrublands (OSL), Woodland Savanna (WSA), Savannas
(SAV), Grasslands (GRA), Permanent Wetlands (WET), Croplands (CRO), Urban and Built-up (URB),
Cropland/Natural Vegetation Mosaic (CNV), and Barren Land (BLD). The four ecological divisions
are warm or hot continental division (W/HD), steppe or desert division (S/D), subtropical or savanna
division (S/SD), and marine regime mountains or Mediterranean division (M/MD).

2.2. Data and Data-Processing
2.2.1. Ground-Based Observations of Spring Phenology and Meteorological Data

(1) Ground-based spring phenology data

The ground-based spring phenology data employed in this study originated from the
USA-NPN. The NPN maintains a network of volunteer phenology observers who amass
comprehensive ground observations across the USA. The observers follow a standard-
ized process of monitoring floral and faunal phenology and record data by intensity or
abundance [35]. In the case of observations of single plant specimens, the observation site
is considered to encompass only the immediate vicinity. However, if there are multiple
adjacent specimens within very similar surroundings not exceeding an area of 15 acres
(6 hectares), this area may also judiciously be deemed a single location.

This study drew upon ground phenological data acquired by the USA-NPN from 2016
to 2021. A compendium of 9953 phenological entries spanning the mainland United States
and documenting an array of floral varieties was drawn on. Figure 1 depicts the extensive
geographical coverage of the observation sites, which are distributed across diverse ecological
zones. Certain phenological stages with similar definitions had been divided into multiple
stages owing to variations between observed plant species. The resulting seventeen stages
were consolidated into seven classes; these are described in Table 1. Two datasets provided by
the NPN were used: individual observation records noting the onset of each phenological
phase, and status and intensity reports that describe the phenology of individual plants and
quantify the percentage prevalence of biological events.
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Table 1. Statistics related to ground observations of spring phenology and details of the consolidation
of the seventeen original phenological stages into seven classes.

Phenophase Description Records (Total) Species (Total)

Breaking leaf buds

Breaking leaf buds 10,212 367
Breaking leaf buds (lilac/honeysuckle) 384 3

Breaking needle buds (conifers) 277 13
Breaking needle buds (deciduous) 113 3

Initial growth Initial growth (forbs) 2825 300
Initial growth (grasses/sedges) 489 67

Leaves

Leaves 12,962 363
Needles (deciduous) 126 4

Leaves (forbs) 3705 337
Leaves (grasses) 443 61
Leaves (sedges) 144 11

Young leaves
Young leaves (tree/shrub) 2658 137
Young needles (conifers) 307 14

Young needles (pines) 273 13

All leaf buds broken All leaf buds broken (lilac/honeysuckle) 377 3

Increasing leaf size Increasing leaf size 9254 304

Emerging needles Emerging needles (pines) 275 13

(2) Meteorological data

The meteorological data used in this study, including temperature, precipitation, and
surface shortwave radiation flux density data (referred to as radiation data), were obtained
from the DaymetV4 (Daily Surface Weather and Climatological Summaries Version 4)
project at the NASA ORNL DAAC data center at Oak Ridge National Laboratory [36].
This project, funded by the US Department of Energy, provides worldwide high-resolution
daily meteorological data including precipitation, temperature, solar radiation, and vapor
pressure data. It aims to further understanding in the fields of climate change, ecologi-
cal science, agriculture, water resource governance, and Earth science. In this research,
meteorological data for the desired locations were downloaded from the Google Earth
Engine (GEE) platform. Based on earlier studies and personal experience, the pre-season
was considered as extending from November 1st to the initiation of the SOS. The daily
mean temperature during this period was defined as the pre-season average temperature
(Tmean), the total rainfall as the pre-season cumulative precipitation (pre), and the aggre-
gate solar radiation as the pre-season total radiation (srad). These metrics were employed
in an investigation of the environmental determinants controlling the divergence between
ground and remote observations of spring vegetation phenology.

2.2.2. Remote-Sensing Data

Advances in remote sensing have enhanced both the spatial and temporal resolutions
of satellite instruments. Sentinel-2A launched in June 2015 originally provided free high-
resolution optical imagery at resolutions of 10 to 60 m at 10-day intervals; this interval
was reduced to 5 days when Sentinel-2A was joined by Sentinel-2B [37]. The diverse
uses of Sentinel-2 include global vegetation phenology monitoring, surface hydrology
observations, crop yield estimation and post-fire recovery assessment. Sentinel-2 has
demonstrated immense potential in LSP research, particularly in the extraction of medium
to high-resolution LSP [38,39]. The Normalized Difference Vegetation Index NDVI (NDVI)
is widely employed for extracting information related to the growth and coverage of
green vegetation as well as its biomass. Hence, in this study, we employed the NDVI to
invert phenological variables from remote-sensing data. Within GEE, we applied quality
control to the Sentinel-2 surface reflectance data to remove clouds, shadows, and aerosols.
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Following this, the NDVI was computed from the red and near-infrared band reflectance.
The average NDVI values within 30-m squares centered on the observation sites were then
calculated. The final output consisted of maximum NDVI by using the maximum value
composite method values and times per site. However, due to the presence of noise, NDVI
time-series often contain outliers and missing values, which makes it challenging to extract
phenological transition points. To overcome these challenges and to improve the continuity
and smoothness of the data and to make the seasonal vegetation signal clearer, it is common
practice to perform data reconstruction and gap-filling. In this case, we employed the S–G
filter (Savitzky–Golay filter) [40] to perform denoising of the time-series data. Then, the
daily NDVI values were extracted by polynomial curve fitting (PCF) [37].

2.3. Methods
2.3.1. Retrieval of Spring Phenology from Remote-Sensing Data

The SOS metrics that were used were derived by calculating the average of dynamic
thresholding (Equation (1)) and maximum slope analysis (Equation (2)). Dynamic thresh-
olding, proposed by White et al. in 1997 [41], offers flexibility in selecting thresholds and
has been successfully applied to various vegetation types at different latitudes [42]. The
method takes into account the seasonal variation in vegetation index time-series, thus
mitigating the influence of soil background values and vegetation types to some extent [43].
Maximum slope analysis assumes that the SOS is the point in time when the vegetation
growth rate begins to increase rapidly. Based on this premise, this analysis involves cal-
culating the derivative of the vegetation index time-series over the entire year. The date
corresponding to the maximum rate of increase of the NDVI is then designated as the
SOS [41]. As this method has fewer restraints, it is suitable for determining start and end
dates of vegetation types for a wide range. The formulas are as follows:

thd(t) =
NDVI(t)− NDVImin
NDVImax − NDVImin

(1)

NDVIratio(t) =
NDVI(t + 1)− NDVI(t)

NDVI(t)
(2)

where NDVI(t) denotes the NDVI value at day t, NDVImax denotes the annual maximum
value of NDVI at the site, NDVImin denotes the minimum value of the NDVI that is the
part of the curve corresponding to the period before the occurrence of NDVImax, and thd
denotes the value of NDVI(t) when the original range of values is stretched to the range 0–1.
In this study, the day corresponding to a thd of 0.5 was taken as the SOS identified by the
dynamic thresholding method. The NDVI ratio of 0.5 is defined as the threshold for the start
of spring, and note that the satellite-based green-up onset is described as the start of active
vegetation growth, which is usually later than the time of first leaf unfolding or budburst [41].
NDVIratio(t) denotes the NDVI slope at day t, and NDVI(t+ 1) denotes the NDVI value at
day t+ 1.

2.3.2. Scale Conversion of Ground-Based Observations of Spring Phenology

Ground-based phenology observations typically focus on small-scale objects such as
individual plants or neighboring populations. In contrast, LSP is derived from remote-
sensing imagery through a series of processing and inversion steps. As well as information
about the target objects, remote-sensing imagery captures information about the surround-
ing vegetation or non-vegetated areas; this results in a scale effect between ground-based
observations and the information derived from remote-sensing data. This phenomenon
can introduce inaccuracies in LSP, and it is, therefore, common practice to upscale the
ground observations to match the scale of the remote-sensing observations. One of the most
commonly used methods is the mean ascending-scale aggregation method (Equation (3)),
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which involves calculating the average date for the beginning of a particular phenological
stage for all species at a given site within a specific period:

Pmean =
DOY1 + DOY2 + · · ·+ DOYn

n
(3)

Here, Pmean is the average date of the onset of the stage at the site, DOYn is the time of
onset of the stage for species n, and n is the number of species recorded at the site.

2.3.3. Simulation of LUD

The ground-based LUD data used in this study were not based on continuous daily
observations. Therefore, when exploring the association between LUD and remote sensing-
derived phenology, there were cases where no ground-based data were available. Mean-
while, the Weibull distribution is considered an appropriate distribution for estimating
phenology based on limited data. In this study, a new method for parameterizing the
Weibull distribution to estimate phenology was employed to simulate the leaf-unfolding
degree. This method incorporated bias rectification for random variable boundaries and
based on the manual observation of vegetation leaf-unfolding on the ground, and it is
applicable for estimating the timing of any percentile of leaf-unfolding. Cooke (1979)
developed a bias-corrected estimation method for the boundaries of a random variable; the
performance of this method outperforms many extreme value statistics [44] and utilizes
a statistical framework to develop a numerical solution for computing point estimates
of any percentile. This is shown in Figure 2, a workflow for the simulation of LUD by a
Weibull-parameterized point estimator.
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To estimate arbitrary percentiles, the method employs the fitted integral to estimate
the shape and scale parameters of the Weibull distribution using maximum likelihood
estimation (MLE). After these parameters have been estimated, the cumulative distribution
function (CDF) of the parameterized Weibull distribution is plotted. The CDF for the
Weibull curve can be calculated as:

F(x; λ, k) = 1 − e(−
x
λ )

k
(4)

where x is the observation, λ is the scale parameter, and k is the shape parameter.
After obtaining the CDF of the Weibull distribution, the approximate bounds of the

Weibull distribution parameterized by the original observations were computed by solving
for k for observation dates corresponding to CDF values of 0.01 and 0.99. For a CDF value
of 0.01 this gave:

k = λ×(− log (1 − 0.01)1/k
)

(5)

and for a value of 0.99 this gave:

k = λ×(− log (1 − 0.99)1/k
)

(6)

In order to ensure that the CDF was smooth, further calculations were performed
to determine the CDF values for all dates from the observation date corresponding to a
CDF value of 0.01 until the date corresponding to a CDF of 0.99 in steps with a size of 0.5.
This sequence of CDF values for each date produced a smoothed CDF curve, thus allowing
for the simulation of observation dates corresponding to any percentile of the CDF. To
simulate the dates corresponding to the LUD, the CDF curve of the Weibull distribution was
constructed using the first date when the LUD exceeded 95% and the status and intensity
data for each site.

3. Results
3.1. Relationship between Ground-Based Observations and Remote-Sensing Spring
Phenology Retrievals

To ensure the reliability of the data and eliminate the influence of irrelevant in-
formation, this study removed data from ground-based phenology observations and
SOS values greater than 200 (DOY) based on real-life experience and previous research
findings. Additionally, after upscaling the ground-based phenology observations, data
points with a time difference of more than 60 days between the upscaled values and SOS
were removed.

As shown in Figure 3, a significant correlation was found between the ground-based
phenological data and the SOS estimates derived from the Sentinel-2 data using the method
described above. The values of R for the leaves, young leaves, and increasing leaf size stages
are all greater than 0.6, with values of 0.653, 0.696, and 0.626, respectively. And the young
leaves stage exhibited the highest RMSE of 38.661. Conversely, the all leaf buds broken stage
had the lowest R value of 0.334 and the lowest RMSE of 24.345, and slightly lower than
the emerging needles stage (R = 0.471) with an RMSE of 36.632. In comparison, the leaves
stage and increasing leaf size stage showed relatively higher R values with 0.653 and 0.625,
and relatively lower RMSE with values of 31.895 and 28.928, respectively, indicating a better
alignment with the satellite-derived SOS than the other phenological stages.
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Figure 3. Satellite-derived SOS dates plotted against ground-based phenological observations for the
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Furthermore, we compared the trends of ground-based observations and remote-
sensing spring phenology during the leaves and increasing leaf size stages over the six
years, as shown in Figure 4. It can be observed that the interannual variations of SOS and
ground-based phenology exhibit a high level of consistency for these two growth stages.
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3.2. Remote Sensing of Spring Phenology Reflects the LUD
3.2.1. Variation in the LUD of Ground-Based and Remotely Sensed Spring Phenology

As has been demonstrated, the satellite-derived SOS results were most closely aligned
with the dates of the leaves stage and increasing leaf size stage obtained from the ground-
based observations. The status and intensity data for the increasing leaf size stage give the
leaf area as a percentage of the area of the fully developed leaves; for leaves stage, these data
indicate the proportion of leaves in the canopy. In order to examine the association between
the satellite-derived SOS and ground-based observations of the LUD, status and intensity
data for these two stages were obtained from the NPN. The correspondence between the
SOS and different ranges of LUD was then investigated based on consideration of records
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for the same species at individual sites. It was found that, overall, the SOS corresponded
most closely to ground LUD observations of 1–24%.

Figure 5a shows details of the correspondence between the increasing leaf size stage
and the SOS. A leaf-unfolding degree of 1–24% was observed at 43.7% of all sites, the
highest percentage shown. Sites with an LUD in the range 25–49% accounted for 20.31% of
all sites. The number of sites with LUDs in the ranges 50–74%, 75–94%, and 95–100% are
similar, comprising 11.93%, 10.43%, and 13.63% of all sites, respectively.
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Figure 5. Relationship between SOS and ground-based LUD for (a) the increasing leaf size stage and
(b) the leaves stage for all pixels.

Figure 5b shows the correspondence between the leaves stage and the SOS. Sites with
an LUD ranging from 1–4% represent 26.29% of all sites; sites with LUDs of 5–24% and
95–100% represent 18.53% and 19.38% of all sites, respectively. In this case, the number of
sites with LUDs in the ranges 25–49%, 50–74%, and 75–94% are similar, comprising 12.09%,
11.17%, and 12.55% of all sites, respectively.

3.2.2. Relationship between Simulated LUD and Remotely Sensed Spring Phenology

The manual observations conducted by the USA-NPN can only determine the statue
and intensity of the leaves stage and increasing leaf size stage within specific percentage
ranges. It is not possible to determine the LUD with a precision of 1%. However, the
Weibull distribution possesses characteristics that enable the prediction and determination
of boundaries. Building upon this method and previous research, we developed a model to
simulate the LUD during the leaves and increasing leaf size stages to a precision of 1%. To
validate the accuracy of this model, the ground-based LUD data were compared with the
data generated by the model. Samples with a matching rate of 60% or higher were then
selected for further investigation of the relationship between the SOS and the simulated
LUD data.

Figure 6a shows the mean absolute difference in days between the SOS and the
corresponding simulated LUD. This difference first decreases up to an LUD of 12% then
steadily increases. The standard deviation also decreases and then increases, with the
minimum standard deviation being reached for an LUD of between 15% and 20%.

In Figure 6b it is shown that pixels with LUDs of 1%, 2%, and 3% most frequently
correspond to the SOS; there is also a sharp peak at an LUD of 99% (LUD99%). The minimum
time difference between the SOS and the LUD occurs at LUD12% and LUD13%. Figure 7
shows the relationship between the SOS and the six most frequently occurring LUDs.
The R2 values between the SOS and the LUD range from 0.65 to 0.81, with the highest
correlation being observed at LUD13%. The RMSE values range from 9.58 to 14.96 days,
with the lowest error occurring at LUD13%. The linear regression slope is largest and closest
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to 1 (0.972) at LUD2%. At LUD3%, LUD12%, and LUD13% the slope is just slightly less at
around 0.96.
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3.3. Environmental Factors Driving the Difference between Ground-Based Observations and
Remote-Sensing Retrievals of Spring Vegetation Phenology

Due to the inconsistencies between ground-based observations of phenological de-
velopment and satellite-derived SOS data at both spatial and temporal scales, as well as
the differences in their definitions, the process of retrieving spring vegetation phenology
introduces even greater discrepancies between SOS data and ground-based phenological
observations. Therefore, an understanding of the environmental factors driving the differ-
ences between ground-based observations and SOS data is crucial to better comprehending
the similarities and differences between these two phenological observation methods. This
understanding has significant practical implications for verifying the authenticity and
application of LSP data.
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As described above, an LUD of 13% was found to correspond most closely to the SOS.
In this section, details of our investigation of the influence of environmental factors on the
difference in timing between SOS and LUD13% will be given. These environmental factors
included the Tmean, pre and srad.

We first derived the difference between the SOS and the time of the occurrence of
an LUD of 13% (SOS−LUD13%) for each species at each site and plotted this difference
against the three factors listed above. Figure 8a shows a notable trend, with SOS−LUD13%
increasing by 1.324 for every 1 ◦C increase in Tmean (R2 = 0.066). SOS−LUD13% has
a range of −100 days to 100 days, with a concentration of points within the −40 to
20 days range, corresponding to a Tmean range of −2 ◦C to 8 ◦C. It is noticeable that, for a
Tmean of below −2 ◦C, the majority of the SOS−LUD13% values are less than 20 days. As
shown in Figure 8b, SOS−LUD13% also exhibits a positive correlation with pre—for every
100 mm increase in pre, SOS−LUD13% increases by 2.125 days (R2 = 0.046). The values
of SOS−LUD13% are concentrated within the −40 to −20-day range, which corresponds
to a range of 100−800 mm for pre. However, when pre exceeds 800 mm, most values of
SOS−LUD13% lie within the range −60 to −40 days. Finally, as shown in Figure 8c, there is
also a significant positive correlation between SOS−LUD13% and srad. For each 1 kW/m2

increase in srad, there is an increase of 1.413 days in SOS−LUD13% (R2 = 0.328).
Remote Sens. 2024, 16, x FOR PEER REVIEW 13 of 27 
 

 

 
Figure 8. Scatter plot of SOS−LUD13% against the environmental factors (a) pre-season mean temper-
ature, (b) pre-season cumulative precipitation, and (c) pre-season cumulative radiation. 

Most previous studies have already indicated a strong phenological differentiation 
between tree species populations [45,46]. Different species exhibit significant variations in 
leaf-unfolding phenology, and even within the same species, the timing of leaf unfolding 
can differ across different habitats. We selected the nine most representative species to 
compare the Pearson correlation coefficients for the relationship between SOS–LUD13% 
and Tmean, pre, and srad. The results are presented in Table 2. Overall, except for Amer-
ican beech, SOS−LUD13% shows a significant correlation with all three environmental fac-
tors for the different species, with rad exhibiting a slightly stronger correlation than the 
other two factors. Regarding the correlation between SOS–LUD13% and Tmean, with the 
exception of black cherry, for which the correlation coefficient is relatively low (0.176), the 
correlation coefficients are between 0.2 and 0.5. In terms of the correlation between SOS–
LUD13% and pre, except for sugar maple, which has a low correlation coefficient (0.198), 
and for American Beech, for which there is no significant relationship, the correlation co-
efficients are between 0.3 and 0.6. Finally, for the relationship between SOS–LUD13% and 
srad, Florida privet and Lagerstroemia speciosa have the highest correlation coefficients 
(0.843 and 0.844, respectively); the other species have coefficients of approximately 0.6 to 
0.8. 

Table 2. Correlation between SOS–LUD13% and environmental factors for different species. 

Species Tmean Pre Srad 
Red maple 0.463 *** 0.314 *** 0.583 *** 

Florida privet 0.423 *** 0.398 *** 0.843 *** 
Black cherry 0.176 * 0.333 *** 0.720 *** 
Sugar maple 0.243 *** 0.198 * 0.585 *** 

American beech 0.433 *** 0.134 * 0.585 *** 
Fragrant sumac 0.324 *** 0.450 *** 0.736 *** 

Lagerstroemia speciosa 0.484 *** 0.487 *** 0.844 *** 
White oak 0.345 *** 0.522 *** 0.786 *** 

Northern red oak 0.341 *** 0.411 *** 0.648 *** 
***: p < 0.001, *: p < 0.1. 

We also calculated the Pearson correlation coefficients for the relationships between 
SOS–LUD13% and the environmental factors for the four ecological regions—M/MD, S/D, 
S/SD, and W/HD—defined earlier. As shown in Table 3, except for the S/D region, for 
which there is no significant correlation between SOS–LUD13% and pre, there are signifi-
cant correlations between SOS–LUD13% and all three environmental factors. Furthermore, 

Figure 8. Scatter plot of SOS−LUD13% against the environmental factors (a) pre-season mean
temperature, (b) pre-season cumulative precipitation, and (c) pre-season cumulative radiation.

Most previous studies have already indicated a strong phenological differentiation be-
tween tree species populations [45,46]. Different species exhibit significant variations in
leaf-unfolding phenology, and even within the same species, the timing of leaf unfolding
can differ across different habitats. We selected the nine most representative species to
compare the Pearson correlation coefficients for the relationship between SOS–LUD13% and
Tmean, pre, and srad. The results are presented in Table 2. Overall, except for Ameri-
can beech, SOS−LUD13% shows a significant correlation with all three environmental fac-
tors for the different species, with rad exhibiting a slightly stronger correlation than the
other two factors. Regarding the correlation between SOS–LUD13% and Tmean, with the
exception of black cherry, for which the correlation coefficient is relatively low (0.176), the
correlation coefficients are between 0.2 and 0.5. In terms of the correlation between SOS–
LUD13% and pre, except for sugar maple, which has a low correlation coefficient (0.198),
and for American Beech, for which there is no significant relationship, the correlation co-
efficients are between 0.3 and 0.6. Finally, for the relationship between SOS–LUD13% and
srad, Florida privet and Lagerstroemia speciosa have the highest correlation coefficients
(0.843 and 0.844, respectively); the other species have coefficients of approximately 0.6 to 0.8.
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Table 2. Correlation between SOS–LUD13% and environmental factors for different species.

Species Tmean Pre Srad

Red maple 0.463 *** 0.314 *** 0.583 ***
Florida privet 0.423 *** 0.398 *** 0.843 ***
Black cherry 0.176 * 0.333 *** 0.720 ***
Sugar maple 0.243 *** 0.198 * 0.585 ***

American beech 0.433 *** 0.134 * 0.585 ***
Fragrant sumac 0.324 *** 0.450 *** 0.736 ***
Lagerstroemia

speciosa 0.484 *** 0.487 *** 0.844 ***

White oak 0.345 *** 0.522 *** 0.786 ***
Northern red oak 0.341 *** 0.411 *** 0.648 ***

***: p < 0.001, *: p < 0.1.

We also calculated the Pearson correlation coefficients for the relationships between
SOS–LUD13% and the environmental factors for the four ecological regions—M/MD, S/D,
S/SD, and W/HD—defined earlier. As shown in Table 3, except for the S/D region, for
which there is no significant correlation between SOS–LUD13% and pre, there are significant
correlations between SOS–LUD13% and all three environmental factors. Furthermore, in
all four regions, the correlation between SOS–LUD13% and srad has a coefficient of above
0.4—higher than for pre and Tmean in each case. For Tmean, the M/MD and S/D regions
have relatively low coefficients of 0.169 and 0.1884, respectively. For S/SD and W/HD, this
coefficient is slightly higher at 0.259 and 0.366, respectively. For the S/D region, there is
no significant correlation between SOS–LUD13% and pre; however, the other three regions
have coefficients of between 0.2 and 0.4 for this relationship. For srad, in the M/MD and
S/D regions, the correlation coefficients for the relationship with SOS–LUD13% are in the
range 0.4 to 0.6, and for the S/SD and W/HD regions they are between 0.6 and 0.7.

Table 3. Correlation between SOS-LUD13% and environmental factors for different ecological zones.

Ecological Zone Tmean Pre Srad

M/MD 0.169 *** 0.279 *** 0.428 ***
S/D 0.188 *** 0.029 0.504 ***

S/SD 0.259 *** 0.291 *** 0.676 ***
W/HD 0.366 *** 0.326 * 0.651 ***

***: p < 0.001, *: p < 0.1.

4. Discussion
4.1. The Significant Correlation between the Leaves and Increasing Leaf Size Stages and the SOS

Ground-based observations of vegetation phenology data provide important vali-
dation data for assessing phenology metrics obtained by inverting remote-sensing data.
Previously, ground observations were mainly used to make coarse spatial resolution assess-
ments at ecosystem scales [47–49]. In this study, it was found that the onset of ground-based
phenological stages at each site, as obtained using the mean ascending-scale aggregation
method, was significantly correlated with the SOS derived from Sentinel-2 data. In par-
ticular, the SOS was found to be closely correlated with the leaves and increasing leaf
size stages. Furthermore, the simulation based on the Weibull distribution model indi-
cated that an LUD of 13% corresponded most closely to the SOS. The sharp increases in
vegetation index values in spring are closely related to leaf unfolding and is associated
with an increase in the leaf area index and chlorophyll concentration [50]. In the study
by Bórnez et al. [51], it was found that for deciduous broadleaf forests in Europe and the
United States, the RMSE between ground-based observations of the increasing leaf size and
leaves stages and the satellite-derived SOS was 9 days and 11 days, respectively. During
the leaves stage, the entire leaf structure emerges from the leaf buds, and the expanded
leaves become visible. Both the leaf area and chlorophyll concentration increase during this
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stage. The remote-sensing index, NDVI, shows a significant increase during this phase, and
it is commonly accepted that ground-based observations of the leaves stage correspond
to the remote sensing-derived SOS. Studies have found a significant positive correlation
between the remotely sensed SOS and the leaves stage, with the highest correlation being
observed for broadleaf forests in the eastern United States [17]. White et al., conducted
a study comparing the relationship between the SOS and ground-based observations of
phenological stages in North America. These results also indicated a significant correlation
between the SOS and ground-based determination of the leaves stage [16]. Additionally,
Luo et al., conducted research in northern China, comparing four tree species, and found
that the remotely sensed SOS extracted from GIMMS NDVI3g data was highly consistent
with ground-based observations during the leaves stage [52]. During the increasing leaf size
stage, most leaves on the plants have not yet reached their full size and continue to grow. It
is known that the leaf area continues to expand during this stage, resulting in a noticeable
increase in the NDVI. Liang et al., found that there was consistency between the SOS and
the duration of the increasing leaf size stage as determined by ground observations [53].
Together, these studies confirm the high level of agreement between the occurrence of the
SOS, the leaves stage, and the duration of the increasing leaf size stage. The findings of the
current study are thus in line with the existing literature, further confirming the reliability
of the results.

4.2. Variations in the Relationship between the LUD and SOS between Species

The phenology of plants is influenced by their genetic characteristics, as different
species possess distinct biological clocks and growth habits, resulting in variations in their
lifecycles. For instance, early spring flowering plants may be influenced by factors such
as temperature and sunlight, whereas plants that bloom in the summer can be affected by
rainfall and temperature. Even when exposed to the same conditions, there can be consid-
erable differences in spring phenology between plants of the same type [54,55]. Different
deciduous broadleaf tree species exhibit differences in leaf-fall and budburst timing [56].
Inter-specific differences in spring phenology are also believed to be strongly influenced by
varying species-specific requirements for warming and chilling, as well as differences in
sensitivity to abiotic drivers [57]. For example, the sensitivity to spring temperature differs
significantly between oka and beech, with budburst advancing by 7.26 days and 2.03 days,
respectively, for every 1 ◦C increase in temperature [58]. Previous research has shown that
the vegetation phenology of different species exhibits different temperature sensitivities
and that this can lead to either the compression or extension of growing seasons [59–61].
Plant species with earlier leaf-unfolding times tend to have a higher temperature sensitivity,
enabling them to initiate growth earlier and gain a competitive advantage in interspecific
competition as spring temperatures rise.

The physiological structures, morphological characteristics, and environmental adapt-
ability of plant species vary greatly with ecological type. Previous studies have shown that
the consistency between remote-sensing and ground-based phenology varies depending
on the species and vegetation type [62–64], and the findings of this study are consistent
with previous research. We selected species from the W/HD ecological region with sample
sizes exceeding 30 to investigate the variations in the differences between the SOS and the
corresponding occurrence of the LUD at different simulated LUDs for different species
within the same ecological zone. The results are shown in Figure 9. The results indicate
that there are differences in the LUD that correspond to the minimum difference between
the SOS and the simulated LUD for different species. For red maple, the smallest difference
occurs at LUD16%, for platanus orientalis, this occurs at LUD29%, for Northern quercus
rubra, it occurs at LUD13%, for sugar maple, the smallest difference occurs at LUD11%, for
Florida privet, it occurs at LUD19%, and for black cherry, it occurs at LUD27%.

Temporal variations in vegetation phenology and physiological variables are highly
heterogeneous in space, within species, and between species [21,65]. Within the same
plant community, different species may employ distinct strategies to cope with climate
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change, and numerous factors contribute to variations in the timing of leaf unfolding for
plants of both the same and of different species. These include environmental factors
such as temperature, humidity, rainfall, and CO2 concentration [66] as well as the genetic
characteristics of the different species themselves [67]. Influencing biotic factors include
insects and fungi [68], tree height, and canopy density. Furthermore, not all species respond
to the same driving factors, such as spring temperature increase, at the same rate [56,69–71].
In this study, we focused on nine representative species and calculated the relevant Pearson
correlation for each species to investigate the factors driving the phenology of different
species (Tables 4 and 5).
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Figure 9. Difference between the SOS of major species in the W/HD ecoregion and the date cor-
responding to the simulated LUD. The species investigated were red maple, platanus orientalis,
Northern quercus rubra, sugar maple, Florida privet, and black cherry.

Table 4. Correlation between LUD13% and climatic factors for different species.

Species Tmean Pre Srad

Red maple −0.771 *** 0.173 *** 0.292 ***
Florida privet −0.596 *** 0.015 0.099
Black cherry −0.504 *** 0.031 0.303 ***
Sugar maple −0.469 *** 0.157 ** 0.357 ***

American beech −0.799 *** 0.389 *** 0.329 ***
Fragrant sumac −0.801 *** 0.089 0.257 **

Lagerstroemia speciosa −0.468 *** −0.191 ** −0.002
White oak −0.631 *** −0.264 *** 0.195 **

Northern red oak −0.482 *** −0.156 ** 0.219 ***
***: p < 0.001, **: p < 0.05.

The above results reveal that there are variations in the response of LUD13% and
SOS to the changes in the three environmental factors between the nine representative
species. For LUD13%, for all species, the highest correlation is with Tmean—the correlation
is negative in all cases. The strongest correlation of all is for fragrant sumac, which has a
correlation coefficient of −0.801; American beech (−0.799) and red maple (−0.771) follow
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closely. For the other species such as Florida privet, black cherry, and sugar maple, the
absolute value of the correlation coefficient is in the range 0.4 to 0.6. However, while the
SOS shows a negative correlation with Tmean, there are also species whose SOS exhibits a
positive correlation with Tmean. The SOS of five species—red maple, black cherry, sugar
maple, American beech, and fragrant sumac — is significantly negatively correlated with
Tmean, with correlation coefficients ranging from −0.48 to −0.13. In contrast, the SOS
of lagerstroemia speciosa shows a significant positive correlation with Tmean, with a
correlation coefficient of 0.246. Overall, for SOS, the most significant positive correlation
is with srad, with all the correlation coefficients exceeding 0.8. For most species, the
correlation coefficients between the time of occurrence of LUD13% and srad range from
around 0.2 to 0.4, with the value for white oak being just under 0.2. For all species, the
SOS shows a significant positive correlation with pre, with correlation coefficients ranging
from 0.3 to 0.5. These findings suggest that there are notable differences in the response of
LUD13% and remote sensing-derived phenology to different climate conditions.

Table 5. Correlation between SOS and climatic factors for different species.

Species Tmean Pre Srad

Red maple −0.329 *** 0.506 *** 0.912 ***
Florida privet 0.004 0.416 *** 0.931 ***
Black cherry −0.254 ** 0.322 *** 0.887 ***
Sugar maple −0.139 ** 0.351 *** 0.944 ***

American beech −0.202 ** 0.486 *** 0.942 ***
Fragrant sumac −0.483 *** 0.482 *** 0.895 ***

Lagerstroemia speciosa 0.246 *** 0.421 *** 0.936 ***
White oak −0.121 0.328 *** 0.931 ***

Northern red oak −0.039 0.321 *** 0.910 ***
***: p < 0.001, **: p < 0.05.

4.3. Influence of the Ecological Zone on the Correlation between the LUD and SOS

Plant phenology is not only influenced by the species, but also by the growth environ-
ment, as plants respond to environmental factors by adjusting the timing of their leaves,
leaf senescence, and flowering stages [72–74]. The growth of plants relies on external envi-
ronmental factors such as the temperature, as well as the availability of nutrients, water,
and light; these factors vary between ecological regions and provide varying conditions for
plant growth. Consequently, plants may exhibit different phenological patterns in different
regions. Furthermore, there are genetic differences between the phenological responses of
populations growing under different climatic conditions [75]. Studies have shown that the
degree of spring leaf unfolding is influenced by the interaction between nutrient availability
and soil moisture, and that the earlier occurrence of spring phenological phases exhibits
regional and interspecies variations [76,77]. Within a plant community, the responses of
canopy trees, understory shrubs, and herbaceous plants to changes in the growth envi-
ronment can affect the competition for water and soil nutrients between these functional
groups [75].

There are significant differences in leaf unfolding phenology between plant species,
and even within the same species, there are differences in the timing of leaf unfolding in
different habitats [56,78,79]. The findings of our study confirm these observations. We
calculated the proportion of sites where the SOS corresponds to the LUD at the leaves
stage for the same species in different ecological regions (Figure 10). The results indicate
that for red maple, the ratio of the LUD to SOS in the W/HD and S/SD regions is similar.
For fragrant sumac, this ratio of the LUD between 1% and 4% is slightly higher in the
S/SD ecological region than in the W/HD ecological region, and the proportion of sites
with an LUD of above 95% is also slightly higher in the S/SD region. For privet, in the
S/SD ecological region, the ratio of the LUD to SOS is slightly higher than in the W/HD
ecological region for an LUD between 1% and 4% but slightly lower for an LUD above 95%.
For black willow, the ratio of the LUD between 1% and 4% to SOS is significantly lower in
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the S/D ecological region than in the W/HD region. In addition, the proportion of sites
with an LUD of between 25% and 49% is lower in in the S/D ecological region than in the
W/HD region but the proportion of sites with an LUD in the range 50–74% is significantly
higher. For trembling willow, there is significant variation in the ratio of the LUD to SOS
across the W/HD, S/D, and M/MD ecological regions. The lowest ratio (1–4%) occurs in
the S/D ecological region, and the highest value occurs in the M/MD region. Furthermore,
in the S/D ecological region, the proportion of sites with an LUD between 75% and 94% or
above 95% is greater than in the other two ecological regions.
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We also calculated the difference between the SOS and the corresponding LUD time
for all species within the four ecological zones, as shown in Figure 11. We found that there
are differences in the LUD that corresponds to the minimum time difference between the
SOS and simulated LUD between the different regions. In M/MD, the smallest difference is
observed at LUD10%, whereas in S/D, the smallest difference occurs at LUD22%, and in S/SD,
the smallest difference is observed at LUD20%. In the W/HD ecological zone, the smallest
difference occurs at LUD12%. Notably, the standard deviation in the W/HD ecological zone
remains at around 20 days and exhibits minimal variation as the LUD increases.

Different species exhibit varying degrees and even directions of response to environ-
mental changes, and these differences also vary with the location. Research indicates that,
over the past 40 years, the onset of leaf unfolding in temperate tree species has become sig-
nificantly earlier, a trend that has been attributed to climate warming. Studies of long-term
temperature sensitivity and the factors influencing spring plants have revealed a significant
positive correlation between the reproductive phase of most species and temperature [80].
Other studies conducted using modeling and remote sensing in temperate forests have
also indicated that the spring leaves stage has advanced in recent decades (at a rate of
1.8–7.8 days per decade) although there are variations between species. In high-altitude
and high-latitude regions, the amount of snow accumulation and the time when snow-melt
occurs are two key additional factors that influence plant phenology [81]. The availability of
water can also influence phenology in temperate and boreal forests—but to a lesser extent
than temperature [82]. Changes in water availability can lead to complex phenological
changes and may have profound effects on ecosystem functionality and structure. Dry and
wet tropical climates are distinguished by the amount of precipitation and its seasonal varia-
tion, and differences in community phenology levels are often driven by the duration of the
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dry season [83]. Previous studies have confirmed that, in tropical regions, temperature, pre-
cipitation, and radiation can interact and have complex effects on plant phenology [84–86].
In addition to being constrained by water stress, the leaf unfolding time in tropical forests is
also correlated with the annual peak radiation [83]. Solar radiation (total sunshine duration,
peak radiation, or photoperiod) is also considered a primary driving factor of tropical
phenology [87]. In most tropical grassland areas, precipitation is a driving factor of plant
phenology, and the inverse relationship between radiation and phenology is consistent with
the inhibition of grassland growth due to soil moisture limitations [87]. Temperature is a
key driving factor for most species, but precipitation, through its influence on soil moisture,
is also important in many cases [88]. Summer drought resulting from low precipitation is
a typical characteristic of Mediterranean ecosystems, and the seasonal variation in water
availability controls vegetation activity, with most plant growth occurring during the colder
but wetter times of the year [89,90]. In semiarid and arid desert ecosystems, phenological
changes resulting from climate change can be driven by both the timing and amount of
precipitation, as well as the increase in temperature. Water availability appears to be a
key driver of phenology in arid and semiarid ecosystems [91], whereas temperature and
humidity are the primary drivers of phenology in grassland ecosystems [24].
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To investigate the driving factors of phenology in different ecological regions, specif-
ically temperature, precipitation, and radiation, we calculated the Pearson correlation
coefficients between both the timing of LUD13% and SOS and these three environmental
factors in the M/MD, S/D, S/SD, and W/HD ecological regions (Tables 6 and 7).
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Table 6. Correlation between LUD13% and environmental factors in different ecological zones.

Ecological Zone Tmean Pre Srad

M/MD −0.539 *** 0.162 *** 0.145 ***
S/D −0.455 *** 0.207 *** 0.201 ***

S/SD −0.534 *** 0.058 0.198 ***
W/HD −0.508 *** −0.007 0.195 ***

***: p < 0.001.

Table 7. Correlation between SOS and environmental factors in different ecological zones.

Ecological Zone Tmean Pre Srad

M/MD −0.337 *** 0.513 *** 0.681 ***
S/D −0.278 *** 0.261 *** 0.813 ***

S/SD −0.229 *** 0.366 *** 0.91 ***
W/HD −0.033 * 0.368 *** 0.922 ***

***: p < 0.001, *: p < 0.1.

Table 6 reveals significant negative correlations between the timing of LUD13% and
Tmean in all four ecological regions. In some cases, there is a significant positive correlation
with pre. For all four regions, the correlation coefficient between the timing of LUD13%
and Tmean is around −0.5. It is notable that the M/MD and S/SD ecological regions have
similar correlation coefficients (−0.539 and −0.534, respectively) that are slightly higher
than those of the other two regions. The lowest correlation occurs in the S/D region. In
both the M/MD and S/D ecological regions, there is a significant correlation between the
timing of LUD13% and pre—the correlation coefficients are 0.162 and 0.207, respectively.
In all four regions, the relationship between the timing of LUD13% and srad is close to or
slightly below 0.2 and is lowest in the M/MD region (0.145). Notably, in the M/MD and
S/D regions, the timing of LUD13% is significantly correlated with all three environmental
variables, whereas in the S/SD and W/HD regions, there is only an association with Tmean
and srad.

Table 7 indicates that there are significant correlations between the remotely sensed
vegetation phenology and Tmean, pre, and srad in all four ecological regions. The correla-
tion with srad was found to be higher than that with Tmean and pre. In all four regions,
the correlation with Tmean is significantly negative: the M/MD region has the strongest
negative correlation, with a coefficient of −0.337; this is followed by the S/D region with
a coefficient of −0.278, then the S/SD ecological region with a coefficient of −0.229, and
finally the W/HD ecological region with a coefficient of only −0.033. In contrast, in all four
regions, the SOS shows a significant positive correlation with pre. The M/MD ecological
region has the highest correlation with a coefficient of 0.513, and the S/D region has the
lowest correlation with a coefficient of 0.261. The S/SD and W/HD regions have similar
correlation coefficients of 0.366 and 0.368, respectively. In all four regions, the SOS also
shows a significant positive correlation with srad. The M/MD region has the lowest cor-
relation with a coefficient of 0.681, whereas in the S/D ecological region the correlation
coefficient is 0.812. The S/SD and W/HD regions have similar correlation coefficients of
0.91 and 0.922, respectively.

4.4. Effects of Vegetation Phenology Monitoring and Modeling on the Relationship between LUD
and SOS

Because of the proven reliability of vegetation spring phenology monitoring using
remote-sensing indices such as the NDVI and the Enhanced Vegetation Index (EVI), par-
ticularly as applied to large geographical areas [4,13,92–94], this type of monitoring has
become widely used in recent years. However, it is important to acknowledge that the
processes of leaf unfolding and leaf-fall occur gradually over large geographical areas.
Consequently, these remote-sensing data products have certain limitations in terms of
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continuous observations of phenology, which leads to a lag in the detection of vegetation
changes. Furthermore, there are inherent differences in the quality of information obtained
from ground-based phenological observations and remote-sensing retrievals, which leads
to discrepancies between them [95,96].

Firstly, remote-sensing observations of forests are made from a zenithal angle, cap-
turing signals from the top of the canopy, whereas ground-based observations collected
by field technicians focus on the bottom of the canopy; this results in potential discrepan-
cies between the phenological information obtained by the two methods. To date, most
studies use indirect methods to identify phenology variation based on the time series of
PhenoCam images. PhenoCam involves mounting digital cameras with visible-wavelength
imaging sensors above vegetation canopies to capture images throughout the day [97].
Near-surface observations from PhenoCam provide time series of images that are ideal for
tracking seasonal changes in leaf phenology, and have been used to extract leaf phenology
metrics [98] and track biodiversity [99]. The current studies have proven that PhenoCam
images carry useful information for monitoring and understanding leaf phenology. Sec-
ondly, LSP and ground-based observations are concerned with different characteristics [95].
Ground-based observations target individual plants or species at a specific scale, while
remote sensing provides aggregated information related to vegetation growth at the pixel
scale [19]. Since image pixels often contain multiple land cover types or species, the pres-
ence of heterogeneous vegetation cover can introduce errors in phenological dates obtained
from remote-sensing data, as compared with ground-based observations. In addition, the
pixels neighboring the pixel of interest can influence the signal received by the satellite,
as the ground area corresponding to the analyzed pixel may not entirely correspond to
the actual area contributing to the detected signal [100]. Zhang [101] also noted that the
extraction of SOS results at coarse resolutions is predominantly determined by pixels where
the SOS occurs earlier. However, there are also uncertainties inherent in ground-based
phenological observations. For example, the phenological data collection strategy em-
ployed by the USA-NPN requires field technicians to monitor the occurrence, duration,
and intensity of key phenological events and record them in discrete categories that may
not fully capture the gradual transitions in leaf phenology. The Weibull distribution is
increasingly used to estimate the dates of hard-to-observe phenological events, such as first
and last flowering dates [102,103]. These contrasting results occur because of sampling
biases in the raw data, which the statistical estimator corrects by providing estimates for
the true statistical data. However, estimating the true onset or offset of a process may be
more challenging than estimating a percentile of the phenology curve within the bounds,
because it is notoriously difficult to model the tails of distributions as there are fewer
data points to parameterize the model [103]. Finally, there is no universally applicable
algorithm for phenological parameter extraction [104]. The threshold method used for SOS
extraction is simple and effective, and it is widely used. However, it is subject to significant
subjective factors (such as the different thresholds provided by different researchers, which
can lead to noticeable variations in the length of the growing season) and does not fully
take into account environmental influences (such as differences in the soil background and
vegetation type) [105]. Researchers have confirmed that the consistency between LSP and
ground-based phenology varies depending on the species or vegetation type [62,64,106].
On the other hand, the derivative method, although threshold-free and biologically mean-
ingful, is more sensitive to data noise, requiring higher smoothness requirements at the data
preprocessing stage [107]. Additionally, in cases where the vegetation index curve does not
exhibit abrupt changes, determining the start and end dates of the growing season becomes
challenging, particularly when there is cloud contamination in the time series data of the
vegetation index. The retrieval of phenology using remote sensing offers the advantage of
broad spatial coverage; however, the results are influenced by various factors, including
atmospheric disturbances, solar radiation effects, cloud cover, and the duration of snow
cover [108]. This limits the capability of remote-sensing data to capture species-specific
phenological information.
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The process of monitoring LSP is strongly influenced by ecosystem processes and vege-
tation types [16,109–111]. Previous studies have shown that LSP estimation is most reliable in
deciduous forests but becomes challenging in evergreen forests [109,110,112–115]. We analyzed
the relationship between ground-based observations and remote-sensing spring phenology
retrievals at the species and ecological region levels. However, due to limitations in the available
data, the species composition was relatively homogeneous, with a predominance of deciduous
broadleaf species. Consequently, we did not specifically analyze the relationship between
ground-based observations and the remotely sensed phenology for different vegetation types.
To improve the comparability and spatiotemporal consistency of phenological parameter results
obtained from different regions and time periods, further research needs to be done to de-
velop universally applicable phenological extraction algorithms. Additionally, while this study
examined the relationship between ground-based observations, remote-sensing retrievals of
vegetation spring phenology, and the associated environmental driving factors under different
conditions, a model that can convert ground-based observations to remotely sensed spring
phenology data still needs to be developed. Future research should address this gap to enable
the application of the findings from this study to the validation of remote-sensing retrievals
of vegetation spring phenology. This will allow more accurate information relating to plant
phenology and leaf unfolding to be obtained using remote-sensing data.

5. Conclusions

In examining the relationship between ground-based observations and the SOS, it is
common to use the start time of a specific phenophase as the ground-based observation,
and ecological regions are often not systematically categorized to study the impacts of
environment and species. This article examines the relationship between ground-based
observations of the phenological stages of vegetation and the SOS. It distinguishes between
ecological zones and species, and uses data from both the USA-NPN and Sentinel-2 satellite
imagery. At the same time, the ground-based phenological stages were refined to the leaf-
unfolding degree scale, and the association between the LUD and SOS was investigated.
Then, by employing the Weibull distribution method, the LUD was quantified to a precision
of 1%, which enabled the exploration of the relationship between simulated values of the
LUD and the SOS. A study of the environmental factors that affect the relationship between
the SOS and LUD was also conducted. Our investigation concluded that there was a
significant correlation between ground-based observations of spring phenology and the
phenological data derived from remote-sensing data, particularly for the leaves and leaf-
expansion stages. For the largest proportion of observation sites, the SOS corresponded to
an LUD of 1% to 24%, with the strongest correlation and smallest error being for LUD13%.
The consistency between the remotely sensing and ground-based spring phenology results
depended on the species and ecological environment. However, in different species and
ecological regions, LUD13%, SOS, and SOS−LUD13% all have a high correlation with
pre-season cumulative radiation. This study provides a theoretical basis for selecting
appropriate ground-based observation data to validate the authenticity of LSP.
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