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Abstract: Rangeland ecosystems in the western United States are vulnerable to climate change,
fire, and anthropogenic disturbances, yet classification of rangeland areas remains difficult due to
frequently sparse vegetation canopies that increase the influence of soils and senesced vegetation,
the overall abundance of senesced vegetation, heterogeneity of life forms, and limited ground-based
data. The Rangeland Condition Monitoring Assessment and Projection (RCMAP) project provides
fractional vegetation cover maps across western North America using Landsat imagery and artificial
intelligence from 1985 to 2023 at yearly time-steps. The objectives of this case study are to apply
hyperspectral data from several new data streams, including Sentinel Synthetic Aperture Radar
(SAR) and Earth Surface Mineral Dust Source Investigation (EMIT), to the RCMAP model. We run
a series of five tests (Landsat-base model, base + SAR, base + EMIT, base + SAR + EMIT, and base
+ Landsat NEXT [LNEXT] synthesized from EMIT) over a difficult-to-classify region centered in
southwest Montana, USA. Our testing results indicate a clear accuracy benefit of adding SAR and
EMIT data to the RCMAP model, with a 7.5% and 29% relative increase in independent accuracy
(R2), respectively. The ability of SAR data to observe vegetation height allows for more accurate
classification of vegetation types, whereas EMIT’s continuous characterization of the spectral response
boosts discriminatory power relative to multispectral data. Our spectral profile analysis reveals
the enhanced classification power with EMIT is related to both the improved spectral resolution
and representation of the entire domain as compared to legacy Landsat. One key finding is that
legacy Landsat bands largely miss portions of the electromagnetic spectrum where separation among
important rangeland targets exists, namely in the 900–1250 nm and 1500–1780 nm range. Synthesized
LNEXT data include these gaps, but the reduced spectral resolution compared to EMIT results in
an intermediate 18% increase in accuracy relative to the base run. Here, we show the promise of
enhanced classification accuracy using EMIT data, and to a smaller extent, SAR.

Keywords: rangelands; fractional cover; hyperspectral; synthetic aperture radar; Landsat

1. Introduction

Rangeland ecosystems in the western United States are vulnerable to climate change,
fire, and anthropogenic disturbances, yet available geospatial data for assessing trends in
condition or fire risk, for example, may not be sufficient to inform management practices.
To address this need, scientists from the U.S. Geological Survey (USGS) and Bureau of
Land Management (BLM) developed the Rangeland Condition Monitoring Assessment
and Projection (RCMAP) project [1–3]. RCMAP provides robust, long-term, and floristically
detailed maps of vegetation cover across western North America using Landsat imagery
and machine learning from 1985 to 2023 at yearly time-steps. In the most recent version [4],
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the RCMAP product suite consists of 10 fractional components, including annual herba-
ceous, bare ground, herbaceous, litter, non-sagebrush shrub, perennial herbaceous, sage-
brush (Artemisia spp.), shrub, tree, and shrub height, in addition to the temporal trends of
each component.

Classification of rangeland areas tends to be difficult due to frequently sparse veg-
etation canopies that increase the influence of soils and senesced vegetation, the overall
abundance of senesced vegetation, heterogeneity of life forms (shrub versus herbaceous
cover versus tree), and limited ground-based data [5–7]. Moreover, biological soil crusts,
high spatial heterogeneity, and irregular often short-duration peak phenology pose chal-
lenges [7–9]. Differentiation among various rangeland plant communities is often hampered
by similar spectral absorption profiles [10]. Additional classification challenges exist in
rangeland burns (e.g., [11]. Although satellite imagery does detect burn influence, the
post-fire signal reflects a faster recovery relative to field observations [11]. Accordingly,
error rates are likely to be higher than average in recent (<~10 years) burns and in ar-
eas with unique spectral properties due to soil mineralogy, albedo, and increased annual
grasses and forbs. Rangelands are characterized by slow vegetation growth and substantial
natural and anthropogenic disturbances, resulting in an often noisy temporal signal, with
high inter-annual variation in weather and frequent disturbances from fire. Most pixels
in the RCMAP products show at least some change over the time-series [12,13]. Thus,
the decoupling of ecosystem function and structure with optical reflectance remains one
of the biggest challenges in rangeland mapping [7]. Within the context of global change,
accurate measurements of rangeland interannual dynamics at a large spatiotemporal scale
are important to improve our understanding of the variability and change in rangelands [2].

RCMAP validation relative to high resolution imagery (World View imagery, [13], field
observations, and long-term monitoring plots) shows moderate to strong relationships [1].
Consistent patterns emerge from the analyses: (1) spatial patterns are better characterized
than temporal ones; (2) bare ground, herbaceous and tree cover have lower error relative to
shrub, sagebrush, and annual herbaceous cover; (3) modeling tends to generalize relative
to field observations, resulting in prediction inflation and deflation on the low and high
distribution of data, respectively; (4) accuracy tends to be lower in more arid locations
with higher bare ground (similar to [8]). Of particular concern to the current study is
(1) improved discrimination between herbaceous and shrub cover, and (2) to a lesser extent,
between tree and shrub.

Additional sources of data including space-borne solar-induced chlorophyll fluores-
cence (SIF) and thermal infrared (TIR), light detection and ranging (lidar), and hyperspectral
data present new information to augment multispectral data in classification [7,14]. In
the current study, we focus on Synthetical Aperture Radar (SAR) from Sentinel and Earth
Surface Mineral Dust Source Investigation (EMIT) hyperspectral data as new sources of
information. Hyperspectral data offer the promise of discriminating among vegetation
communities that are indiscernible in multispectral data [10,15]. Hyperspectral data can
provide information on vegetation, including water, nitrogen, chlorophyll, carotenoid, and
xanthophyll concentrations, leading to more robust classification [7]. The focus of the EMIT
mission is mapping surface mineralogy in desert dust source regions [16], which has proven
to be successful for gypsum and other materials [17]. However, EMIT data can also provide
data on more general spectral properties [18]. Indeed, the hyperspectral feature space of
EMIT was found to be much more informative than that in multispectral sensors, with
good separation of vegetation spectral end members and detection of subtle differences
in vegetation pigmentation, cellulose/lignin absorption, and mesophyll reflectance [18].
Finally, Dennison et al. [19] demonstrated the potential of EMIT to enhance classification of
non-photosynthetic vegetation (NPV).

SAR data are sensitive to the physical properties of the land surface, such as moisture
content, roughness, and vegetation structure, which makes SAR data useful for moni-
toring vegetation type, structure, and cover in rangelands [20–24]. Moreover, SAR data
are not limited by saturation issues found in spectral data [24]. SAR data can be ac-
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quired in different polarizations, such as HH (horizontal transmit and horizontal receive),
VH (horizontal transmit and vertical receive), and VV (vertical transmit and vertical
receive) [25–27]. Consensus on the best polarization for rangelands from SAR data is
complicated and not entirely clear [24,25,28,29]. The choice of polarization depends on
the vegetation type and structure being observed and the specific application of the data.
Generally, the horizontal transmit and horizontal receive (HH) polarization is commonly
used in rangeland studies due to its sensitivity to rough surfaces and vegetation canopies.
However, some studies have shown that using multiple polarizations, including horizontal
transmit and vertical receive (VH) and vertical transmit and vertical receive (VV), can
provide additional information and improve classification accuracy [29–32].

Here, we focus on C-band (centered at 5.405 GHz) VV and VH SAR (processed as
normalized radar backscatter) data from Sentinel 1. SAR operates in different frequency
bands, including L, C, X, Ku, and Ka. Each band has different characteristics, and the choice
of band depends on the specific application and the desired spatial resolution [24,33,34].
C-band SAR (between 4 and 8 GHz) is more sensitive to changes in surface roughness and
can penetrate vegetation to a limited extent, making it useful for monitoring soil moisture
and surface deformation. The C-band has a higher spatial resolution than the L-band,
making it more suitable for detecting smaller features [35,36]. C-band SAR data have been
used to detect soil moisture content in arid regions, which could be useful for rangeland
management [37]. In some cases, the use of multiple bands can provide more comprehen-
sive information about the rangeland environment [37–39]. For example, multiple bands
can help distinguish between different vegetation types and provide information on soil
moisture, which is important for rangeland management [40]. Ultimately, each band has its
unique strengths and weaknesses.

The superspectral imaging capacity of Landsat NEXT (LNEXT), with a scheduled
launch date of ~2030, will be greatly enhanced relative to legacy multispectral Landsat
data. The 26 spectral bands proposed in LNEXT include all 11 bands from legacy Landsat
data for continuity, 5 with a capacity similar to Sentinel 2 to support data fusion, and
10 new bands designed to support applications in water quality, crop mapping, snow
research, and mineral mapping [41]. Specific enhancements of LNEXT are in the shortwave
infrared (SWIR) 2 band, which has improved specifications for mapping NPV due to the
upgrade from one to three bands [19]. Relative to vegetation mapping, the new yellow,
red edge, liquid water, and SWIR 2 bands may be useful in the detection of leaf chlorosis
and vegetation stress, leaf area index, chlorophyll content, vegetation water content, and
cellulose [41].

Hyperspectral data have greater potential to retrieve information of surface condition;
however, their availability has remained limited [42]. Previous work [43] has demonstrated
the challenges with hyperspectral data, notably their limited spatio-temporal footprint and
the higher dimensionality driving the need for increased training samples (i.e., Hughes phe-
nomena, [44]). However, mapping accuracy has generally been higher with hyperspectral
compared to multispectral imagery. For example, Bostan et al. [43] observed a classification
accuracy of 80% for crop type mapping using hyperspectral Hyperion imagery compared
to 70% with Landsat. Similarly, Govender et al. [45] found generally improved classification
accuracy of various tree species using Hyperion imagery relative to multispectral imagery.
Sankey et al. [46] used hyperspectral imagery and lidar to map rangeland plant functional
types, finding improved accuracy and discriminatory power relative to equivalent test-
ing using multispectral data. Specifically, the authors found 36% overall accuracy for a
nine-class map with multispectral imagery, 71% with hyperspectral imagery, and 87%
with hyperspectral imagery with lidar fusion. The latter finding indicates the potential
importance of height indicators to improve mapping accuracy, which is accomplished using
SAR in the current study.

Many surface targets and vegetation species have unique absorption features that
are better distinguished using hyperspectral compared to multispectral imagery. For
example, Mutanga and Kumar [47] used hyperspectral imagery (HyMAP) to estimate grass
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phosphorus concentration, finding a unique absorption feature at 2015–2019 nanometers
(nm). Sibanda et al. [48] underscore the importance of the red edge wavelengths in mapping
rangeland management practices. Lu et al. [42] found the red edge and red spectra results
were important for mapping vegetation chlorophyll content.

Though prior studies have shown the potential accuracy improvements with hyper-
spectral or SAR data compared to multispectral data, none have applied the combination
of all three to the challenging domain of rangeland fractional vegetation cover mapping.
The main objective of this case study is to apply several new data streams (Sentinel SAR
and EMIT hyperspectral data) to the RCMAP model, with the goal of understanding the
effects of additional modalities/spectral resolution on fractional component classification
accuracy. Additionally, we use EMIT data to replicate 20 of the proposed LNEXT bands
and test our models with these data. We strive to determine how the additional data can
contribute to mapping of RCMAP components utilizing an Artificial Intelligence/Machine
Learning (AI/ML) approach. Given the findings of previous researchers, we expect to
obtain an accuracy improvement with both EMIT and SAR. Secondly, to elucidate the
altered classification accuracy with the additional datasets, we carried out a spectral profile
analysis to illustrate the efficacy of EMIT and Landsat in discriminating among rangeland
vegetation types.

2. Materials and Methods
2.1. Study Area

Our study area includes 56,311 km2 in southwest Montana and adjacent portions
of northeast Idaho and northwestern Wyoming (Figure 1). This highly diverse region
includes several forested (mostly coniferous) mountain ranges with subalpine to alpine
environments at the highest elevations dominated by grasses and forbs, but additionally
includes stands of various species of big sagebrush (Artemisia tridentata spp.). Valleys tend
to be more arid and are dominated by various mixtures of bunch grasses and sagebrush,
with some irrigated meadows and hayfields. Invasion of annual grasses (e.g., cheatgrass;
Bromus tectorum L.) has occurred in some of the lower-elevation valleys, especially in the
southwest portion of the study extent. In RCMAP development at both the high-resolution
and Landsat scale, we found that the cool season perennial bunchgrasses prevalent in this
region (e.g., Rough fescue [Festuca campestris Rydb.], Idaho fescue [Festuca idahoensis Elmer],
and bluebunch wheatgrass [Pseudoroegneria spicata Á. Löve]) can be confused with shrub,
and vice versa. We test the hypothesis that this confusion is related to the shadowing and
overall texture created by these grasses being like that of shrub, which SAR data could
distinguish based on height.

2.2. Data
2.2.1. Training Data

RCMAP models are trained using both direct field observations collected in house
and from the BLM Analysis Inventory and Monitoring (AIM) program and a unique
dataset composed of millions of pixels worth of downscaled, high-resolution, component
cover predictions [1]. These high-resolution data form most training data used in RCMAP.
Specifically, high-resolution images (primarily World View 2 and 3) are trained using
~95 field samples per image. Field samples are designed to capture homogenous patches
of ground cover across the range of conditions at each site. Neural net classifiers are then
used for prediction component cover at 2 m resolution; they are subsequently downscaled
to 30 m resolution. In the current study area, a total of 483,921 pixels of high-resolution
derived training data are available.

RCMAP also collected field observations of component cover at a 30 m scale [1], with
716 such plots available within the study area. Additionally, we used 499 observations
collected by the BLM AIM program. A total of 485,136 training sites were available in the
pooled training database including high-resolution predictions, AIM data, and RCMAP
30 m scale data.
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Figure 1. Study area used to analyze impact of Synthetic Aperture Radar (SAR) and Earth Surface 
Mineral Dust Source Investigation (EMIT) hyperspectral data in rangeland vegetation classification. 
Base image is a 50th percentile composite of 2016 Landsat imagery. Inset map shows study location 
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Figure 1. Study area used to analyze impact of Synthetic Aperture Radar (SAR) and Earth Surface
Mineral Dust Source Investigation (EMIT) hyperspectral data in rangeland vegetation classification.
Base image is a 50th percentile composite of 2016 Landsat imagery. Inset map shows study location
in the conterminous United States.

2.2.2. Landsat Composites and Ancillary Data

We used the same Landsat composites generated in RCMAP production [4], including
6 bands (Supplemental Table S1). These composites are based on 30 m Collection 2 Landsat
analysis ready data [49] consisting of level 1 data with Albers projection and level 2
surface reflectance data. Composites are generated using a percentile approach, where
the 10th, 50th, and 90th percentile of all clear observations for each band each year are
retrieved; in our tests, we include composites from 2016 only. However, we have found that
Landsat imagery composites alone are not sufficient to produce maps of acceptable accuracy.
Accordingly, we have included multiple ancillary datasets as predictor variables, elevation,
topographic slope, aspect, position index, and various derived spectral indices (Table S1).
Additional discriminatory power may be achieved with higher-fidelity representation of
phenology through additional Landsat composites; however, doing so presents challenges
of clear image availability. The Landsat composites and ancillary “base” data were included
in all tests.
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2.2.3. Sentinel SAR Data

Sentinel 1 SAR (Normalized Radar Backscatter) CEOS-compliant (Committee on Earth
Observation Satellites) data were sourced from the Sinergise Sentinel Hub Card4L Tool
(refer to [50]. The data were Level 1 (ground range detected) with radiometric terrain
correction and are given in gamma-0 backscatter, which resolves some variation related to
observation geometry. All images were observed in ascending mode. Speckle filtering was
not applied to the data. Data were local UTM projection in a WGS 84 datum at 10 m resolu-
tion that were resampled to 30 m resolution using bilinear interpolation and reprojected
to Albers NAD 83 to match the resolution of training data and Landsat composites. We
produced monthly mosaics of SAR data using a median value approach for each month
from April to October 2016. Due to limited spatial coverage, we opted to use only the
August 2016 data. For our SAR tests, we used both VV and VH data and added the square
root of each dataset as input.

2.2.4. EMIT Data

We obtained EMIT Level 2A Estimated Surface Reflectance and Uncertainty and Masks
(EMITL2ARFL data; LP DAAC-EMITL2ARFL; [51]). The EMIT instrument installed on the
International Space Station uses imaging spectroscopy to take mineralogical measurements,
targeting the Earth’s arid dust source regions. The surface reflectance data used are
non-orthocorrected, 60 m resolution with 285 bands spanning 381–2493 nm at a spectral
resolution of ~7.5 nm. We used the associated reflectance mask, containing six binary flag
bands, to exclude clouds, water, and spacecraft. Additional hand edits were applied as
needed to remove non-target features. We obtained data from April to October of 2023,
reprojected to Albers NAD 83, resampled using bilinear interpolation to 30 m resolution,
and mosaiced using a median value approach across the study area to match other inputs.
To obtain broad spatial coverage, data from April to October 2023 were included in the
EMIT composite. Bands 128–142 and 188–213 were missing in our EMIT data. We used
all available EMIT bands in our testing. We replicated 20 proposed LNEXT bands [41] by
averaging the corresponding wavelengths in the EMIT bands. Band wavelength matching
was not exact due to the 7.5 nm range of the EMIT data. LNEXT has five thermal infrared
bands and a cirrus band in wavelengths not available in EMIT that were not replicated.

2.2.5. Model Architecture

From the pool of 485,136 training points available in the study area, we randomly
selected 10% as test. Based on prior RCMAP testing, we used a Deep Neural Network
(DNN) with a neuron width of 512, 4 layers deep, a learning rate of 10−4, a dropout between
layers of 0.2, batch normalization, and clamping of 0–100%. We doubled the training data in
the high end of distribution tails (>+1 standard deviation of the mean) for each component
to better capture the range of each component, enhance spatial contrast, and reduce model
propensity to regress toward the mean. However, if mean minus 1 standard deviation
was less than 0, we did not double the low end of the distribution (e.g., in tree). We used
a weighted mean squared logarithmic error (WMSLE) loss function, where zeros have
half the weight of nonzero values. WMSLE penalizes higher relative errors. For example,
a prediction of 5% cover with a training value of 0% is given a higher penalty than a
prediction of 50% cover with a training value of 55%.

2.3. Tests

We ran five tests to evaluate the effect on accuracy of adding SAR and EMIT data as
independent variables (Table 1). Tests are designed to isolate the effect of each dataset on
accuracy. We evaluate the performance of each test on each component independently and
with an average across all components per test. We use our independent validation data
(n = 398) and cross-validation test to assess accuracy, with the coefficient of determination
(R2) and root mean square error (RMSE) as metrics. Independent validation consisted of
data sampled by RCMAP and random 50% withholding of BLM AIM data. Both datasets
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were collected using a line point intercept method [52], collected to represent a single
Landsat pixel. All tests represent a circa 2016 condition.

Table 1. Tests implemented in the current study to evaluate rangeland fractional component mapping
accuracy. All tests include a set of independent variables listed in Table S1. LNEXT refers to Earth
Surface Mineral Dust Source Investigation (EMIT) data synthetized into proposed Landsat NEXT
bands. SAR = Synthetic Aperture Radar.

Test Landsat
Composites SAR Mosaics EMIT Mosaics LNEXT

1 (Base) x
2 (Base + SAR) x x

3 (Base + EMIT) x x
4 (Base + SAR + EMIT) x x x

5 (Base + LNEXT) x x

A land cover mask targeted to omit water bodies, urban areas, cultivated croplands,
and perennial snow/ice [4] was applied to our mapping results, as these areas are untrained.
The land cover mask was identified using National Land Cover Database 2021 [53] land
cover classes and 2021 Cropland Data Layer [54]. Considering the land cover mask and
masking applied to EMIT and SAR data, a total of 26,635 km2 was mapped in our analysis.
The study area was defined based on the common area available in the selected SAR and
EMIT datasets.

2.4. Spectral Profile Analysis

We undertook a spectral profile analysis to illustrate the efficacy of EMIT and Landsat
in discriminating among important rangeland targets, and specifically how this varies
across wavelengths. First, we classified data from RCMAP high-resolution training sites
in the region into several classes: dense herbaceous (≥50% herbaceous cover and 0% tree
and shrub), mixture of herbaceous and shrub (≥20% cover of both shrub and herbaceous
and 0% tree), non-sagebrush shrub (<20% cover of herbaceous, ≥20% non-sagebrush cover,
<5% sagebrush cover, 0% tree cover), sagebrush (<20% cover of herbaceous, <5% non-
sagebrush cover, ≥5% sagebrush cover, 0% tree cover), and tree (<20% cover of herbaceous,
0% shrub cover, ≥20% tree cover). These classes are not inclusive of all training data; rather,
they reflect end members of vegetation types important to land management. Next, we
evaluated the mean spectral response in the EMIT and Landsat data for each class. At each
wavelength (band) of the EMIT and Landsat data, we calculated the mean spectral response
of the five vegetation classes, and the standard deviation among the five classes was used
as a proxy for separability. A higher standard deviation indicates higher separability at a
given wavelength. Second, we analyzed the mean EMIT and Landsat spectral values by 5%
cover increments of shrub cover.

2.5. Caveats

Training and validation data in the study area are primarily from 2014 to 2019 and
align with the data availability of SAR and Landsat data. EMIT data are not available prior
to 2022, so for the purposes of tests including EMIT data, we must assume that RCMAP
high-resolution training data from 2014 to 2019 are comparable. We undertook analysis
to scope the magnitude of error in this assumption by comparing 2016 and 2023 RCMAP
production-scale predictions of component cover over the training footprint. Although
mean differences in predictions between years was <0.5%, and correlations between years
were ~95% averaged across components, differences up to 65% in herbaceous cover and
87% in tree cover existed. To resolve these discrepancies, we removed sites that had burned
since 1984 as indicated by Monitoring Trends in Burn Severity from the training pool.
Doing so removed most locations with large differences between years, but some degree of
inconsistency will remain when using 2016 data to train 2023 imagery.
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3. Results
3.1. Accuracy Metrics

Cross-validation results were robust compared to production-scale RCMAP products,
as we developed the models over a relatively small geographic area, which allows for
improved fit (Table 2). On average, test accuracy varied little among runs, but adding
SAR slightly improved results, and adding LNEXT and EMIT led to a larger improvement
compared to the base run.

Table 2. Model cross-validation test accuracy (R2). SAR = Synthetic Aperture Radar; EMIT = Earth
Surface Mineral Dust Source Investigation; LNEXT = Landsat NEXT.

Test Annual
Herbaceous Herbaceous Litter Sagebrush Shrub Bare Tree Average

Base 0.911 0.943 0.944 0.884 0.886 0.982 0.908 0.922
Base + SAR 0.909 0.943 0.955 0.882 0.886 0.982 0.919 0.923

Base + EMIT 0.919 0.950 0.951 0.898 0.901 0.984 0.919 0.931
All 0.921 0.950 0.953 0.899 0.901 0.984 0.920 0.932

Base + LNEXT 0.917 0.948 0.950 0.896 0.893 0.983 0.919 0.929

Independent validation results show ranking of accuracy by component similar to
prior RCMAP testing, where bare ground and tree are top performers. Bare ground and
herbaceous component accuracy in this region is lower than across the western United
States [2], one of the reasons we selected this area for testing (Table 3). The addition of SAR
data improved the R2 by an average of 7.5% and lowered the RMSE by 2.47%, with the
greatest improvement observed in herbaceous and litter components (Table 3, Figure 2).
Inclusion of EMIT data had even more profound effects on accuracy, with the R2 improving
by an average of 29% and the RMSE reduced by 10.34%. EMIT improved the independent
R2 of herbaceous cover by 44%, litter by 99%, and sagebrush by 22%. The combined
test showed even greater accuracy, although the incremental improvements in SAR and
EMIT were not additive (i.e., 5.5% improvement in bare ground with SAR and 21.7% with
EMIT—did not equal a net 27.2% improvement with both, but rather 22.3%). This indicates
some redundancy or conflicting information between SAR and EMIT. In summary, adding
SAR, but especially EMIT data, greatly improved independent accuracy. The LNEXT test
shows an intermediate level of accuracy improvement (18.2% higher R2, 5.5% lower RMSE).
The scatterplots of independent validation sites (Figure 2) demonstrate the tightening of
the relationship between field observation and prediction with the addition of EMIT data,
but also the propensity of models to flatten the data distribution (positive and negative bias
in predictions at the low and high ends of data distribution, respectively).

Table 3. Model independent validation at Rangeland Condition Monitoring Assessment and Pro-
jection (RCMAP) and Analysis Inventory and Monitoring (AIM) sites (n = 399). Average difference
from base represents the mean relative improvement among components for each test relative to the
base run, in percent. SAR = Synthetic Aperture Radar; EMIT = Earth Surface Mineral Dust Source
Investigation; LNEXT = Landsat NEXT; N/A = not applicable.

R2
Avg. Relative

Difference from
Base (%)

Annual
Herbaceous Herbaceous Litter Sagebrush Shrub Bare Tree Average

Base 0.40 0.30 0.20 0.43 0.44 0.42 0.80 0.43 N/A
Base + SAR 0.42 0.34 0.23 0.48 0.48 0.45 0.83 0.46 7.55

Base + EMIT 0.52 0.44 0.39 0.56 0.52 0.51 0.93 0.55 29.00
ALL 0.53 0.48 0.40 0.53 0.50 0.52 0.96 0.56 30.66

Base + LNEXT 0.48 0.38 0.35 0.49 0.47 0.48 0.90 0.51 18.25
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Table 3. Cont.

R2
Avg. Relative

Difference from
Base (%)

Annual
Herbaceous Herbaceous Litter Sagebrush Shrub Bare Tree Average

RMSE

Base 9.60 16.65 9.22 9.36 10.24 14.13 2.11 10.19 N/A
Base + SAR 9.37 15.99 9.09 9.02 9.96 14.05 2.08 9.94 −2.47

Base + EMIT 8.56 14.82 7.94 8.37 9.53 13.13 1.60 9.13 −10.34
ALL 8.45 14.15 7.88 8.56 9.76 13.11 1.03 8.99 −11.74

Base + LNEXT 8.94 15.70 8.17 9.09 10.16 13.80 1.53 9.63 −5.51

Remote Sens. 2024, 16, 2315 9 of 19 
 

 

with EMIT—did not equal a net 27.2% improvement with both, but rather 22.3%). This 
indicates some redundancy or conflicting information between SAR and EMIT. In sum-
mary, adding SAR, but especially EMIT data, greatly improved independent accuracy. 
The LNEXT test shows an intermediate level of accuracy improvement (18.2% higher R2, 
5.5% lower RMSE). The scatterplots of independent validation sites (Figure 2) demonstrate 
the tightening of the relationship between field observation and prediction with the addi-
tion of EMIT data, but also the propensity of models to flatten the data distribution (posi-
tive and negative bias in predictions at the low and high ends of data distribution, respec-
tively). 

 
Figure 2. Scatterplots of independent validation (n = 399) for selected component cover predictions 
by model run. Line of best fit and 1-to-1 line indicated by dashed blue and solid red line, Figure 2. Scatterplots of independent validation (n = 399) for selected component cover predictions

by model run. Line of best fit and 1-to-1 line indicated by dashed blue and solid red line, respectively.
For improved visualization, the x and y ranges vary by plot. SAR = Synthetic Aperture Radar;
EMIT = Earth Surface Mineral Dust Source Investigation; LNEXT = Landsat NEXT.
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3.2. Predictions

Mean predicted component cover was relatively consistent among tests (Table 4).
However, the SAR test predicted lower tree and bare ground cover and higher shrub cover
compared to the other tests. On average, spatial similarity to the base test was 74% for the
SAR test, 73% for EMIT, 68% for the All test, and 84% for the LNEXT test. Spatial similarly
was highest in herbaceous (82%) and lowest in shrub cover (59%). Spatial patterns overall
captured the expected ecological, climatic, and disturbance gradients (Figure 3). EMIT
predictions contained some artifacts due to limited image availability, leading to phenolog-
ical mismatch across seamlines. Additionally, SAR predictions contained some artifacts,
especially in areas with boulder fields and standing dead trees, which are sometimes mis-
classified as tree and shrub cover. Depiction of burn history through effects to vegetation
structure is a key application of rangeland mapping data. We evaluated shrub and tree
cover predictions from the four predictions in fires from varying time periods. Models
including SAR data tended to accurately depict tree cover as lower in burns compared to
those without SAR. Case studies of prediction differences by model run are presented in
Supplemental Figures S1 and S2.

Table 4. Mean predicted value by component per test based on a random sample across the study
area (n = 10,000). SAR = Synthetic Aperture Radar; EMIT = Earth Surface Mineral Dust Source
Investigation; LNEXT = Landsat NEXT.

Annual
Herbaceous Herbaceous Litter Sagebrush Shrub Bare Tree

Base 3.42 35.21 13.98 9.95 22.38 18.29 10.13
Base + SAR 3.20 38.28 13.88 10.95 24.72 16.82 6.31

Base + EMIT 3.44 35.82 14.16 11.16 20.95 19.15 9.92
ALL 3.40 36.88 13.78 11.24 19.45 18.08 11.81

Base + LNEXT 3.04 36.59 14.34 11.17 21.07 17.16 10.82

3.3. SAR and Spectral Analysis

To better understand the relative improvements related to including SAR and EMIT
data by component, we undertook several analyses. First, we evaluated individual compo-
nent relationships with SAR data at RCMAP training sites (Figure 4). Taller components
(tree and shrub) had stronger and more positive relationships with the SAR data. Bare
ground, where the ground surface itself would be the return, yielded negative relationships.
Of note, we found that SAR VV and VH data were only moderately related (R2 = 0.33),
revealing the unique information in each polarization.

The EMIT data offered opportunities to explore the spectral profiles of important
rangeland cover targets and the optimal spectral wavelengths for discrimination. We
classified our high-resolution RCMAP training data into five classes (refer to Methods
section for explanation) and plotted the average spectral response using both EMIT and
Landsat data (Figure 5). The average spectral profile of the dense herbaceous and tree
targets are quite distinct. The remaining three profiles are relatively inseparable except
for ~1000–1800 nm (e.g., ~the Landsat SWIR 1 band, Figure 6). Next, we evaluated the
separability of 5% increments of shrub cover (Figure 7). EMIT reflectance profiles tend to
decrease with increasing shrub cover. Key wavelengths for discrimination among shrub
percentage cover are similar to that of the vegetation classes in Figure 5, although the visible
portion of the spectrum tends to be somewhat more important with discrimination among
shrub cover values.
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Figure 3. Component predictions by model for shrub (top) and herbaceous cover (bottom). White 
indicates either land cover or Earth Surface Mineral Dust Source Investigation (EMIT) masking. SAR 
= Synthetic Aperture Radar. 

Figure 3. Component predictions by model for shrub (top) and herbaceous cover (bottom). White
indicates either land cover or Earth Surface Mineral Dust Source Investigation (EMIT) masking.
SAR = Synthetic Aperture Radar.
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Figure 5. Average spectral profiles of important rangeland targets (see Methods Section for classifica-
tion details) based on high-resolution Rangeland Condition Monitoring Assessment and Projection
(RCMAP) data. Line data reflect Earth Surface Mineral Dust Source Investigation (EMIT) profiles,
and points of the same color represent Landsat.
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Figure 6. Separability of rangeland classes plotted in Figure 5 as measured by the standard deviation
among spectral profiles across the classes at each Earth Surface Mineral Dust Source Investigation
(EMIT) band. Width of Landsat band ranges (bands 2–7 used in Rangeland Condition Monitoring
Assessment and Projection [RCMAP] analysis) are plotted in black.
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4. Discussion 
Accurate mapping of rangeland is essential to ensure user confidence and effective 

decision making, especially when considering the temporal dimension that can amplify 
errors. As alluded to in Figure 7, to fully capture their potential benefit, products need to 
be accurate to potentially cover 1% increments, particularly when considering analyses 
thresholding data to the percentage (e.g., the sagebrush conservation design framework, 
[55]). Our testing results indicate a clear accuracy benefit of adding SAR and EMIT data 
to the RCMAP model. The ability of SAR data to observe vegetation height allows for 
more accurate classification of vegetation types and potential degradation [24]. 

EMIT’s continuous characterization of the spectral curve boosts discriminatory 
power relative to multispectral data ([56], Figures 5–7). Our spectral profile analysis re-
veals the enhanced classification power with EMIT is related to both the improved spectral 
resolution and representation of the entire domain as compared to Landsat. In general, 
the visible spectrum and Landsat SWIR 2 range offer modest separability among the her-
baceous and shrub, non-sagebrush shrub, and sagebrush classes (Figure 6). Conversely, 
the tree and dense herbaceous targets are quite distinct spectrally in the visible to SWIR 1 
wavelengths. Separability tends to be lowest in the red and SWIR 2 wavelengths, with 
enhanced separation in the red edge to SWIR 1 wavelengths, likely responsive to vegeta-
tion water content. Indeed, the standard deviation among classes (i.e., separability) is 
2.67× greater on average in these wavelengths than in the visible spectra. For the three 
classes including shrubs, mean separability is lower than in the dense herbaceous and tree 
classes, with the exception of the SWIR 2 range. However, the red edge to SWIR 1 wave-
lengths still hold the greatest separability in these classes. Hanson et al. [57] evaluated the 
spectra of dead sagebrush, live sagebrush, grass, and bare ground in Idaho using a field 
spectroradiometer. Like our results, the authors show little separation among these targets 
in the visible spectra, with greater separation in the infrared and SWIR ranges. 

Our study area was selected due to the difficulty of separating bunchgrasses and 
shrubs and the diversity of vegetation types in this region. The accuracy benefit of 

Figure 7. Average spectral profile from Earth Surface Mineral Dust Source Investigation (EMIT) by
shrub 5% cover bins (color) in Rangeland Condition Monitoring Assessment and Projection (RCMAP)
high-resolution training sites. Some bins are omitted for clarity. We removed pixels with >0% tree
cover and ≥20% herbaceous cover from this analysis. All species of shrub are included.

4. Discussion

Accurate mapping of rangeland is essential to ensure user confidence and effective
decision making, especially when considering the temporal dimension that can amplify
errors. As alluded to in Figure 7, to fully capture their potential benefit, products need to be
accurate to potentially cover 1% increments, particularly when considering analyses thresh-
olding data to the percentage (e.g., the sagebrush conservation design framework, [55]).
Our testing results indicate a clear accuracy benefit of adding SAR and EMIT data to the
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RCMAP model. The ability of SAR data to observe vegetation height allows for more
accurate classification of vegetation types and potential degradation [24].

EMIT’s continuous characterization of the spectral curve boosts discriminatory power
relative to multispectral data ([56], Figures 5–7). Our spectral profile analysis reveals the
enhanced classification power with EMIT is related to both the improved spectral resolution
and representation of the entire domain as compared to Landsat. In general, the visible
spectrum and Landsat SWIR 2 range offer modest separability among the herbaceous and
shrub, non-sagebrush shrub, and sagebrush classes (Figure 6). Conversely, the tree and
dense herbaceous targets are quite distinct spectrally in the visible to SWIR 1 wavelengths.
Separability tends to be lowest in the red and SWIR 2 wavelengths, with enhanced separa-
tion in the red edge to SWIR 1 wavelengths, likely responsive to vegetation water content.
Indeed, the standard deviation among classes (i.e., separability) is 2.67× greater on average
in these wavelengths than in the visible spectra. For the three classes including shrubs,
mean separability is lower than in the dense herbaceous and tree classes, with the exception
of the SWIR 2 range. However, the red edge to SWIR 1 wavelengths still hold the greatest
separability in these classes. Hanson et al. [57] evaluated the spectra of dead sagebrush,
live sagebrush, grass, and bare ground in Idaho using a field spectroradiometer. Like our
results, the authors show little separation among these targets in the visible spectra, with
greater separation in the infrared and SWIR ranges.

Our study area was selected due to the difficulty of separating bunchgrasses and
shrubs and the diversity of vegetation types in this region. The accuracy benefit of hy-
perspectral data may be diminished in regions with less floristic and structural diver-
sity. However, if such regions contain complex mineralogy and high amounts of bare
ground, the EMIT instrument may reduce classification uncertainty [17]. Moreover, legacy
Landsat data are suboptimal for classification of NPV [19], which is a major constituent
of rangelands.

One key finding is that legacy Landsat bands largely miss portions of the electro-
magnetic spectrum where enhanced separation among important rangeland targets exists
(Figure 6), namely in the range of 900–1250 nm and 1500–1780 nm. The former range is
typically considered responsive to water liquid and vapor and to snow/ice applications,
and the latter is in the SWIR spectra, which can be responsive to NPV [19]. Our LNEXT test
includes these ranges and demonstrates their effects on enhancing classification accuracy.
However, the reduced spectral resolution of LNEXT bands (average of 33.8 nm) compared
to 7.5 nm for EMIT ostensibly drives the reduced accuracy of the LNEXT test compared to
the EMIT test.

Adding these datasets came with a substantial time investment and some neces-
sary assumptions regarding temporal compatibility. Moreover, SAR data introduce er-
rors in burned areas and caused shrub/tree confusion, whereas EMIT data introduce
some seamlines. Resampling native 60 m EMIT data to 30 m resolution also likely in-
troduced some error. Expanding the number of predictor variables can introduce the
Hughes phenomena, where the increased dimensionality results in increased discrim-
inatory power but increases the number of required training data to retain potential
accuracy [44,56,58]. RCMAP has >60 million training points available, which presumably
is sufficient to remediate this concern, especially when combined with methods designed
to reduce dimensionality [58].

Due to the highly variable precipitation regime driving varied phenology, sensors
with infrequent return intervals such as Landsat often miss important events [7]. Even
daily temporal resolution data from a Moderate-Resolution Imaging Spectroradiometer
often cannot fully capture the dynamics [59]. One major weakness of EMIT, and our testing
overall, is the incomplete exploitation of the temporal domain through within-season phe-
nological variation. RCMAP has found that the temporal domain (i.e., phenology) offers
key discriminatory power, unique from the spectral domain. For example, prior RCMAP
research has indicated that the uniquely short and early growing season of invasive annual
grasses relative to perennial grasses can be exploited with monthly imagery composites to
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enhance separation [12,60]. The 10th, 50th, and 90th percentile Landsat composites used
in this study were found to capture a large amount of the within-season variation, but
geomedian composites (e.g., [61] or monthly composites may offer improved depiction
of key phenological events. Future work combining SAR, EMIT, and enhanced temporal
frequency with HLS (Harmonized Landsat Sentinel; [62,63]) or similar data is warranted.
Wood et al. [8], for example, found a 5–10% accuracy in rangeland classification with an
increase from one to eight drone images over the course of the growing season. Additional
information may be derived from increased spatial resolution, especially from texture met-
rics that become more meaningful at a finer scale. For example, RCMAP has demonstrated
the that three-by-three variance of 2 m World View imagery is strongly associated with
shrub and tree cover. Moreover, higher-resolution imagery serves to decrease the diversity
of features represented in a pixel, thus creating a purer training relationship. Additional
avenues for exploration are vegetation optical depth, chlorophyll fluorescence, and thermal
imaging [8].

5. Conclusions

We show the promise of enhanced classification accuracy using EMIT data and, to a
lesser extent, SAR. Integrating these datasets in the current study was a laborious exercise,
however, and the limited spatial and temporal extent of both EMIT and SAR datasets would
render them incompatible with production-scale modeling as in RCMAP. The superspectral
resolution (26 bands) proposed in LNEXT may bridge this gap, however, while offering
higher temporal resolution compared to legacy Landsat observatories, with synoptic cover-
age. Importantly, many of the spectral gaps we found potentially important to rangeland
fractional component classification will be included in LNEXT bands. Specifically, the
inclusion of red edge wavelengths and additional SWIR bands in both EMIT and LNEXT
enhances the capture of vegetation water content, stress, and NPV important to separability
among cover types and fractional cover.

Given multispectral, hyperspectral, SAR, and topographic variables included in our
best overall model, error rates improve but are still noteworthy. Exploitation of the temporal
domain may further reduce error, but the relatively small separation among rangeland
features in spectral space (Figures 5–7) indicates a limit. The high overall amount of
bare ground and diverse minerology create complex spectral conditions. Moreover, given
the seven RCMAP components, each ranging from 0–100%, the theoretical number of
permutations of cover is 1.6 × 1016. AI/ML has enhanced the ability to parameterize this
complexity, but some moderate level of error is likely inevitable in rangeland fractional
classification at a broad spatio-temporal scale.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/rs16132315/s1, Table S1. Independent variables used
in the development of high resolution and all 30-m scale models used in this analysis. SAVI; Soil
Adjusted Vegetation Index, NDBI; Normalized Difference Built-up Index, NDWI; Normalized Differ-
ence Water Index, NDVI; Normalized Difference Vegetation Index. The 6 bands included in Landsat
composites were blue, green, red, near infrared, shortwave infrared 1, and shortwave infrared 2.
Figure S1. Examples of model differences for shrub cover in a high elevation mountain valley with
tree cover depicted as dark green in the Landsat composite. Image depicting common vegetation in
the case study area (lower right) obtained from Google Earth. The base + SAR prediction displays
confusion in the less dense, transitional forested areas, confusing some tree as shrub cover. Base +
EMIT prediction shows a clear distinction in the boundaries between shrubs and trees but a flatter
range of values, with reduced zeroes and higher values that are seen in the base run. The prediction
using both SAR and EMIT is a good compromise showing a higher range of values and a better
performance in the forested areas. Figure S2. Examples of model differences for herbaceous cover in
relatively intact sagebrush site at moderate elevation. Drone image covering case study area (lower
right) obtained from Google Earth. Relative to the base run, including SAR results in stark increase
in the herbaceous cover overall as well as an increase in the range of values which help identify

https://www.mdpi.com/article/10.3390/rs16132315/s1
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patches of bare ground and roads. The Base + EMIT model lowers the herbaceous values in favor of
shrub/sagebrush while keeping the range of values closer to that of the base prediction.
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