Uncovering a Seismogenic Fault in Southern Iran through Co-Seismic Deformation of the Mw 6.1 Doublet Earthquake of 14 November 2021
Abstract
:1. Introduction
2. Tectonic Setting
3. Seismicity and Structural Geology
4. Materials and Methods
4.1. InSAR
4.2. Seismic Inversion and Fault Modeling
4.3. Magnetic Study
5. Results
5.1. InSAR
5.2. Seismic Inversion and Fault Modeling
5.3. Magnetic Study
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ni, J.; Barazangi, M. Seismotectonics of the Zagros continental collision zone and a comparison with the Himalayas. J. Geophys. Res. Solid Earth 1986, 91, 8205–8218. [Google Scholar] [CrossRef]
- Berberian, M. Master “blind” thrust faults hidden under the Zagros folds: Active basement tectonics and surface morphotectonics. Tectonophysics 1995, 241, 193–224. [Google Scholar] [CrossRef]
- Talebian, M.; Jackson, J. A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran. Geophys. J. Int. 2004, 156, 506–526. [Google Scholar] [CrossRef]
- Nissen, E.; Jackson, J.; Jahani, S.; Tatar, M. Zagros “phantom earthquakes” reassessed—The interplay of seismicity and deep salt flow in the Simply Folded Belt? J. Geophys. Res. Solid Earth 2014, 119, 3561–3583. [Google Scholar] [CrossRef]
- Elliott, J.; Bergman, E.; Copley, A.; Ghods, A.; Nissen, E.; Oveisi, B.; Tatar, M.; Walters, R.; Yamini-Fard, F. The 2013 Mw 6.2 Khaki-Shonbe (Iran) earthquake: Insights into seismic and aseismic shortening of the Zagros sedimentary cover. Earth Space Sci. 2015, 2, 435–471. [Google Scholar] [CrossRef]
- Jahani, S.; Hassanpour, J.; Mohammadi-Firouz, S.; Letouzey, J.; de Lamotte, D.F.; Alavi, S.A.; Soleimany, B. Salt tectonics and tear faulting in the central part of the Zagros Fold-Thrust Belt, Iran. Mar. Pet. Geol. 2017, 86, 426–446. [Google Scholar] [CrossRef]
- Nissen, E.; Tatar, M.; Jackson, J.A.; Allen, M.B. New views on earthquake faulting in the Zagros fold-and-thrust belt of Iran. Geophys. J. Int. 2011, 186, 928–944. [Google Scholar] [CrossRef]
- Baker, C.; Jackson, J.; Priestley, K. Earthquakes on the Kazerun Line in the Zagros Mountains of Iran: Strike-slip faulting within a fold-and-thrust belt. Geophys. J. Int. 1993, 115, 41–61. [Google Scholar] [CrossRef]
- Walker, R.T.; Andalibi, M.; Gheitanchi, M.; Jackson, J.; Karegar, S.; Priestley, K. Seismological and field observations from the 1990 November 6 Furg (Hormozgan) earthquake: A rare case of surface rupture in the Zagros mountains of Iran. Geophys. J. Int. 2005, 163, 567–579. [Google Scholar] [CrossRef]
- Hatzfeld, D.; Molnar, P. Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications. Rev. Geophys. 2010, 48. [Google Scholar] [CrossRef]
- Mirabedini, M.S.; Agh-Atabai, M.; Azimmohseni, M.; Zadeh, M.A. Temporal pattern of seismicity in the Zagros belt, SW Iran. Arab. J. Geosci. 2021, 14, 1707. [Google Scholar] [CrossRef]
- Dziewonski, A.M.; Chou, T.A.; Woodhouse, J.H. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res. Solid Earth 1981, 86, 2825–2852. [Google Scholar] [CrossRef]
- Ekström, G.; Nettles, M.; Dziewoński, A. The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter. 2012, 200, 1–9. [Google Scholar] [CrossRef]
- Roustaei, M.; Nissen, E.; Abbassi, M.; Gholamzadeh, A.; Ghorashi, M.; Tatar, M.; Yamini-Fard, F.; Bergman, E.; Jackson, J.; Parsons, B. The 2006 March 25 Fin earthquakes (Iran)—Insights into the vertical extents of faulting in the Zagros Simply Folded Belt. Geophys. J. Int. 2010, 181, 1275–1291. [Google Scholar] [CrossRef]
- Fathian, A.; Atzori, S.; Svigkas, N.; Tolomei, C.; Shugar, D.H.; Reicherter, K. Source Characteristics of the Fin Doublet Earthquake of 14 November 2021 (Mw 6.2 and Mw 6.3) Utilizing InSAR Data. In Proceedings of IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; IEEE: Piscataway, NJ, USA; pp. 2119–2122. [Google Scholar]
- Golshadi, Z.; Famiglietti, N.A.; Caputo, R.; SoltaniMoghadam, S.; Karimzadeh, S.; Memmolo, A.; Falco, L.; Vicari, A. Contemporaneous Thick-and Thin-Skinned Seismotectonics in the External Zagros: The Case of the 2021 Fin Doublet, Iran. Remote Sens. 2023, 15, 2981. [Google Scholar] [CrossRef]
- Toker, M.; Durmuş, H.; Utkucu, M. Decoupled co-seismic deformation and stress changes during the 2021 (Mw 6.0, 6.4) North Bandar Abbas doublet earthquakes in Fin region, SE-syntaxis of Zagros, Iran: New insights into the tectonic deformation decoupling process. Environ. Earth Sci. 2023, 82, 533. [Google Scholar] [CrossRef]
- Rezapour, M.; Jamalreyhani, M. Source fault analyses from InSAR data and aftershocks for the Fin doublet earthquakes on 14 November 2021 in Hormozgan province, South Iran. J. Earth Space Phys. 2023, 48, 87–97. [Google Scholar]
- Boudriki Semlali, B.-E.; Molina, C.; Park, H.; Camps, A. First results on the systematic search of land surface temperature anomalies as earthquakes precursors. Remote Sens. 2023, 15, 1110. [Google Scholar] [CrossRef]
- Molina, C.; Boudriki Semlali, B.-E.; Park, H.; Camps, A. A preliminary study on ionospheric scintillation anomalies detected using GNSS-R data from NASA CYGNSS mission as possible earthquake precursors. Remote Sens. 2022, 14, 2555. [Google Scholar] [CrossRef]
- Molina, C.; Semlali, B.B.; González-Casado, G.; Park, H.; Camps, A. Ionospheric scintillation anomalies associated with the 2021 La Palma volcanic eruption detected with GNSS-R and GNSS-RO observations. In Proceedings of IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; IEEE: Piscataway, NJ, USA; pp. 7445–7448. [Google Scholar]
- Ommi, S.; Smirnov, V.B. Seismicity patterns before the 2021 Fin (Iran) doublet earthquakes using the region-time-length and time-to-failure methods. Earthq. Sci. 2023, 37, 324–336. [Google Scholar]
- Jahani, S.; Callot, J.-P.; de Lamotte, D.F.; Letouzey, J.; Leturmy, P. The salt diapirs of the eastern Fars Province (Zagros, Iran): A brief outline of their past and present. In Proceedings of Thrust Belts and Foreland Basins: From Fold Kinematics to Hydrocarbon Systems; Springer: Berlin/Heidelberg, Germany; pp. 289–308.
- Hassanpour, J.; Muñoz, J.A.; Yassaghi, A.; Ferrer, O.; Jahani, S.; Santolaria, P.; SeyedAli, S.M. Impact of salt layers interaction on the salt flow kinematics and diapirism in the Eastern Persian Gulf, Iran: Constraints from seismic interpretation, sequential restoration, and physical modelling. Tectonophysics 2021, 811, 228887. [Google Scholar] [CrossRef]
- Hassanpour, J.; Yassaghi, A.; Muñoz, J.A.; Jahani, S. Salt tectonics in a double salt-source layer setting (Eastern Persian Gulf, Iran): Insights from interpretation of seismic profiles and sequential cross-section restoration. Basin Res. 2021, 33, 159–185. [Google Scholar] [CrossRef]
- Nissen, E.; Yamini-Fard, F.; Tatar, M.; Gholamzadeh, A.; Bergman, E.; Elliott, J.; Jackson, J.; Parsons, B. The vertical separation of mainshock rupture and microseismicity at Qeshm island in the Zagros fold-and-thrust belt, Iran. Earth Planet. Sci. Lett. 2010, 296, 181–194. [Google Scholar] [CrossRef]
- Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Vernant, P.; Nilforoushan, F.; Hatzfeld, D.; Abbassi, M.; Vigny, C.; Masson, F.; Nankali, H.; Martinod, J.; Ashtiani, A.; Bayer, R. Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophys. J. Int. 2004, 157, 381–398. [Google Scholar] [CrossRef]
- Javadi, H.; Sheikholeslami, M.; Asadi Sarhar, M. Iran Fault Map on Sedimentary-Structural Units; Tectonic Group. Geological Survey of Iran: Tehran, Iran, 2013. [Google Scholar]
- Allen, M.B.; Armstrong, H.A. Arabia–Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 265, 52–58. [Google Scholar] [CrossRef]
- James, G.; Wynd, J. Stratigraphic nomenclature of Iranian oil consortium agreement area. AAPG Bull. 1965, 49, 2182–2245. [Google Scholar] [CrossRef]
- Stocklin, J. Structural history and tectonics of Iran: A review. AAPG Bull. 1968, 52, 1229–1258. [Google Scholar] [CrossRef]
- Falcon, N.L. Problems of the relationship between surface structure and deep displacements illustrated by the Zagros Range. Geol. Soc. Lond. Spec. Publ. 1969, 3, 9–21. [Google Scholar] [CrossRef]
- Teknik, V.; Ghods, A. Depth of magnetic basement in Iran based on fractal spectral analysis of aeromagnetic data. Geophys. J. Int. 2017, 209, 1878–1891. [Google Scholar] [CrossRef]
- Peyret, M.; Djamour, Y.; Rizza, M.; Ritz, J.-F.; Hurtrez, J.-E.; Goudarzi, M.; Nankali, H.; Chery, J.; Le Dortz, K.; Uri, F. Monitoring of the large slow Kahrod landslide in Alborz mountain range (Iran) by GPS and SAR interferometry. Eng. Geol. 2008, 100, 131–141. [Google Scholar] [CrossRef]
- Hessami, K.; Koyi, H.A.; Talbot, C.J.; Tabasi, H.; Shabanian, E. Progressive unconformities within an evolving foreland fold–thrust belt, Zagros Mountains. J. Geol. Soc. 2001, 158, 969–981. [Google Scholar] [CrossRef]
- Walpersdorf, A.; Hatzfeld, D.; Nankali, H.; Tavakoli, F.; Nilforoushan, F.; Tatar, M.; Vernant, P.; Chéry, J.; Masson, F. Difference in the GPS deformation pattern of North and Central Zagros (Iran). Geophys. J. Int. 2006, 167, 1077–1088. [Google Scholar] [CrossRef]
- Oveisi, B.; Lavé, J.; Van Der Beek, P.; Carcaillet, J.; Benedetti, L.; Aubourg, C. Thick-and thin-skinned deformation rates in the central Zagros simple folded zone (Iran) indicated by displacement of geomorphic surfaces. Geophys. J. Int. 2009, 176, 627–654. [Google Scholar] [CrossRef]
- Colman-Sadd, S. Fold development in Zagros simply folded belt, Southwest Iran. AAPG Bull. 1978, 62, 984–1003. [Google Scholar] [CrossRef]
- Fakhari. Geological Map of Bandar Abbas. 1: 250,000; Exp-Directorate, NIOC: Tehran, Iran, 1996. [Google Scholar]
- Jamalreyhani, M.; Pousse-Beltran, L.; Büyükakpınar, P.; Cesca, S.; Nissen, E.; Ghods, A.; López-Comino, J.Á.; Rezapour, M.; Najafi, M. The 2019–2020 Khalili (Iran) Earthquake Sequence—Anthropogenic Seismicity in the Zagros Simply Folded Belt? J. Geophys. Res. Solid Earth 2021, 126, e2021JB022797. [Google Scholar] [CrossRef] [PubMed]
- Kent, P. The emergent Hormuz salt plugs of southern Iran. J. Pet. Geol. 1979, 2, 117–144. [Google Scholar] [CrossRef]
- Edgell, H. Salt tectonism in the Persian Gulf basin. Geol. Soc. Lond. Spec. Publ. 1996, 100, 129–151. [Google Scholar] [CrossRef]
- Letouzey, J.; Sherkati, S. Salt Movement, Tectonic Events, and Structural Style in the Central Zagros Fold and Thrust Belt (Iran); SEPM Society for Sedimentary Geology: Broken Arrow, OK, USA, 2004. [Google Scholar] [CrossRef]
- Jahani, S.; Callot, J.P.; Letouzey, J.; Frizon de Lamotte, D. The eastern termination of the Zagros Fold-and-Thrust Belt, Iran: Structures, evolution, and relationships between salt plugs, folding, and faulting. Tectonics 2009, 28. [Google Scholar] [CrossRef]
- Eslami, A.P.S.; Mahshadnia, L. Preliminary Report of Dual Earthquakes on 14 November 2021, Fin, Bandar Abbas, Hormozgan Province with Local Magnitudes of 6.3 and 6.4; Technical report; International Institute of Earthquake Engineering and Seismology, Ministry of Science, Research and Technology: Tehran, Iran, 2021. [Google Scholar]
- Tavani, S.; Camanni, G.; Nappo, M.; Snidero, M.; Ascione, A.; Valente, E.; Gharabeigli, G.; Morsalnejad, D.; Mazzoli, S. The Mountain Front Flexure in the Lurestan region of the Zagros belt: Crustal architecture and role of structural inheritances. J. Struct. Geol. 2020, 135, 104022. [Google Scholar] [CrossRef]
- Sandwell, D.; Mellors, R.; Tong, X.; Wei, M.; Wessel, P. GMTSAR: An InSAR Processing System Based on Generic Mapping Tools. 2011. Available online: https://escholarship.org/uc/item/8zq2c02m (accessed on 2 May 2024).
- Fuhrmann, T.; Garthwaite, M.C. Resolving three-dimensional surface motion with InSAR: Constraints from multi-geometry data fusion. Remote Sens. 2019, 11, 241. [Google Scholar] [CrossRef]
- Milczarek, W. Application of a small baseline subset time series method with atmospheric correction in monitoring results of mining activity on ground surface and in detecting induced seismic events. Remote Sens. 2019, 11, 1008. [Google Scholar] [CrossRef]
- Heimann, S.; Isken, M.; Kühn, D.; Sudhaus, H.; Steinberg, A.; Daout, S.; Cesca, S.; Bathke, H.; Dahm, T. Grond: A Probabilistic Earthquake Source Inversion Framework; GFZ Data Services: Potsdam, Germany, 2018. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.; Penna, N.T.; Crippa, P. Generic atmospheric correction model for interferometric synthetic aperture radar observations. J. Geophys. Res. Solid Earth 2018, 123, 9202–9222. [Google Scholar] [CrossRef]
- Saleh, R. Reprocessing of Aeromagnetic Map of Iran; Institute for Advanced Studies in Basic Sciences: Zanjan, Iran, 2006. [Google Scholar]
- Blakely, R.J.; Simpson, R.W. Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics 1986, 51, 1494–1498. [Google Scholar] [CrossRef]
- Zhang, H.; Marangoni, Y.R.; Hu, X.; Zuo, R. NTRTP: A new reduction to the pole method at low latitudes via a nonlinear thresholding. J. Appl. Geophys. 2014, 111, 220–227. [Google Scholar] [CrossRef]
- Cordell, L.; Grauch, V. Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico. In The Utility of Regional Gravity and Magnetic Anomaly Maps; Society of Exploration Geophysicists: Houston, TX, USA, 1985; pp. 181–197. [Google Scholar] [CrossRef]
- Arkani-Hamed, J. Differential reduction-to-the-pole of regional magnetic anomalies. Geophysics 1988, 53, 1592–1600. [Google Scholar] [CrossRef]
- Telford, W.M.; Geldart, L.P.; Sheriff, R.E. Applied Geophysics; Cambridge university press: Cambridge, UK, 1990. [Google Scholar]
- Jacobsen, B.H. A case for upward continuation as a standard separation filter for potential-field maps. Geophysics 1987, 52, 1138–1148. [Google Scholar] [CrossRef]
- Phillips, J.D. Designing matched bandpass and azimuthal filters for the separation of potential-field anomalies by source region and source type. ASEG Ext. Abstr. 2001, 2001, 1–4. [Google Scholar] [CrossRef]
- Sheriff, S.D. Matched filter separation of magnetic anomalies caused by scattered surface debris at archaeological sites. Near Surf. Geophys. 2010, 8, 145–150. [Google Scholar] [CrossRef]
- Chen, G.; Cheng, Q.; Zhang, H. Matched filtering method for separating magnetic anomaly using fractal model. Comput. Geosci. 2016, 90, 179–188. [Google Scholar] [CrossRef]
- Ma, C.; Shan, X.-J. Decomposing InSAR LOS displacement into co-seismic dislocation with a linear interpolation model: A case study of the Kunlun Mountain Ms = 8.1 earthquake. Acta Seismol. Sin. 2006, 19, 100–107. [Google Scholar] [CrossRef]
- Molinaro, M.; Leturmy, P.; Guezou, J.C.; Frizon de Lamotte, D.; Eshraghi, S. The structure and kinematics of the southeastern Zagros fold-thrust belt, Iran: From thin-skinned to thick-skinned tectonics. Tectonics 2005, 24. [Google Scholar] [CrossRef]
- Nissen, E.; Ghorashi, M.; Jackson, J.; Parsons, B.; Talebian, M. The 2005 Qeshm Island earthquake (Iran)—A link between buried reverse faulting and surface folding in the Zagros Simply Folded Belt? Geophys. J. Int. 2007, 171, 326–338. [Google Scholar] [CrossRef]
No. | Satellite | Flight Direction | Path | Master’s Date | Slave’s Date |
---|---|---|---|---|---|
1 | Sentinel-1A | Ascending | 57 | 13 November 2021 | 25 November 2021 |
2 | Sentinel-1A | Descending | 166 | 9 November 2021 | 21 November 2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Namdarsehat, P.; Milczarek, W.; Bugajska-Jędraszek, N.; Motavalli-Anbaran, S.-H.; Khaledzadeh, M. Uncovering a Seismogenic Fault in Southern Iran through Co-Seismic Deformation of the Mw 6.1 Doublet Earthquake of 14 November 2021. Remote Sens. 2024, 16, 2318. https://doi.org/10.3390/rs16132318
Namdarsehat P, Milczarek W, Bugajska-Jędraszek N, Motavalli-Anbaran S-H, Khaledzadeh M. Uncovering a Seismogenic Fault in Southern Iran through Co-Seismic Deformation of the Mw 6.1 Doublet Earthquake of 14 November 2021. Remote Sensing. 2024; 16(13):2318. https://doi.org/10.3390/rs16132318
Chicago/Turabian StyleNamdarsehat, Peyman, Wojciech Milczarek, Natalia Bugajska-Jędraszek, Seyed-Hani Motavalli-Anbaran, and Matin Khaledzadeh. 2024. "Uncovering a Seismogenic Fault in Southern Iran through Co-Seismic Deformation of the Mw 6.1 Doublet Earthquake of 14 November 2021" Remote Sensing 16, no. 13: 2318. https://doi.org/10.3390/rs16132318
APA StyleNamdarsehat, P., Milczarek, W., Bugajska-Jędraszek, N., Motavalli-Anbaran, S. -H., & Khaledzadeh, M. (2024). Uncovering a Seismogenic Fault in Southern Iran through Co-Seismic Deformation of the Mw 6.1 Doublet Earthquake of 14 November 2021. Remote Sensing, 16(13), 2318. https://doi.org/10.3390/rs16132318