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Abstract: Landslides are common hazardous geological events, and accurate and efficient landslide
identification methods are important for hazard assessment and post-disaster response to geological
disasters. Deep learning (DL) methods based on remote sensing data are currently widely used in
landslide identification tasks. The recently proposed segment anything model (SAM) has shown
strong generalization capabilities in zero-shot semantic segmentation. Nevertheless, SAM heavily
relies on user-provided prompts, and performs poorly in identifying landslides on remote sensing
images. In this study, we propose a SAM-based cross-feature fusion network (SAM-CFFNet) for the
landslide identification task. The model utilizes SAM’s image encoder to extract multi-level features
and our proposed cross-feature fusion decoder (CFFD) to generate high-precision segmentation
results. The CFFD enhances landslide information through fine-tuning and cross-fusing multi-level
features while leveraging a shallow feature extractor (SFE) to supplement texture details and improve
recognition performance. SAM-CFFNet achieves high-precision landslide identification without the
need for prompts while retaining SAM’s robust feature extraction capabilities. Experimental results
on three open-source landslide datasets show that SAM-CFFNet outperformed other comparative
models in terms of landslide identification accuracy and achieved an intersection over union (IoU)
of 77.13%, 55.26%, and 73.87% on the three datasets, respectively. Our ablation studies confirm the
effectiveness of each module designed in our model. Moreover, we validated the justification for our
CFFD design through comparative analysis with diverse decoders. SAM-CFFNet achieves precise
landslide identification using remote sensing images, demonstrating the potential application of the
SAM-based model in geohazard analysis.

Keywords: landslide identification; SAM; deep learning; remote sensing; semantic segmentation;
cross-feature fusion

1. Introduction

Landslides are a serious geologic hazard on a global scale and have caused huge losses
worldwide in the last few years [1]. They occur when heavy rainfall, earthquakes, and
human activities trigger the movement of soil and rock on slopes [2–4]. The frequency
and severity of landslide occurrences are on the rise, attributed to factors such as global
warming, population growth, resource extraction, and environmental degradation [5,6].
Therefore, conducting landslide hazard studies and accurately identifying landslides are
essential for assessing the impact of disasters, guiding post-disaster reconstruction, and
preventing secondary disasters [7,8]. With the development of remote sensing and satellite
technology, the application of remote sensing in large-scale geohazard investigations has
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become more and more popular, and great progress has been made in the identification of
landslides using remote sensing [9–12].

Currently, there are four main approaches for landslide recognition methods based
on remote sensing images: visual interpretation [13,14], pixel-based methods [15], object-
based methods [16], and methods based on deep learning (DL) techniques [17–19]. Visual
interpretation refers to the manual annotation and classification of landslide areas in
images by professionals by directly observing and analyzing the features, morphology,
color, texture, and other information of remote sensing images [20,21]. This method has
the highest accuracy. However, it is time-consuming and labor-intensive. Pixel-based
methods reduce the degree of human intervention through supervised training and improve
computational efficiency [22], but it is difficult to obtain clear landslide boundaries and
they cannot fully utilize the rich structural and textural information in the images [23]. The
object-based method utilizes a variety of discriminative features, such as spectral features,
texture features, and morphological features of landslides, for landslide detection [24–26].
This method is capable of categorizing objects with similar features into the same class,
reducing salt-and-pepper noise. However, the recognition accuracy of this method largely
depends on the initial segmentation precision, and it lacks strong capability for depicting
details, resulting in a significant post-processing workload.

With the great progress of DL in the field of computer vision, DL-based methods have
been widely applied to landslide recognition tasks and have become the main trend in this
field [27,28]. Currently, research on DL models for landslide recognition mainly focuses
on three directions: image classification, object detection, and semantic segmentation.
Convolutional neural networks (CNNs) are commonly used in this research [29–31], with
CNNs being characterized by a relatively complex structure, numerous training parameters,
and high demands on training data. Ji et al. [32] employed an attention-boosted CNN
model for the recognition of newly occurred landslides in Bijie, China, based on image
classification. Ghorbanzadeh et al. [33] compared the performance of CNNs with neural
networks, support vector machines, and random forests in the semantic segmentation of
landslides and discovered that CNNs perform better when they have enough samples.
In addition, other CNN-based models such as PSPNet [34], AlexNet [35], ResNet [36],
U-Net [37], and DenseNet [38] have also been utilized for the semantic segmentation of
landslides. Furthermore, target detection models represented by faster R-CNN [39] and the
YOLO series [40–42] have also been applied to landslide recognition tasks.

With the introduction of the visual transformer (ViT) and its notable successes in
computer vision, transformer-based models have been widely used in remote sensing
identification tasks [43]. Chen et al. [44] developed sparse token transformers (STTs) for
extracting buildings from remote sensing images. Utilizing a novel “sparse token sampler”
module to represent buildings as sparse feature vectors, the STT achieves excellent perfor-
mance on benchmark datasets while reducing computational complexity. Wang et al. [45]
introduced a novel ViT architecture named BuildFormer that enables accurate building
extraction from remote sensing images. It overcomes the limitations of traditional CNN
methods in modeling global dependencies and preserving spatial details, achieving state-
of-the-art performance. In the landslide identification task, Huang et al. [46] improved the
Swin transformer by incorporating morphological edge analysis to address issues with land-
slide boundary discretization and irregularity, achieving more accurate landslide boundary
extraction in the LuDing area of China. Lu et al. [47] proposed ShapeFormer, a shape-
enhanced ViT model designed to effectively handle landslides of various sizes and shapes
in remote sensing imagery, enhancing the accuracy of landslide detection. Fu et al. [48]
significantly improved the accuracy and recognition capabilities of both YOLOv5 and faster
R-CNN by replacing their backbones with Swin transformers. These models mentioned
above, while performing well in specific tasks, often require large amounts of data for
training. Moreover, their limited generalization, migration, and self-adaptation capabilities
result in constraints when adapting to downstream tasks.
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Recently, remarkable progress has been made in fundamental models such as GPT-4 [49],
Flamingo [50], and SAM [51], which have made important contributions to the development of
human society. SAM, a vision foundation model pre-trained on the SA-1B dataset, showcases
substantial generalization capabilities across various image and object segmentation tasks
without additional training. This creates new ways for intelligent interpretation of natural
images [52–54]. SA-1B is the most extensive and diverse image segmentation dataset available.
It contains over 11 million high-quality images taken from around the world, covering a
wide range of scenes, objects, and environments, and consists of over 1 billion high-quality
segmentation masks collected using Meta’s data engine [51]. SAM comprises an image
encoder, prompt encoder, and mask decoder. The image encoder is a ViT model pre-trained
with an MAE [55] that takes an image as input and generates its embedding. The prompt
encoder takes prompt information as input and outputs prompt embeddings. The mask
decoder maps the image embedding and prompt embeddings to a mask. Since SAM is an
interactive model, it can take point, box, or mask prompts when segmenting images. The
segmentation results vary depending on the type of prompt used. Currently, some researchers
have started to apply SAM to remote sensing data. Chen et al. [56] designed a prompt learning
method, RSPrompter, for remote sensing images based on the SAM base model, which
generates prompt inputs for SAM to enable it to automatically acquire instance-segmentation-
level masks. Sultan et al. [57] introduced GeoSAM by introducing an innovative architecture
for fine-tuning SAM using sparse and dense cues, leading to significant enhancements in
geographic image segmentation. Zhang et al. [58] proposed RSAM-Seg, introducing adapter-
scale in the multi-head attention block of the encoder in SAM, and inserting adapter-feature
between ViT blocks. This design aims to generate prompts informed by images and enhance
the model’s performance in the remote sensing image segmentation tasks.

Figure 1 shows how well SAM recognizes different images with different types of
prompts. Without prompt, SAM’s performance on remote sensing images is notably
weaker compared to other natural images. When prompts are provided, SAM excels at
recognizing images with distinct boundaries and minimal background interference, such as
airplane and factory images, but struggles with landslide images. Remote sensing images
often require specialized spectral and spatial analyses due to their unique acquisition and
processing techniques, and there are significant differences between them and natural
images, especially for remote sensing landslide images, where common challenges include
boundary blurring, complex background perturbations, and diverse morphological features.
Although the SA-1B dataset includes images from various sources, such as natural scenes,
urban environments, medical images, satellite images, etc., there is still room for further
optimization of the SAM algorithm to improve the accuracy and generalization of target
recognition in remote sensing imagery, which is in line with what other scholars have
recognized [56–58].

In this paper, we propose the SAM-based cross-feature fusion network (SAM-CFFNet).
This network is designed to create a novel semantic segmentation model for the high-
precision recognition of landslides. We utilize SAM’s image encoder to extract multi-
level features from remote sensing optical images and design the cross-feature fusion
decoder (CFFD) tailored to the characteristics of SAM’s image encoder and the requirements
of landslide recognition tasks. In the CFFD module, we propose a novel cross-fusion
mechanism and demonstrate its effectiveness in subsequent experiments. Furthermore, the
CFFD ensures high segmentation accuracy by incorporating a shallow feature extractor
(SFE). We comprehensively evaluate the performance of SAM-CFFNet on three open-source
landslide datasets, and the experimental results show that our model outperforms the other
comparative models.
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prompt. I–V represent images used for visual comparison, where I is a non-remote-sensing natural 
image, II and III are non-landslide remote sensing images, and IV and V are landslide remote sens-
ing images. 
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parameters without the intervention of human prompts, surpassing other traditional 

Figure 1. Segmentation effect of the SAM model on different images, where the green pentagram is
the prompt point, the yellow box is the prompt box, and the red border is the SAM recognition result;
(a) no prompt, (b) point-based prompt, (c) box-based prompt, (d) point and a box-based prompt.
I–V represent images used for visual comparison, where I is a non-remote-sensing natural image,
II and III are non-landslide remote sensing images, and IV and V are landslide remote sensing images.

The innovation of our approach is to leverage the powerful feature extraction capabil-
ity of SAM to design decoders that are more adapted to the downstream segmentation task,
which can achieve high-precision recognition of landslides with smaller trainable param-
eters without the intervention of human prompts, surpassing other traditional semantic
segmentation methods. In summary, the main contributions of this study to the remote
sensing landslide identification task are as follows:

(1) We propose a new semantic segmentation model, SAM-CFFNet, which demon-
strates excellent performance on three landslide datasets, improving the accuracy of
landslide recognition.

(2) Our proposed CFFD fully considers the characteristics of landslide images, can be
well adapted to SAM’s image encoder, and shows excellent performance in landslide
recognition tasks.

(3) The excellent performance of SAM-CFFNet in the landslide identification task high-
lights the potential application of SAM in this field and provides new ideas and
methods for the further application of the SAM base model in the remote sensing field.
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2. Materials
2.1. Introduction of Datasets

For this experiment, three open-source remote sensing landslide datasets were se-
lected to evaluate the performance of the research model. These datasets include the Bijie
Landslide (BJL) dataset [32], the Landslide4Sense (L4S) dataset [59], and the Global Very-
High-Resolution Landslide Mapping (GVLM) dataset [60]. Detailed descriptions of these
three datasets are provided below.

2.1.1. BJL Dataset

The study area of the BJL dataset is situated in Bijie, Guizhou, China, at altitudes
ranging from 457 to 2900 m. This region is considered a high-risk area for landslides in
China. The BJL dataset utilizes remote sensing imagery captured by the TripleSat satellite
from May to August 2018 at a resolution of 0.8 m. It comprises 770 landslide images and
2003 other images. The dataset contains satellite optical images and labeled files.

2.1.2. L4S Dataset

The L4S dataset is derived from the Landslide4Sense competition, organized by the
Institute of Advanced Research in Artificial Intelligence (IARAI), with data from different
landslide-affected areas around the world. It includes Sentinel-2 multi-band data, DEM, and
ALOS PAL-SAR slope data adjusted to 10 m resolution with pixel-level masks. The dataset
is split into training, validation, and test sets. The training set comprises 3799 images sized
at 128 × 128 pixels. In this study, only a training set of the L4S dataset is used as study data.

2.1.3. GVLM Dataset

The GVLM dataset is the first large-scale and open-source very-high-resolution land-
slide mapping dataset. This dataset comprises 17 sets of landslide sub-datasets from
different geographical locations, each including a pair of dual-phase images with a spatial
resolution of 0.59 m and the corresponding landslide mask data. With a total coverage area
of 163.77 square kilometers, it spans extensive landslide areas across Asia, Africa, North
America, South America, Europe, and Oceania.

2.2. Dataset Preparation

To facilitate model training and experimental analysis, we standardized the image size
to 1024 × 1024 across all three datasets. Specifically, for the BJL dataset, where individual
image sizes vary significantly from 1239 × 1197 to 61 × 61 and have differing aspect ratios,
we adjusted them to 1024 × 1024 using equal scaling and zero padding. The image size in
the L4S dataset was 128 × 128, so the images were scaled directly to 1024 × 1024 size, and
negative sample data that did not contain landslide areas were removed. Because of the
large size of individual images in the GVLM dataset, each set of image data and landslide
mask is first cropped into multiple small images according to certain rules and then the
small images are resized to a size of 1024 × 1024. The data volume of the three datasets
processed above is recorded in Table 1, and their data visualization is shown in Figure 2.

Table 1. Datasets partition.

BJL Dataset L4S Dataset GVLM Dataset

Training 583 1663 1977
Validation/Test 187 568 710
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3. Methods
3.1. Framework

The SAM-CFFNet proposed in this study is an end-to-end network designed to extract
landslide features from remote sensing images and output binary images representing
landslide identification results. The structure of SAM-CFFNet is shown in Figure 3, which
mainly consists of the image encoder ViT (IEViT) and the CFFD.

The IEViT encoder is tasked with extracting four levels of hierarchical deep features
from input images of resolution 1024 × 1024. The CFFD, an adept decoder, is dedicated
to integrating the multi-scale semantic features harvested by the IEViT to achieve refined
recognition results. It employs the cross-feature fusion module (CFFM) to meticulously
fine-tune and cross-fuse the extracted features, thereby amplifying information pertinent to
landslide characteristics. These fused features are dimensionally reduced via convolutional
layers before entering the Bottle ASPP module, designed to capture background context
across disparate receptive fields. The outputs of this module are then upsampled to match
the resolution of features processed by the secondary branch, the SFE. The branch, focused
on capturing and refining texture details from the input image, leverages an attention
module to selectively weigh the shallow features in relevance to the main pathway’s deeper
features. Finally, the deep features processed and the textured features from the SFE are
concatenated. This concatenated feature map is then further upsampled to the original
input resolution and passed through a final convolutional layer to produce the prediction
output. The specific structure of each module is described in detail next.
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3.2. Image Encoder ViT

Our IEViT is built upon SAM’s image encoder, specifically choosing the ViT-L version
for its balanced performance and substantial parameter count while modifying it by re-
moving the neck module positioned at the end of the model. The IEViT loaded pre-trained
model weights that are publicly available on the official SAM website, maintaining the
freeze on the entire IEViT module throughout the experiment.

As illustrated in Figure 4, the IEViT consists of patch embedding, position embedding,
and transformer encoder components. Patch embedding is responsible for dividing the
input image of size 1024 × 1024 into multiple patches of size 64 × 64. This is achieved by
applying a convolutional operation with a kernel size of 16, a stride of 16, and no padding,
resulting in patches of the desired size. The position embedding creates a zero tensor
with dimensions corresponding to the patches and embedding dimensions. This tensor
is then added to the patches via element-wise addition, thereby incorporating positional
information into the patches. The output patches are then fed into the transformer encoder,
which is the core component of the ViT and is responsible for processing serialized patches
to learn global features of the image, efficiently capturing long-range dependencies and
complex patterns in the image through the self-attention mechanism and stacking of
MLPs. The transformer encoder consists of 24 transformer blocks, each of which maintains
the same input and output dimensions and can therefore be used in series. An excessive
number of transformer blocks can lead to the problem of information loss when transferring
features between transformer blocks at different levels. Moreover, as an interactive visual
base model, SAM’s depth feature maps may not contain rich semantic information for
specific categories. Therefore, to obtain more feature information related to landslides, we
output the features of the 6th, 12th, 18th, and 24th transformer blocks. This is reasonable
because, by outputting features at different levels, we can capture image representations at
various levels, which helps to enhance the model’s generalization ability, making it more
suitable for various downstream tasks.
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3.3. Cross-Feature Fusion Decoder

The structure of the CFFD is shown in Figure 3, where the focus will be on the three
modules SFE, CFFM, and Bottle ASPP.

3.3.1. Shallow Feature Extractor

In the patch embedding of the IEViT, downsampling the image by a factor of 16 causes
a loss of texture information in the model. To address this issue, we introduce the SFE.
Comprising three convolutions with a stride of 2, three EPSA modules [61], and an attention
block [62], the structure of the SFE is illustrated in Figure 3. The EPSA module, proposed by
Zhang et al. [61], extracts fine-grained multi-scale spatial information and establishes long-
distance dependencies. Meanwhile, the attention block, introduced by Oktay et al. [62],
enhances feature representation by dynamically focusing on crucial features, thereby
reducing irrelevant information.

The SFE uses three convolutions to downsample the input image by eight times and
then utilizes three EPSA modules to extract shallow information. The attention block [62]
suppresses the information in the shallow features that are unrelated to the main branch
features in the CFFD, aiming to minimize information loss and confusion resulting from
their fusion. The SFE aims to improve the model’s ability to represent details and low-level
features by supplementing shallow information and to strengthen the model’s ability to
capture image details and semantic information.

3.3.2. Cross-Feature Fusion Module

The CFFM consists of four feature adjustment modules (FAMs) and three feature
cross-fusion structures (FCFSs), as shown in Figure 5. The four FAMs are, respectively,
responsible for fine-tuning and resizing the four input features. The FCFS is responsible for
the cross-fusion of the four features.

The structure of an FAM is shown in Figure 6. The FAM consists of two multi-layer
perceptron (MLP) modules and a neck module. The MLP module contains two linear layers
and an activation function. The two linear layers perform the downscaling and upscaling
operations on the features, respectively, and this design reduces the number of parameters
in the module. Connections are made outside the MLP using a residual network structure
to reduce the loss of information from features. The channels of the features are permuted,
and then the neck module is used to reduce the dimensionality of the features.
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The structure of an FCFS is shown in Figure 5. It can be observed that, within each FCFS
module, the four input features are partitioned into four groups following the permutation
rule C3

4 , where each group consists of three distinct features. Before being fed into the EPSA
module, the features in each group undergo channel-wise summation. The CFFM consists
of three FCFS submodules; thus, the above process is repeated three times. By utilizing the
FCFS to cross-fuse features at different depths, it enables multi-level fusion of information,
effectively enhancing the performance and generalization capability of the network.

3.3.3. Bottle ASPP

Building upon the ASPP [63], we introduced the Bottle ASPP inspired by the bottle-
neck structure, as illustrated in Figure 7. In the Bottle ASPP, the number of channels in
the input features of the ASPP module is reduced using 1 × 1 convolutions and, conse-
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quently, the channel dimensions of the ASPP module output features are restored using
1 × 1 convolutions. Additionally, the output features are combined with the original input
features through a residual structure. Compared to the original ASPP, the Bottle ASPP
module reduces information loss and lowers parameter computation. For instance, when
the input feature has 256 channels, the ASPP module has 2.13 MB of parameters while the
Bottle ASPP has only 0.17 MB of parameters, resulting in a 92% reduction in parameters.
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3.4. Evaluation Criterion

In this experiment, five performance metrics—precision, recall, F1-score, mean inter-
section over union (MIoU), and intersection over union (IoU) of landslide targets are used
to compare and evaluate the proposed models, which are defined as shown below:

Precison =
TP + TN

TP + FN + FP + TN
(1)

Recall =
TP

TP + FN
(2)

F1 − score =
2 × Precison × Recall

Precison + Recall
(3)

MIoU =
TP

TP+FN+FP + TN
TN+FN+FP

2
(4)

IoU =
TP

TP + FN + FP
(5)

In the formula, TP, TN, FP, and FN represent the pixels that are correctly predicted as
landslides, the pixels that are correctly predicted as non-landslides, the non-landslide pixels
that are incorrectly predicted as landslides, and the landslide pixels that are incorrectly
predicted as non-landslides, respectively.

3.5. Experimental Settings

When evaluating the performance of SAM-CFFNet in landslide recognition, we con-
ducted comparative and ablation experiments on three landslide datasets. The detailed
experimental designs for comparative and ablation experiments will be outlined in Section 4.

Given that the landslide recognition task is essentially a binary classification problem
and the non-landslide background of the images in the experimental data occupies a large
proportion, it is prone to small target detection problems. Therefore, we use the sum
of binary cross-entropy loss and dice loss as the total loss function to train the model to
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maintain the stability and class balance of the model, and the formula of this loss function
is shown below:

L = 0.5 ×LB + 0.5 ×LD (6)

where LB denotes the binary cross-entropy loss and LD denotes the dice loss, and LB can
be denoted as

LB =
1
N ∑

i
−[yi·log(pi) + (1 − yi)× log(1 − pi)] (7)

LD can be represented as

LD = 1 − 1
N

N

∑
i=1

2∑N
i yi pi

∑N
i yi + ∑N

i pi
(8)

where N denotes the total number of samples, yi and pi denote the true label value and the
predicted result value of the ith pixel point respectively.

Binary cross-entropy loss is widely used in binary classification and semantic seg-
mentation for its stability and consistency. It quantifies prediction accuracy by comparing
predicted probabilities with actual labels, demonstrating good robustness. Dice loss is
effective in segmentation tasks and particularly handles class imbalances well. It mea-
sures overlap between predicted and truth regions, optimizing the intersection to ensure
model sensitivity to object size and shape, resulting in better boundary depiction and more
accurate segmentation.

Our experimental environment is based on the Debian operating system, developed
using Python 3.7.12, and relies on PyTorch 1.11.0 with CUDA 11.3 for the development
framework. Our computer is equipped with an Intel Xeon Gold 5218R processor (Intel
Corporation, Santa Clara, CA, USA) and an NVIDIA A100 Tensor Core GPU (Nvidia
Corporation, Santa Clara, CA, USA), along with 128 GB of operating memory. During
the experiments, all models use stochastic gradient descent (ADAMW) as the optimizer,
with an initial learning rate of 0.0002 and epochs set to 30 rounds. The batch size for the
SAM-CFFNet and other SAM-based comparative models was set to 8, while the batch size
for the other comparative models was set to 64.

4. Results
4.1. Results of Comparative Experiments

In comparative experiments, we selected four classical semantic segmentation models
for comparative analysis, namely Attention U-Net [62], DeepLabv3+ [63], HRNet [64], and
SegFormer [65]. These models have been widely used and studied in the field of landslide
recognition [66–69] and have some structural similarities with the model proposed in
this paper, so they can better demonstrate the advantages and features of SAM-based
semantic segmentation technology over traditional semantic segmentation technology. A
brief introduction to these models is as follows:

(1) Attention U-Net is designed based on the U-Net structure; it introduces attention
gates to suppress irrelevant regions, focuses on useful salient features, and improves
segmentation accuracy.

(2) DeepLabv3+ employs ASPP modules to process semantic information at differ-
ent scales and improves the spatial accuracy of the segmentation results with a
decoder module.

(3) HRNet, with its high-resolution feature and retention of global contextual information,
excels in multi-scale information processing and small target, object, and boundary
recognition, achieves excellent results in semantic segmentation tasks, and effectively
improves segmentation accuracy.

(4) SegFormer, a semantic segmentation model based on the transformer architecture,
achieves race-level performance in semantic segmentation tasks by introducing a
self-attention mechanism to establish global dependencies between pixels.
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The experimental results on the BJL dataset are recorded in Table 2, and the recognition
results of each model are shown in Figure 8. SAM-CFFNet achieves optimal performance
among all models, with an MIoU of 87.41%. In comparison, HRNet has an MIoU of
85.93% while SegFormer has an MIoU of only 76.44%. This is due to HRNet maintaining
high-resolution details through parallel high- and low-resolution sub-network connections,
while SegFormer loses shallow texture information with direct upsampling of deeper
features. Compared with HRNet, SAM-CFFNet improves IoU by 2.64%, MIoU by 1.48%,
and precision by 1.07%. In terms of visual effects, Attention U-Net and SegFormer struggle
with precise contour delineation, exhibiting noticeable noise. In Figure 8IV, many models
mistakenly classify the road as a landslide area, whereas SAM-CFFNet excels in accurately
distinguishing between the road and landslide boundary, achieving results closer to the
actual boundary. Remarkably, SAM-CFFNet excels in superior landslide recognition and
precise contour delineation, outperforming others.

Table 2. Comparison results of different models on the BJL dataset.

Model Precision (%) Recall (%) F1-Score (%) MIoU (%) IoU (%)

SegFormer 87.29 83.60 85.33 76.44 57.5
Attention U-Net 88.24 89.53 88.87 81.21 66.21

DeepLabv3+ 90.53 87.62 89.01 81.44 66.4
HRNet 92.70 91.37 92.02 85.93 74.49

SAM-CFFNet 93.77 92.18 92.96 87.41 77.13

Bold values indicate optimal scores in each metric.
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Figure 8. Visualization comparison of SAM-CFFNet with other models on the BJL dataset:
(a) SAM-CFFNet, (b) Attention U-Net, (c) DeepLabv3+, (d) HRNet, and (e) SegFormer. I–IV are
images randomly selected from the BJL dataset for visual comparison, the red orbit represents the
landslide boundary.

The L4S dataset and the GVLM dataset were used in experiments to see how well
the models could generalize and how robust they were. The results of the experiments
are shown in Tables 3 and 4, and the recognition results for each model are shown in
Figures 9 and 10. As can be seen from the two tables, SAM-CFFNet maintains its optimal
performance, surpassing other models across most metrics. Particularly noteworthy is
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SAM-CFFNet’s significant superiority in MIoU and IoU, showcasing improvements of
2.19% and 0.81% for MIoU and 3.82% and 1.99% for IoU on both datasets when compared
to Attention U-Net.

Table 3. Comparison results of different models on the L4S dataset.

Model Precision (%) Recall (%) F1-Score (%) MIoU (%) IoU (%)

SegFormer 75.48 79.35 77.26 67.7 39.48
DeepLabv3+ 83.16 80.71 81.88 72.75 48.41

HRNet 80.88 83.08 81.94 72.77 48.66
Attention U-Net 80.79 86.06 83.19 74.19 51.44

SAM-CFFNet 85.29 84.63 84.96 76.38 55.26

Bold values indicate optimal scores in each metric.

Table 4. Comparison results of different models on the GVLM dataset.

Model Precision (%) Recall (%) F1-Score (%) MIoU (%) IoU (%)

SegFormer 87.59 84.4 85.87 76.44 61.86
DeepLabv3+ 89.56 89.21 89.38 81.49 70.36

Attention U-Net 89.10 90.85 89.94 82.31 71.88
HRNet 90.30 90.21 90.21 82.84 72.51

SAM-CFFNet 90.31 91.28 90.79 83.65 73.87

Bold values indicate optimal scores in each metric.
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(a) SAM-CFFNet, (b) Attention U-Net, (c) DeepLabv3+, (d) HRNet, and (e) SegFormer. I–IV are
images randomly selected from the L4S dataset for visual comparison, the red orbit represents the
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In Figure 9, due to the low spatial resolution of the L4S dataset, Attention U-Net,
HRNet, and SegFormer have obvious noise problems on this dataset, and there are more
misclassified landslide fragments in the recognition results. SAM-CFFNet, on the other
hand, performs better and has a higher recognition rate for landslides. In Figure 10,
most of the models have good recognition results on the GVLM dataset. But, when it
comes to segmentation details, SAM-CFFNet can correctly identify the clear edges of the
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landslides while the other models have trouble differentiating between features that look
very similar to the landslides. In Figure 10IV, all models except SAM-CFFNet misidentify
roads as landslides. This indicates that SAM-CFFNet has excellent generalization ability
and robustness on different datasets and can effectively reduce the misclassification rate on
lower-resolution images.
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4.2. Results of Ablation Experiments

To gain insights into the impact of different components within SAM-CFFNet on the
overall model performance, we conducted multiple sets of ablation experiments on the
three datasets. In these experiments, we checked what happens to the model’s performance
when there are different numbers of FCFS settings, Bottle ASPP, and SFEs.

The results of the ablation experiments are documented in Table 5, where, on three
datasets, a change in the number of FCFSs leads to a significant decrease in the model
performance. For the BJL dataset, IoU decreases by 1.12% when the number of FCFSs is
four, while IoU decreases by 3.24% and 3.29% when the number of FCFSs is one and two,
respectively. For the L4S dataset and GVLM dataset, Bottle ASPP is the module that has the
greatest impact on the model performance, and when Bottle ASPP is removed, the model’s
IoU decreases by 3.08% and 3.49% for the L4S dataset and GVLM dataset, respectively, and
decreases by 1.17% for the BJL dataset.

Figure 11 shows the heat map of the SFE output features, and the features extracted
by the SFE have rich texture and edge information, which helps to improve the model’s
recognition accuracy of the landslide boundary. On the BJL dataset, the model perfor-
mance degradation after removing the SFE module is small, and the IoU is reduced by
0.36%. However, on the L4S dataset and GVLM dataset, the performance degradation is
larger, with 1.88% and 2.93% IoU reductions, respectively. This is because the landslide
background of the L4S dataset and GVLM dataset is relatively more complex compared
to the BJL dataset, and rich shallow texture information is more needed to improve the
segmentation accuracy.
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Table 5. Quantitative results of SAM-CFFNet component ablation.

Number of
FCFSs

Bottle
ASPP

SFE
Recall (%) F1-Score (%) IoU(%)

B L G B L G B L G

3
√ √

92.18 84.63 91.28 92.96 84.96 90.79 77.13 55.26 73.87
1

√ √
+0.62 −0.35 −1.15 −1.18 −0.45 −1.00 −3.24 −1.03 −2.45

2
√ √

−0.01 −0.36 −1.41 −1.19 −1.02 −0.46 −3.29 −2.30 −1.28
4

√ √
+0.13 −1.73 −0.66 −0.40 −0.58 −0.54 −1.12 −1.38 −1.34

3 ×
√

+0.06 −0.59 −2.04 −0.42 −1.38 −1.40 −1.17 −3.08 −3.49
3

√
× +1.16 −2.15 −1.12 −0.15 −0.80 −1.22 −0.36 −1.88 −2.93

The SAM-CFFNet results are bolded, with + and − indicating metric increase or decrease compared to it. B is BJL
dataset, L is L4S dataset, and G is GVLM dataset. ×denotes removing this module, while

√
denotes retention.

Remote Sens. 2024, 16, x FOR PEER REVIEW 16 of 24 
 

 

Table 5. Quantitative results of SAM-CFFNet component ablation. 

Number 
of FCFSs 

Bottle 
ASPP 

SFE Recall (%) F1-Score (%) IoU(%) 
B L G B L G B L G 

3 √ √ 92.18 84.63 91.28 92.96 84.96 90.79 77.13 55.26 73.87 
1 √ √ +0.62 −0.35 −1.15 −1.18 −0.45 −1.00 −3.24 −1.03 −2.45 
2 √ √ −0.01 −0.36 −1.41 −1.19 −1.02 −0.46 −3.29 −2.30 −1.28 
4 √ √ +0.13 −1.73 −0.66 −0.40 −0.58 −0.54 −1.12 −1.38 −1.34 
3 ✕ √ +0.06 −0.59 −2.04 −0.42 −1.38 −1.40 −1.17 −3.08 −3.49 
3 √ ✕ +1.16 −2.15 −1.12 −0.15 −0.80 −1.22 −0.36 −1.88 −2.93 

The SAM-CFFNet results are bolded, with + and − indicating metric increase or decrease compared 
to it. B is BJL dataset, L is L4S dataset, and G is GVLM dataset. ✕ denotes removing this module, 
while √ denotes retention. 

Figure 11 shows the heat map of the SFE output features, and the features extracted 
by the SFE have rich texture and edge information, which helps to improve the model’s 
recognition accuracy of the landslide boundary. On the BJL dataset, the model perfor-
mance degradation after removing the SFE module is small, and the IoU is reduced by 
0.36%. However, on the L4S dataset and GVLM dataset, the performance degradation is 
larger, with 1.88% and 2.93% IoU reductions, respectively. This is because the landslide 
background of the L4S dataset and GVLM dataset is relatively more complex compared 
to the BJL dataset, and rich shallow texture information is more needed to improve the 
segmentation accuracy.  

 
Figure 11. Heat map display of SFE extraction results. 

5. Discussion 
5.1. Comparison of Different Decoders 

Experiments in Sections 4.1 and 4.2 show that our SAM-CFFNet is effective for re-
mote sensing landslide identification, and our model achieves the best accuracy in all 
three datasets, which shows that the model has good robustness and excellent segmenta-
tion performance for landslide data of different types and regions. The superior perfor-
mance of SAM-CFFNet is not only due to the powerful IEViT but also because the CFFD 

Figure 11. Heat map display of SFE extraction results.

5. Discussion
5.1. Comparison of Different Decoders

Experiments in Sections 4.1 and 4.2 show that our SAM-CFFNet is effective for remote
sensing landslide identification, and our model achieves the best accuracy in all three
datasets, which shows that the model has good robustness and excellent segmentation
performance for landslide data of different types and regions. The superior performance
of SAM-CFFNet is not only due to the powerful IEViT but also because the CFFD plays a
crucial role. The CFFD is our specially designed decoder that accommodates the IEViT.

To showcase the adaptability of the CFFD to the IEViT, we formulated four models uti-
lizing the frozen IEViT as the encoder. Each model features a distinct decoder architecture,
including the mask decoder, PSP decoder [70], ASPP decoder [63], and LawinASPP [71],
denoted as Model I, Model II, Model III, and Model IV, respectively. The mask decoder
comes from SAM, and since there is no prompt encoder in Model I, the mask decoder is
only responsible for processing the output of the image encoder. The PSP decoder and the
ASPP decoder are both commonly used decoders for semantic segmentation. LawinASPP
is a novel semantic segmentation ViT decoder that can capture rich contextual information
at multiple scales through large window attention.

We tested the above models as well as SAM-CFFNet on three datasets, and the experi-
mental results are recorded in Tables 6–8 and the visualization results of the models are
shown in Figure 12. Our SAM-CFFNet obtains the best F1-scores, IoU, and MIoU on all
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three datasets, outperforming the other models, and the MIoU of SAM-CFFNet is generally
higher than the other models by more than 2.6%. Model I performs poorly, with the lowest
accuracy on both the BJL dataset and the L4S dataset. Model IV performs second only to
SAM-CFFNet on all three datasets. LawinASPP demonstrates superior adaptation to the
ViT encoder compared to Model I–III decoders. Figure 12 illustrates that SAM-CFFNet
achieves a higher accuracy and better alignment with real labels on the BJL dataset, outper-
forming other models. Similarly, SAM-CFFNet exhibits improved recognition results on
the L4S dataset and GVLM dataset, recognizing closer to the true labels compared to the
other models.

Table 6. Comparison results of models with different decoders on the BJL dataset.

Model Decoder Precision (%) Recall (%) F1-Score (%) MIoU (%) IoU (%)

Model I mask decoder 90.02 88.41 89.20 81.70 66.93
Model II PSP decoder 91.21 90.26 90.73 83.95 70.97
Model III ASPP decoder 94.48 88.97 91.51 85.15 72.94
Model IV LawinASPP 91.23 93.70 92.42 86.54 75.71

SAM-CFFNet CFFD 93.77 92.18 92.96 87.41 77.13

Bold values indicate optimal scores in each metric.

Table 7. Comparison results of models with different decoders on the L4S dataset.

Model Decoder Precision (%) Recall (%) F1-Score (%) MIoU (%) IoU (%)

Model I mask decoder 79.82 77.65 78.69 69.27 41.96
Model II PSP decoder 82.22 77.40 79.60 70.26 43.67
Model III ASPP decoder 83.09 80.56 81.77 72.62 48.17
Model IV LawinASPP 83.98 83.62 83.80 74.97 52.64

SAM-CFFNet CFFD 85.29 84.63 84.96 76.38 55.26

Bold values indicate optimal scores in each metric.

Table 8. Comparison results of models with different decoders on the GVLM dataset.

Model Decoder Precision (%) Recall (%) F1-Score (%) MIoU (%) IoU (%)

Model II PSP decoder 80.74 73.57 76.31 64.55 42.9
Model I mask decoder 79.78 76.97 78.25 66.57 46.99

Model III ASPP decoder 88.86 88.39 88.62 80.34 68.54
Model IV LawinASPP 89.87 88.28 89.05 80.99 69.46

SAM-CFFNet CFFD 90.31 91.28 90.79 83.65 73.87

Bold values indicate optimal scores in each metric.

The poor performance of Model I shows that it is not feasible to directly fine-tune
SAM’s mask decoder for landslide identification tasks. The performance of Model II-IV,
on the other hand, shows that excellent performance cannot be achieved by directly using
the decoders of other models without modifying and adapting them for specific tasks
and specific encoders. Our design of the CFFD fully considers the characteristics of the
IEViT as well as the requirements of the remote sensing landslide identification task, which
can better enhance the landslide features, suppress the noise, and obtain more accurate
landslide boundaries.
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5.2. Model Advantage Comparison

In our prior investigations, we extensively verified the exceptional segmentation
accuracy of SAM-CFFNet in landslide recognition tasks. However, assessing model per-
formance and practicality also requires considering computational efficiency and resource
consumption. In Table 9, we present a comparison of SAM-CFFNet with other models
on the GVLM dataset in terms of the total number of parameters, trainable parameters,
FLOPs, and accuracy metrics. It is important to highlight that the accuracy metrics are
calculated based on the GVLM dataset, and all models use images of size 1024 × 1024 for
FLOP computation.

The model structure is pivotal in enhancing the precision of recognition tasks. In
models with more than 81% of MIoU, Attention U-Net boosts the detection of essential
features through an innovative combination of skip connections and attention mechanisms.
Similarly, DeepLabv3+ refines segmentation accuracy by integrating the ASPP module with
techniques that enhance shallow features. HRNet stands out by utilizing a cross-feature
fusion strategy that maintains high-resolution feature maps. This approach optimizes the
model’s detail capture and leads to superior segmentation accuracy. Building on these
strengths, our SAM-CFFNet adopts the advanced transformer structure IEViT to extract
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features, combined with cross-feature fusion and shallow feature enhancement techniques
that not only preserve detail information in depth but also fuse different levels of features
effectively. In addition, the processing capability of multi-scale information is further
enhanced by introducing ASPP. This series of comprehensive structural designs enhances
the proposed model’s performance in complex landslide identification scenarios.

Table 9. Comparison results of various models for landslide detection on the GVLM dataset.

Model Structural Features

Complexity Performance

Total Params Trainable Params FLOPs Recall F1-Score MIoU
(MB) (MB) (G) (%) (%) (%)

Attention
U-Net Skip connection + Attention 33.26 33.26 992.89 90.85 89.94 82.31

DeepLabv3+ ASPP + Shallow feature
enhancement 5.54 5.54 98.46 89.21 89.38 81.49

HRNet Cross-feature fusion 9.19 9.19 69.49 90.21 90.21 82.84
SegFormer Transformer 7.36 7.36 48.77 84.4 85.87 76.44

Model I Transformer 297.87 3.87 1224.58 76.97 78.25 66.57
Model II Transformer + Pyramid pooling 297.92 3.93 1280.95 73.57 76.31 64.55
Model III Transformer + ASPP 297.56 3.56 1250.74 88.39 88.62 80.34

Model IV Transformer + Large window
attention 302.66 8.66 1251.07 88.28 89.05 80.99

SAM-CFFNet
Transformer + Attention + ASPP +

Shallow feature enhancement +
Cross-feature fusion

298.06 4.06 1282.04 91.28 90.79 83.65

For model training efficiency, SAM-CFFNet and Model I-IV use the IEViT as the
encoder, so the total number of parameters of the model is larger than 297 MB, and the
FLOPs are larger than 1220 G, which is much larger than the other models. In terms of
trainable parameters, SAM-CFFNet has relatively few (4.06 MB), and Model I-III perform
poorly in terms of accuracy, although the trainable parameters are lower than SAM-CFFNet.
The training loss curves of these models for 30 epochs of training on the three datasets
are recorded in Figure 13, and it can be seen that the fitting speeds of these models,
SAM-CFFNet and Model I–IV, are generally faster than the other types of models, and
SAM-CFFNet is able to complete the fitting within 10 epochs in all three datasets with
smooth curves.
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In summary, SAM-CFFNet demonstrates notable structural and performance benefits
for landslide identification tasks. The model’s integration of the advanced IEViT, cross-
feature fusion, and ASPP modules allows for efficient feature integration across levels,
deep retention of detailed information, and strong multi-scale information processing
capabilities. Moreover, SAM-CFFNet offers clear advantages in training efficiency, with a
large parameter count yet a relatively low number of trainable parameters, coupled with
high stability. However, its substantial parameter and FLOP count does increase training
costs to some extent, necessitating a GPU with ample memory for effective training.

5.3. Limitations

This study explores the performance of SAM-CFFNet in landslide detection tasks from
various perspectives, yet there are still some shortcomings and areas for improvement.

(1) Although SAM-CFFNet excelled in landslide detection, it sacrificed SAM’s interactive
segmentation and generalization capabilities in other image domains. In future work,
we will explore how the model can be adapted to specific downstream tasks while
still retaining the interactive segmentation features and generalization capabilities
of SAM.

(2) SAM-CFFNet currently exclusively relies on optical remote sensing images and does
not incorporate geospatial data such as DEM, geological data, and rainfall data. In the
future, we aim to integrate these multi-source data to explore the potential of the SAM
model in multi-source data fusion and cross-disciplinary applications to comprehen-
sively address the challenges and complexities of geological disaster identification.

(3) While SAM-CFFNet demonstrates excellent performance, its large total number of
parameters leads to high training costs and makes it challenging to deploy on small-
scale devices. Therefore, future research will focus on further optimizing the model
structure to achieve model lightweighting, enhancing its versatility and flexibility.

6. Conclusions

In this study, SAM-CFFNet is proposed as a novel and effective application of SAM.
The objective is to improve the landslide recognition accuracy using SAM and to address its
performance degradation and dependence on prompt information in the task of landslide
recognition from remote sensing images. Notably, our specially designed CFFD effectively
improves the model’s adaptability for downstream tasks. During the training process,
the IEViT reads the pre-training weights and keeps them frozen, and this strategy fully
utilizes the powerful feature extraction capability of SAM. This effectively improves the
convergence speed and training efficiency of the model and enhances its generalization
ability and adaptability on the landslide identification task.

We train and validate SAM-CFFNet against several other reference models on three
landslide datasets and evaluate the model’s effectiveness in recognizing landslides using
precision, recall, F1-score, MIoU, and IoU. Our results show that SAM-CFFNet performs
optimally in terms of accuracy on all three landslide datasets, significantly outperforming
the other compared models. SAM-CFFNet demonstrates excellent generalization ability
and robustness on different datasets. Furthermore, we substantiated the rationale behind
our designed CFFD through comparative analysis with various decoders. Additionally, we
deliberated on the model’s training efficiency and outlined forthcoming research directions.

The results of this study highlight the excellent performance of SAM-CFFNet in land-
slide identification tasks and the importance of this model in assessing the impact of
landslides after a disaster as well as in guiding post-disaster reconstruction efforts. The
SAM-based model represented by SAM-CFFNet shows great potential in the field of land-
slide detection and monitoring, and the insights gained from this study will help to promote
the further development of SAM-based models in the field of geohazard monitoring.
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