Life Cycle Mining Deformation Monitoring and Analysis Using Sentinel-1 and Radarsat-2 InSAR Time Series
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. InSAR Data Processing
2.3. Deformation Modeling Based on Rectangular Model
3. Results
3.1. Deformation in Longmen Area
3.2. Deformation in Xiadian Area
3.3. Deformation in Liyuan Area
3.4. Cross-Validation
3.5. Modeling Parameters
4. Discussion
4.1. The Possible Mechanisms for Deformation Transition in Mine Areas
4.2. The Deformation Mechanism in Continuously Exploited Mines
4.3. The Deformation Mechanism in the Post-Closure Period
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Q.; Wang, J.; Yang, K.; Di, S.; Dong, Z. Research on the model of accurate exploitation and utilization of underground space resources in closed/abandoned mines. Coal Geol. Explor. 2021, 49, 71–78. [Google Scholar]
- Vervoort, A. Surface movement above an underground coal longwall mine after closure. Nat. Hazards Earth Syst. Sci. 2016, 16, 2107–2121. [Google Scholar] [CrossRef]
- Chen, B.; Yu, H.; Zhang, X.; Li, Z.; Kang, J.; Yu, Y.; Yang, J.; Qin, L. Time-Varying Surface Deformation Retrieval and Prediction in Closed Mines through Integration of SBAS InSAR Measurements and LSTM Algorithm. Remote Sens. 2022, 14, 788. [Google Scholar] [CrossRef]
- Zheng, M.; Zhang, H.; Deng, K.; Du, S.; Wang, L. Analysis of Pre- and Post-Mine Closure Surface Deformations in Western Xuzhou Coalfield From 2006 to 2018. IEEE Access 2019, 7, 124158–124172. [Google Scholar] [CrossRef]
- Ma, F.; Sui, L.; Lian, W. Prediction of Mine Subsidence Based on InSAR Technology and the LSTM Algorithm: A Case Study of the Shigouyi Coalfield, Ningxia (China). Remote Sens. 2023, 15, 2755. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, Y.; Zhou, L.; Hou, H.; Zhang, Y.; Liang, J.; Zhang, S. Ecological restoration in mining areas in the context of the Belt and Road initiative: Capability and challenges. Environ. Impact Assess. Rev. 2022, 95, 106767. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31, L23611. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Li, S.; Xu, W.; Li, Z. Review of the SBAS InSAR Time-series algorithms, applications, and challenges. Geod. Geodyn. 2022, 13, 114–126. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, S.; Tao, Q.; Liu, G.; Wang, L.; Wang, F. Accuracy Verification and Correction of D-InSAR and SBAS-InSAR in Monitoring Mining Surface Subsidence. Remote Sens. 2021, 13, 4365. [Google Scholar] [CrossRef]
- Perski, Z.; Hanssen, R.; Wojcik, A.; Wojciechowski, T. InSAR analyses of terrain deformation near the Wieliczka Salt Mine, Poland. Eng. Geol. 2009, 106, 58–67. [Google Scholar] [CrossRef]
- Chen, Y.; Dong, X.; Qi, Y.; Huang, P.; Sun, W.; Xu, W.; Tan, W.; Li, X.; Liu, X. Integration of DInSAR-PS-Stacking and SBAS-PS-InSAR Methods to Monitor Mining-Related Surface Subsidence. Remote Sens. 2023, 15, 2691. [Google Scholar] [CrossRef]
- Kim, J.; Lin, S.-Y.; Singh, R.P.; Lan, C.-W.; Yun, H.-W. Underground burning of Jharia coal mine (India) and associated surface deformation using InSAR data. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102524. [Google Scholar] [CrossRef]
- Dai, S.; Zhang, Z.; Li, Z.; Liu, X.; Chen, Q. Prediction of Mining-Induced 3-D Deformation by Integrating Single-Orbit SBAS-InSAR, GNSS, and Log-Logistic Model (LL-SIG). IEEE Trans. Geosci. Remote Sens. 2023, 61, 5222213. [Google Scholar] [CrossRef]
- Li, H.; Zheng, J.; Xue, L.; Zhao, X.; Lei, X.; Gong, X. Inversion of Subsidence Parameters and Prediction of Surface Dynamics under Insufficient Mining. J. Min. Sci. 2023, 59, 693–704. [Google Scholar] [CrossRef]
- Dong, L.; Wang, C.; Tang, Y.; Tang, F.; Zhang, H.; Wang, J.; Duan, W. Time Series InSAR Three-Dimensional Displacement Inversion Model of Coal Mining Areas Based on Symmetrical Features of Mining Subsidence. Remote Sens. 2021, 13, 2143. [Google Scholar] [CrossRef]
- Long, S.; Liu, M.; Xiong, C.; Li, T.; Wu, W.; Ding, H.; Zhang, L.; Zhu, C.; Lu, S. Research on Prediction of Surface Deformation in Mining Areas Based on TPE-Optimized Integrated Models and Multi-Temporal InSAR. Remote Sens. 2023, 15, 5546. [Google Scholar] [CrossRef]
- Przyłucka, M.; Kowalski, Z.; Perski, Z. Twenty years of coal mining-induced subsidence in the Upper Silesia in Poland identified using InSAR. Int. J. Coal Sci. Technol. 2022, 9, 86. [Google Scholar] [CrossRef]
- Wang, Z.H.; Wu, S.X.; Li, J.L.; Sun, W.C.; Wang, Z.F.; Liu, P.J. Surface subsidence and its reclamation of a coal mine locating at the high groundwater table, China. Int. J. Environ. Sci. Technol. 2023, 20, 13635–13654. [Google Scholar] [CrossRef]
- Behera, A.; Singh Rawat, K. A brief review paper on mining subsidence and its geo-environmental impact. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
- Fadhillah, M.F.; Hakim, W.L.; Lee, S.-K.; Lee, K.-J.; Lee, S.-J.; Chae, S.-H.; Lee, H.; Lee, C.-W. Multitemporal analysis of land subsidence induced by open-pit mining activity using improved combined scatterer interferometry with deep learning algorithm optimization. Sci. Rep. 2024, 14, 6311. [Google Scholar] [CrossRef] [PubMed]
- Guéguen, Y.; Deffontaines, B.; Fruneau, B.; Al Heib, M.; De Michele, M.; Raucoules, D.; Guise, Y.; Planchenault, J. Monitoring residual mining subsidence of Nord/Pas-de-Calais coal basin from differential and Persistent Scatterer Interferometry (Northern France). J. Appl. Geophys. 2009, 69, 24–34. [Google Scholar] [CrossRef]
- Jung, H.C.; Kim, S.-W.; Jung, H.-S.; Min, K.D.; Won, J.-S. Satellite observation of coal mining subsidence by persistent scatterer analysis. Eng. Geol. 2007, 92, 1–13. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, X.; Zhang, Z.; Niu, Y.; Zhao, Z. Mine Subsidence Monitoring Integrating DS-InSAR with UAV Photogrammetry Products: Case Studies on Hebei and Inner Mongolia. Remote Sens. 2023, 15, 4998. [Google Scholar] [CrossRef]
- Urrego, L.E.B.; Verstrynge, E.; Balen, K.V.; Wuyts, V.; Declercq, P.-Y. Settlement-induced damage monitoring of a historical building located in a coal mining area using PS-InSAR. In Proceedings of the 6th Workshop on Civil Structural Health Monitoring, Belfast, Ireland, 26–27 May 2016. [Google Scholar]
- Gee, D.; Bateson, L.; Sowter, A.; Grebby, S.; Novellino, A.; Cigna, F.; Marsh, S.; Banton, C.; Wyatt, L. Ground Motion in Areas of Abandoned Mining: Application of the Intermittent SBAS (ISBAS) to the Northumberland and Durham Coalfield, UK. Geosciences 2017, 7, 85. [Google Scholar] [CrossRef]
- Blachowski, J.; Jiránková, E.; Lazecky, M.; Kadlečík, P.; Milczarek, W. Application of satellite radar interferometry (PSINSAR) in analysis of secondary surface deformations in mining areas case studies from Czech Republic and Poland. Acta Geodyn. Et Geomater. 2018, 15, 173–185. [Google Scholar] [CrossRef]
- He, L.; Cai, J.; Cao, W.; Mao, Y.; Liu, H.; Guan, K.; Zhou, Y.; Wang, Y.; Kang, J.; Wang, X.; et al. Comparative Analysis of Theoretical, Observational, and Modeled Deformation of Ground Subsidence: The Case of the Alhada Pb-Zn Mine. Minerals 2022, 12, 977. [Google Scholar] [CrossRef]
- Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Lu, Y.; Luo, Y. Using Linear and Nonlinear Inversion Algorithm Combined with Simple Dislocation Model Inversion of Coal Mine Subsidence Mechanism. Int. J. Adv. Inf. Sci. Serv. Sci. 2013, 5, 379–387. [Google Scholar]
- Dai, Y.; Ng, A.H.M.; Wang, H.; Li, L.; Ge, L.; Tao, T. Modeling-Assisted InSAR Phase-Unwrapping Method for Mapping Mine Subsidence. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1059–1063. [Google Scholar] [CrossRef]
- Ren, W.; Jia, H.; Yan, B. Monitoring and parameter inversion of ground subsidence in mining area based on SBAS-InSAR method. Bull. Surv. Mapp. 2021, 113–117+155. [Google Scholar] [CrossRef]
- Miao, G.; Chen, Z. Analysis on Main Controlling Factors to Gas Occurrence in Changcun Coal Mine of Luoyang Longmen Coal Co., Ltd. Zhongzhou Coal 2013, 11–13. [Google Scholar]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35, L16302. [Google Scholar] [CrossRef]
- Li, Y.-X.; Yang, K.-M.; Zhang, J.-H.; Hou, Z.-X.; Wang, S.; Ding, X.-M. Research on time series InSAR monitoring method for multiple types of surface deformation in mining area. Nat. Hazards 2022, 114, 2479–2508. [Google Scholar] [CrossRef]
- Rongier, G.; Rude, C.; Herring, T.; Pankratius, V. Generative Modeling of InSAR Interferograms. Earth Space Sci. 2019, 6, 2671–2683. [Google Scholar] [CrossRef]
- Steketee, J.A. Some Geophysical Applications of the Elasticity Theory of Dislocations. Can. J. Phys. 1958, 36, 1168–1198. [Google Scholar] [CrossRef]
- Bagnardi, M.; Hooper, A. Inversion of Surface Deformation Data for Rapid Estimates of Source Parameters and Uncertainties: A Bayesian Approach. Geochem. Geophys. Geosystems 2018, 19, 2194–2211. [Google Scholar] [CrossRef]
- Mosegaard, K.; Tarantola, A. Monte Carlo sampling of solutions to inverse problems. J. Geophys. Res. Solid Earth 1995, 100, 12431–12447. [Google Scholar] [CrossRef]
- Caro Cuenca, M.; Hooper, A.J.; Hanssen, R.F. Surface deformation induced by water influx in the abandoned coal mines in Limburg, The Netherlands observed by satellite radar interferometry. J. Appl. Geophys. 2013, 88, 1–11. [Google Scholar] [CrossRef]
- Declercq, P.-Y.; Dusar, M.; Pirard, E.; Verbeurgt, J.; Choopani, A.; Devleeschouwer, X. Post Mining Ground Deformations Transition Related to Coal Mines Closure in the Campine Coal Basin, Belgium, Evidenced by Three Decades of MT-InSAR Data. Remote Sens. 2023, 15, 725. [Google Scholar] [CrossRef]
- Samsonov, S.; D’oreye, N.; Smets, B. Ground deformation associated with post-mining activity at the French–German border revealed by novel InSAR time series method. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 142–154. [Google Scholar] [CrossRef]
- Yu, Z.; Huang, G.; Zhang, C. Monitoring and Characterization of Surface Deformation after the Closure of Coal Mines Based on Small Baseline Interferometric Synthetic Aperture Radar. Instrum. Mes. Métrologie 2020, 19, 141–150. [Google Scholar] [CrossRef]
- Modeste, G.; Doubre, C.; Masson, F. Time evolution of mining-related residual subsidence monitored over a 24-year period using InSAR in southern Alsace, France. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102392. [Google Scholar] [CrossRef]
- Karanam, V.; Motagh, M.; Garg, S.; Jain, K. Multi-sensor remote sensing analysis of coal fire induced land subsidence in Jharia Coalfields, Jharkhand, India. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102439. [Google Scholar] [CrossRef]
- Whitworth, K.R. The monitoring and modelling of mine water recovery in UK coalfields. In Mine Water Hydrogeology and Geochemistry; Younger, P.L., Robins, N.S., Eds.; Geological Society of London: London, UK, 2002; Volume 198. [Google Scholar]
Sensor | Wavelength | Azimuth/Range Pixel Spacing | Orbit Direction | Path | Temporal Coverage |
---|---|---|---|---|---|
Sentinel-1 | 5.6 cm | 13.94 m/2.33 m | Ascending | 113 | 13 November 2015–30 December 2022 |
Radarsat-2 | 5.6 cm | 5.22 m/11.84 m | Descending | 21571L | 31 January 2012–10 January 2016 |
Model Parameters | Optimal Solution |
---|---|
Sill length (m) | |
Sill width (m) | |
Sill depth (m) | |
Sill strike (deg) | |
Sill X (m) | |
Sill Y (m) | |
Sill opening (m) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Yang, X.; Xie, L.; Dong, W. Life Cycle Mining Deformation Monitoring and Analysis Using Sentinel-1 and Radarsat-2 InSAR Time Series. Remote Sens. 2024, 16, 2335. https://doi.org/10.3390/rs16132335
Ma Z, Yang X, Xie L, Dong W. Life Cycle Mining Deformation Monitoring and Analysis Using Sentinel-1 and Radarsat-2 InSAR Time Series. Remote Sensing. 2024; 16(13):2335. https://doi.org/10.3390/rs16132335
Chicago/Turabian StyleMa, Zhi, Xiaoqing Yang, Lei Xie, and Wei Dong. 2024. "Life Cycle Mining Deformation Monitoring and Analysis Using Sentinel-1 and Radarsat-2 InSAR Time Series" Remote Sensing 16, no. 13: 2335. https://doi.org/10.3390/rs16132335
APA StyleMa, Z., Yang, X., Xie, L., & Dong, W. (2024). Life Cycle Mining Deformation Monitoring and Analysis Using Sentinel-1 and Radarsat-2 InSAR Time Series. Remote Sensing, 16(13), 2335. https://doi.org/10.3390/rs16132335