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Abstract: The life cycle of mining results in various patterns of surface deformation as it progresses
through development, production, and reclamation. Therefore, the spatial–temporal patterns of
ground deformation provide a crucial indicator to understand the mining activities, related geohaz-
ards, and environmental restoration. This study investigates the decadal deformation (2012–2022) of
three coal mines during different stages of mines’ life cycles in Henan, China, using radar interferom-
etry with Radarsat-2 and Sentinel-1 data. The results reveal multiple deformation patterns across
different areas: the Changcun mine area changed from ground subsidence to uplift following the
termination of exploitation in 2016; the Xiadian mine area has been continuously developing over
the past decade, resulting in a cumulative subsidence of 55.6 mm; and the Liyuan mine area exhibits
surface rebound at a rate of 7.9 mm/year since its closure in 2007. We also probe the mining geometry
of the production process by using a rectangular model. This study highlights the significance
of long-term InSAR observations and deformation modeling in elucidating the mining operation
dynamics of small mining zones in their production, transition, and post-closure periods, thereby
facilitating the management of small-scale mining.

Keywords: synthetic aperture radar interferometry; mine life cycle deformation; deformation model-
ing; Radarsat-2; Sentinel-1

1. Introduction

The closure of small and environmentally unfriendly coal mines is crucial for China’s
energy structure transition towards a low-carbon economy. Between 2006 and 2013, over
20,000 small coal mines were closed, with plans to terminate another 15,000 by 2030 in
China [1]. However, the process of “mining, closure, and reclamation” in small coal mines
(i.e., coal mines with annual production below 0.45 million tons per year) often spans several
years to decades. Geological hazards such as surface subsidence, ground fissures, and
sinkholes may continue to develop even after the termination of mining [2–4]. However, the
decadal monitoring of surface deformation in mining areas and goafs remains challenging
due to the high labor and economic costs of traditional in situ geodetic observations,
impeding subsequent management and ecological restoration efforts in small-scale mining
areas [5,6].

In recent decades, multi-temporal InSAR techniques (MT-InSAR), such as Persistent
Scatterer InSAR (PS-InSAR) [7,8] and Small Baseline Subset InSAR (SBAS-InSAR) [9–11],
have become popular for deformation monitoring and modeling in mining areas [12–17].
Several studies focus on the surface subsidence after coal mine closures [18–22]. For
example, Guéguen et al. (2009) estimated surface displacement 15 years after the closure of
coal mines in Nord/Pas-de-Calais, France, using D-InSAR and PS-InSAR. Their findings
indicated that the surface deformation gradually stabilized in the post-closure period [23].
Jung et al. (2007) used JERS-1 SAR data from 1992 to 1998 to monitor subsidence in the
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abandoned Gaeun coal mine in South Korea with PS-InSAR. The results showed an excellent
agreement between the InSAR-estimated subsidence and in situ fissure distribution [24].
Zheng et al. (2023) demonstrated a four-stage change in post-closure surface deformation as
“subsidence-stabilization-uplift-stabilization” in Xuzhou, China, from 2016–2019 Sentinel-1
data [25]. In Europe, several studies also reported that the groundwater level can change the
surface deformation from InSAR observations. For example, Bejarano Urrego et al. (2016)
showed that the abandoned Zolder mine in Belgium experienced an uplift of 5.6 mm/year,
which was related to the rising groundwater [26]. Gee et al. (2017) reported a linear
relationship between the surface uplift and groundwater level from the InSAR observations
in Northumberland and Durham coal fields, UK [27]. Blachowski et al. (2018) indicated
that a 12 mm/year ground uplift in Walbrzych Coal Basin, Poland may be caused by the
increasing hydrostatic water pressure in the rock matrix and the corresponding stress
redistributions [28].

These InSAR-based deformation measurements can also be used to probe the geometry
and process of mining activities. He et al. (2022) used the multi-source Okada model, a
dislocation model for shear and tensile fault motions in an elastic half-space [29], to simulate
ground deformation obtained using the coherent scatterer InSAR technique. The results
showed that the predicted and observed deformations were highly correlated, with an
overall misfit of less than 5 cm [30]. Lu et al. (2013) modeled a mining area with vertical
deformation by ignoring the deformation in strike-slip and dip-slip directions and assumed
a horizontal tunnel in the Okada model for simplification. Their results showed a high
degree of consistency between the leveling and model predictions [31]. Dai et al. (2020)
used both the Okada and Mogi models to invert the D-InSAR-based surface deformation
by the probability integral method in Huainan coalfield. They found that the more complex
and adaptable Okada model performs better at a higher noise level [32]. Ren et al. (2021)
also effectively monitored and reversed the deformation of the Dianping coal mine by
combining the SBAS-InSAR technique with the dislocation [33].

However, most of the existing studies only capture and model the mining deformation
in a short period (i.e., 3–5 years), which cannot cover the entire mining life cycle. Therefore,
our understanding of the surface deformation patterns and mechanisms before and after
coal mining cessation is still limited. In this study, we first combined Radarsat-2 and
Sentinel-1 to achieve continuous monitoring from January 2012 to December 2022 in three
mining areas in Henan, China. Second, we employed the rectangular dislocation model
and Bayesian inversion method to probe the geometry parameters of the coal seam. Third,
we discussed the deformation mechanisms during different stages of the mining life cycle.

2. Materials and Methods
2.1. Study Area

The study area is located in Luoyang and Pingdingshan, Henan, China. This area
encompasses two tectonic units: the North China Craton and the Qinling Trough, which
have experienced multiple stages of geological activity, leading to the formation of rocks. It
hosts abundant mineral resources, including coal, iron, lead, and molybdenum, and has
hosted mining operations for several decades. The study area has three primary mining
regions (Figure 1a): (1) Longmen mine area has Longmen, Zhengxingsu, and Changcun coal
mines (Figure 1b). The Longmen coal mine has been operated since January 2003, producing
0.5 million tons per year across an area of 5.7 km2. The Changcun coal mine operated
from July 2010 to September 2016, and it covers 18.9 km2, with an annual production of
1.8 million tons. The Zhengxingsu coal mine operated from March 2011 to December 2021,
with an annual coal production of 0.15 million tons over 1.08 km2. (2) Xiadian coal mine
is located in Pingdingshan City. The mine’s capacity amounts to 195 million tons in an
area of 26.4 km2. It has been in continuous operation since May 2010, with an annual
coal production capacity of 1.5 million tons. (3) Liyuan coal mine is 17.2 km south of the
Xiadian coal mine. The operation lasted for 17 years from December 1990 to September
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2007, with an annual production of 0.45 million tons. And the mining style here is longwall
mining [34].
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Figure 1. Study area and data coverage: (a) footprints of Radarsat-2 (pink) and Sentinel-1 (blue);
(b) coverage of three studied mine areas.

2.2. InSAR Data Processing

This study utilized two types of SAR data (Table 1): (1) Radarsat-2 wide-mode data
(11 images) acquired from 31 January 2012 to 10 January 2016; and (2) Sentinel-1A/B
TOPS-mode data (190 images) acquired between 13 November 2015, and 30 December 2022,
to monitor surface deformation throughout the entire life cycle of the mining areas.

Table 1. SAR data used in this study.

Sensor Wavelength Azimuth/Range
Pixel Spacing Orbit Direction Path Temporal Coverage

Sentinel-1 5.6 cm 13.94 m/2.33 m Ascending 113 13 November 2015–30 December 2022
Radarsat-2 5.6 cm 5.22 m/11.84 m Descending 21571L 31 January 2012–10 January 2016

We performed PS-InSAR data processing by differential interferometry, PS point selec-
tion, and time series estimation (Figure 2). We first selected the primary images to decrease
the potential decorrelation by minimizing the temporal and spatial baselines. The 31 July
2014 and 8 January 2019 were selected to form interferogram stacks of Radarsat-2 and
Sentinel-1, respectively (Figure 3a). The interferometric processing included registration,
topography, and flat-earth phase removal, and interferogram generation was performed
using the GAMMA software. We utilized the 1 arc-sec Shuttle Radar Topography Mission
(SRTM) DEM (https://earthexplorer.usgs.gov, accessed on 5 April 2024) to remove topog-
raphy and flat-earth phases. Precise orbits (https://qc.sentinel1.eo.esa.int, accessed on
5 April 2024) were used for orbital corrections to minimize the noise, and adaptive filtering
was applied.Second, we selected the PS points by a two-step method to identify the reliable
scatterers for the deformation estimation. We employed the amplitude dispersion thresh-
olds DA = 0.42 and DA = 0.6 for SBAS for PS point and conducted slowly decorrelating
filtered phase (SDFP) point detection. Subsequently, PS candidates were refined by the
temporal coherence coefficient γk and the variation in phase residual. Here, the temporal
coherence coefficient γk is defined as follows [8]:

γk =
1
N

∣∣∣∣∑N
i=1 exp

{
j
(

ϕi
diff −

∼
ϕ

i
− ϕi,u

θ,

)}∣∣∣∣ (1)

https://earthexplorer.usgs.gov
https://qc.sentinel1.eo.esa.int
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where ϕi
diff is the differential phase;

∼
ϕ

i
is the spatially correlated phase; and ϕi,u

θ, is the
phase of the spatially uncorrelated look angle error. Then, the three-dimensional phase-
unwrapping algorithm was applied to obtain the unwrapped phase φunw,x,i for each high
coherence point:

φde,x,i ≈ φunw,x,i + φ̂m
atm,x − φ̂s

atm,x,i + ∆φ̂m
orb,x − ∆φ̂s

orb,x,i − ∆φcorr
θ,x,i − ∆φn,x,i − 2kx,iπ (2)

where φde,x,i is the target deformation, φ̂m
atm,x is the atmospheric screen in the primary

image, and φ̂s
atm,x,i is the atmospheric screen in the seceondary image; ∆φ̂

p
orb,x and ∆φ̂s

orb,x,i
represent the orbital error phases in the primary and secondary images, respectively; ∆φcorr

θ,x,i
denotes the noise associated with the residual spatial uncorrelation ∆φn,x,i; and 2kx,iπ is
the phase integer ambiguity.
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The spatially correlated look angle (SCLA) error in the PS pixels of the interferograms
is estimated after the phase unwrapping step. The SCLA error is estimated by applying a
high pass filter in time and low pass filter in space to the unwrapped phase values. Finally,
the SCLA error is subtracted from the remaining phase to obtain the deformation estimates.

Due to the lack of in situ measurements, this study assessed the reliability of the
PS-InSAR results by a cross-validation with SBAS-InSAR [35,36]. For SBAS analysis,
the maximum temporal and spatial baseline thresholds were set as 96 days and 150 m,
respectively. The SBAS stacks contain 538 interferograms (see Figure 3b).

2.3. Deformation Modeling Based on Rectangular Model

To probe the geometry of coal mine production, we applied the Okada rectangular
model and the Bayesian inversion method to the Xiadian area, which has been continuously
exploited since January 2012. We first subsampled the InSAR velocities from 2012 to 2022
with the quadtree method, retaining a total of 697 data points, which greatly reduced the
computational complexity. As the exploitation map is unknown, we used a horizontal
rectangular sill with uniform opening to simulate surface deformation, equivalent to the
total mining impact. Specifically, according to the dislocation theory in the half-space,
the surface displacement field caused by the opening component can be expressed as
follows [29]: 

ux = −U3
2π

[
q2

R(R+η)
− I3 sin2 δ

]
uy = −U3

2π

[
−d̃q

R(R+ξ)
− sin δ

{
ξq

R(R+η)
− tan−1 ξη

qR

}
− I1 sin2 δ

]
uz = −U3

2π

[
ỹq

R(R+ξ)
+ cos δ

{
ξq

R(R+η)
− tan−1 ξη

qR

}
− I1 sin2 δ

] (3)

where ux, uy, and uz are the surface displacement in Cartesian coordinates caused by the
opening component U3; ξ and η are the coordinates of the particle on the fault plane; and
I1, I2, and I3 are the influence coefficients.

Assuming that the horizontal mining activity, the dip angle, strike-slip component,
and dip-slip component can be simplified as δ ≈ 0, U1 = 0, and U2 = 0, respectively, the
surface deformation (Equation (3)) can be simplified as follows [37,38]:

uz =
U3

2π

[
ỹq

R(R + ξ)
+

ξq
R(R + ξ)

− tan−1 ξη

qR

]
(4)

Second, we utilized the open-source Geodetic Bayesian Inversion Software (GBIS)
to apply nonlinear inversion to the mining geometry [39]. It employs Bayesian inference
to quantify the optimal parameters, and their uncertainties were estimated using the
Markov chain Monte Carlo method (MCMC), which incorporated the Metropolis–Hastings
algorithm [40]. Specifically, the probability of the parameters can be determined as follows:

p(m | d) =
p(d | m)p(m)

p(d)
(5)

where d is the data vector, m is the set of model parameters, p(m | d) is the likelihood
function of m given d based on residuals between the data and the model prediction of the
observations, p(m) expresses the prior information (in the form of a prior joint PDF) of the
model parameters, and the denominator is a normalizing constant that is independent of m.

Therefore, the uncertainty gives an indication of the confidence interval of the in-
verted parameters. Here, we also constrained the initial intervals of the target parame-
ters, considering the range of the deformation area and the minging depth, as follows:
length ∈ [0, 5000] m, width and depth ∈ [0, 2000] m. We performed 106 iterations and
removed the first 2 × 104 iterations as the burn-in period because the starting samples may
highly depend on initial parameter settings and may not represent the real posterior PDFs.
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3. Results
3.1. Deformation in Longmen Area

The Longmen area, located east of the Longmen Grottoes, contains the Longmen
mining area, Zhengxingsu mining area, and Changcun mining area (Figure 1). The InSAR
data reveal a consistent away-motion in the satellite LOS direction from 2012 to 2016. The
average deformation rates for Longmen, Zhengxingsu, and Changcun were 5 mm/year,
10 mm/year, and 8 mm/year, respectively (Figure 4). Correspondingly, the maximum
cumulative deformations were 22.4 mm, 38.5 mm, and 34.1 mm. However, in the following
period from 2016 to 2022, these mining areas exhibited different deformation characteristics
(Figure 5). The Zhengxingsu mining area continued to subside at 2 mm/year, while
the Changcun mining area uplifted at 12 mm/year (Figure 6b,c). Notably, the Longmen
mining area underwent a complex deformation transition in July 2014, November 2017,
and March 2021 (Figure 6a).
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different ranges of color bars in subplots for visualization).

To better describe the deformation evolution in the Longmen mining area, we se-
lected the feature points P1-P3 and delineated the cross-profiles A1-A2, B1-B2, and C1-C2
(Figure 4). The Longmen mine area experienced three transition periods as subsidence
at 10 mm/year from January 2012 to June 2014. Subsequently, from July 2014 to October
2017, the area underwent uplift at a rate of 4 mm/year. From November 2017 to February
2022, the mining area transformed to subsidence again, accruing a cumulative subsidence
of approximately 22 mm. Subsequent to March 2022, the deformation reverted to uplift.
However, there is only a single deformation transition within the Changcun mining area in
September 2016, when a rate of 8 mm/year subsidence changed to a 12 mm/year uplift
(Figures 5 and 6c). In contrast to the transition in the Longmen and Changcun mines, the
Zhengxingsu mine experienced a two-stage subsidence, with a significant deceleration
measured from 6 mm/year to 2 mm/year in June 2015 (Figures 5 and 6b).
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the average deformation rates of the mining areas: (a) Point P1 in Longmen area; (b) Point P2 in
Zhengxingsu area; and (c) Point P3 in Changcun area.

3.2. Deformation in Xiadian Area

The Xiadian region, located in Xiadian Town, Ruzhou City, consists of two main
deformation zones that cover 24.4 km2. The InSAR result indicates that the Xiadian mining
area has been steadily subsiding, with a maximum cumulative deformation of 10 cm
(Figure 7).

Two notable deformation areas are Xiadian Town (Point P4) and Qianhu Town (Point
P5) in the Xiadian area. In Xiadian town, the ground indicates a non-linear deformation,
decreasing from 10 mm/year to 5 mm/year after 2016. However, the Qianhu area shows a
continuous subsidence at 10 mm/year, resulting in a 10 cm cumulative deformation and
the formation of the deformation profiles (D1-D2, E1-E2, G1-G2). It can be observed that
the deformation area in the Xiadian mining area is extensive, with continuous subsidence
over 10 years. The subsidence area covers approximately 25.86 km2, and from 2016 to
2022, the cumulative deformation reached 50 mm (Figure 9). This resulted in a significant
subsidence funnel with a width of approximately 3.1 km.
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continuous subsidence at 10 mm/year, resulting in a 10 cm cumulative deformation and 
the formation of the deformation profiles (D1-D2, E1-E2, G1-G2). It can be observed that 
the deformation area in the Xiadian mining area is extensive, with continuous subsidence 
over 10 years. The subsidence area covers approximately 25.86 km², and from 2016 to 2022, 
the cumulative deformation reached 50 mm (Figure 9). This resulted in a significant sub-
sidence funnel with a width of approximately 3.1 km. 

Figure 7. LOS deformation rate and cumulative deformation time series in the Xiadian region from
January 2012 to December 2022 from PS-InSAR: (a) LOS deformation rate obtained from Radarsat-
2 data during 2012–2016; (b) time series of cumulative deformation from 2012 to 2016; (c) LOS
deformation rate from Sentinel-1 during 2015–2022; and (d) time series of cumulative deformation
from 2015 to 2022; D1-D2, E1-E2, and G1-G2 are the section lines drawn in Figure 8 (please note the
different ranges of color bars in subplots for visualization).
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of between 5 and 10 mm/year was observed in the Liyuan mining area between November 
2015 and December 2022 (Figure 10). 

Figure 8. Cumulative deformation profiles D1-D2, E1-E2, and G1-G2 in Xiadian mining area. The
location of section lines D1-D2, E1-E2, and G1-G2 are shown in Figure 7: (a) D1-D2 in 2012 to 2016;
(b) E1-E2 in 2012–2016; (c) G1-G2 in 2012–2016; (d) D1-D2 in 2016–2022; (e) E1-E2 in 2016–2022; and
(f) G1-G2 in 2016–2022.
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Figure 9. Time series deformation of selected points in Xiadian area, the color-shaded areas are the
average deformation rates of the mining areas: (a) Point P4 in Xiadian mining area; (b) Point P5 in
Xiadian mining area.

3.3. Deformation in Liyuan Area

Situated in the southwest of Ruzhou City, close to Jiliao Town, the Liyuan mining
region covers an area of about 7 km2. The mining area of Liyuan showed stable uplift de-
formation, with a maximum cumulative deformation of around 70 mm for the observation
period of January 2012 to January 2016. Following that, a positive uplift deformation of
between 5 and 10 mm/year was observed in the Liyuan mining area between November
2015 and December 2022 (Figure 10).
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data during 2012–2016; (b) time series of cumulative deformation from 2012 to 2016; (c) LOS deforma-
tion rate from Sentinel-1 during 2015–2022; and (d) time series of cumulative deformation from 2015
to 2022; F1-F2 is the section line drawn in Figure 11 (please note the different ranges of color bars in
subplots for visualization).

There is only one notable deformation area, which is Jiliao Town (Point P6) in the
Liyuan area. The total uplift has reached 7 cm, with an average uplift rate of 5 mm/year.
It is obvious that the uplift in the Liyuan mining area has a nonlinear characteristic, and
the deformation has stabilized since December 2022. Specifically, from 2012 to 2013, the
deformation rate was rather gradual. After 2014, it had a period of significant uplift, which
continued until the deformation rate began to stabilize around 2020 (Figure 12).
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Figure 12. The time series deformation of the selected Point P6 in Liyuan area, the color-shaded area
is the average deformation rate of the mining area.

3.4. Cross-Validation

To validate the reliability of the PS-InSAR results, we employed a cross-validation
approach using PS and SBAS techniques in three mining areas (Figures 13–15). In Liyuan, Xia-
dian, and Longmen mining areas, the mean differences in deformation rates are 0.09 mm/year,
0.57 mm/year, and 0.65 mm/year, respectively. The standard deviations of these three
areas are 0.98 mm/year, 1.5 mm/year, and 1.2 mm/year, with correlation coefficients of
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0.82, 0.45, and 0.72, respectively. These good agreements from both methods confirms the
reliability and accuracy of the derived deformation.
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Figure 13. The cross-validation of InSAR results using PS and SBAS methods: (a) PS deformation
rate in Liyuan mining area; (b) SBAS deformation rate in Liyuan mining area; (c) histogram of the
difference between PS and SBAS; and (d) density scatter of two measurements.
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area. The posterior PDFs of inverted parameters reveal that the sill geometry is well con-
strained after the 10 iterations (Figure 16). The overall distribution range of the residual 

Figure 14. The cross-validation of InSAR results using PS and SBAS methods in Longmen area:
(a) PS deformation rate in Longmen mining area; (b) SBAS deformation rate in Longmen mining
area; (c) histogram of the difference between PS and SBAS in Longmen; and (d) density scatter of
two measurements in Longmen.
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two measurements in Xiadian.

3.5. Modeling Parameters

We used the nonlinear Bayesian method to invert the mining geometry in the Xiadian
area. The posterior PDFs of inverted parameters reveal that the sill geometry is well
constrained after the 106 iterations (Figure 16). The overall distribution range of the
residual results was [−5 cm, 5 cm], the mean residual value was 0.65 cm, and the standard
deviation of the residuals was 1.79 cm, indicating that the surface simulation deformation
results based on the Okada model had a high accuracy, and the inverted coal seam mining
parameters were reliable (Figure 17c,d). The maximum posterior probability solution and
95% confidence intervals indicate the length, width, and depth of the mining tunnel and
are 2634 ± 500 m, 309 ± 98 m, and 711 ± 290 m, respectively (Table 2). It has a SW-NE
strike (254 ± 20◦).

Table 2. Inverted parameters of mining geometry in Xiadian.

Model Parameters Optimal Solution

Sill length (m) 2634.43+336.40
−531.89

Sill width (m) 309.01+97.70
−98.00

Sill depth (m) 711.08+292.68
−110.74

Sill strike (deg) 253.99+18.62
−20.62

Sill X (m) −167.54+188.57
−215.25

Sill Y (m) 277.96+96.94
−98.94

Sill opening (m) −1.16+0.60
−0.58
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4. Discussion

This study investigated five mining areas using radar interferometry to comprehen-
sively understand the life cycle stages of mining activities. The InSAR results revealed that
the deformation patterns in continuously operated mining areas may undergo multiple
transitions (e.g., Longmen mining area) or exhibit subsidence at varying rates (e.g., Zhengx-
ingsu and Xiadian mining areas). After the closure, mine areas generally experience surface
uplift, characterized by a linear or exponential function (e.g., Liyuan mining area).
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4.1. The Possible Mechanisms for Deformation Transition in Mine Areas

We observed the transition of deformation in the Changcun and Longmen areas. First,
in Changcun mine area, the single transition from subsidence to uplift on 14 September
2016 may be related to groundwater. As the groundwater was no longer extracted after the
production ceased, the rising level of groundwater can directly result in the surface uplift.
This phenomenon has also been observed in other closed mines, such as Limburg mine area
in Germany [41]. Recently, Declercq et al. (2023) used Envisat data to map surface rebounds
after the closure of the last active coal mine in Zolder, Belgium [42]. They demonstrated
that the uplift transition in the western part of the mine can be attributed to the replenish
of aquifer after the closure of mine. Similarly, Samsonov et al. (2013) found that after
the cessation of the last exploitation at La Houve in Lorraine (French side) at the end of
2004 and the commencement of flooding in June 2006, the deformation reversed from
subsidence to uplift [43]. Therefore, although the groundwater records are unavailable in
Changcun mine area, according to the temporal development of the surface deformation, it
is supposed that the process of groundwater recharge after the mine closure may cause the
surface uplift. Complex spatiotemporal deformation characteristics also reveal different
responses to surface deformation during different mining life cycles. In the Longmen mine,
we observed two rounds of subsidence and uplift. The periods of subsidence from January
2012 to June 2014 and from November 2017 to February 2022 were mainly attributed to
phased production activities [44]. Similar to the Changcun mine area, two phases of uplift
in the Longmen mine area (i.e., July 2014–October 2017 and March 2022 to December 2022)
may be related to the change in groundwater.

4.2. The Deformation Mechanism in Continuously Exploited Mines

The Xiadian mining area has been developed since 2010 and remained in continuous
operation during our study period. The deformation is predominantly visible as linear
subsidence. There are many factors that lead to mining area subsidence. The compaction of
the goaf will drive the subsidence [45], and underground coal fires will also cause ground
subsidence [46]. In our study, continuous mining caused a void beneath the surface and,
finally, bending and subsiding of the overlying strata. The inverted parameters of the
mining tunnel show a rectangular shape with a length of 2634 m, a width of 309 m, and a
depth of 711 m.

4.3. The Deformation Mechanism in the Post-Closure Period

In contrast, the Liyuan mining area exhibits a significant difference to the Xiadian
mining area. Throughout the 10-year monitoring period, the Liyuan mining area remained
in a post-closure state. Following closure, the rising groundwater levels and changes in
rock mass structure contributed to an uplift tendency. The uplifting velocity decays from
5 mm/year to 1 mm/year correspond to the exponential tendency of groundwater recovery
in the post-closure areas [47].

5. Conclusions

This study utilized Sentinel-1 and Radarsat-2 interferometry to investigate long-term
surface deformation across three mining areas in Luoyang and Pingdingshan from 2012
to 2022. We identified the deformation transitions in the Changcun and Longmen areas,
which may be related to the rising groundwater after the mine closure and the levels of
annual production. For the terminated Liyuan area, an equilibrium was reached, and the
continuous uplift ceased in 2021. We also analyzed the mining tunnel in the Xiadian area,
indicating a geometry with a depth of 711 m, width of 309 m, and length of 2634 m, with
an opening of-1.2 m in the last decade. This study demonstrates the capability of long-term
InSAR observations, especially for mining areas without available ground measurements,
in deciphering the mine activities and facilitating small mining management throughout a
mine’s life cycle. In future, we suggest examining the impact of groundwater on mining
activity by coupling hydro-mechanical models, well log data, and stratigraphic information.
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