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Abstract: In this study, 10 min and 2 km high-resolution blended fog data (HRBFD) were generated
using grid visibility data (GVD) and data from a GK2A (GEO-KOMPSAT-2A) fog product (GKFP) in
Korea. As the blending method, the decision tree method (DTM) was used to consider the different
characteristics of the two-input data (categorical data and continuity data). The blending of the
two datasets was performed according to the presence or absence of the input data and considered
the spatial representation of the GVD and the accuracy of the GKFP. The quality of the HRBFD
was evaluated through visual comparison using GVD, GKFP, and visible images of the GK2A. The
HRBFD seems to have partly solved the problem of fog detection in areas where visibility meters
are rare or absent through the detection of fog occurring in the sea or mountain areas. In addition,
the critical problem of the GKFP, which has limitations in detecting fog occurring under clouds, has
been mostly overcome. Using the DTM, we generated 23 fog cases of 10 min and 2 km HRBFD. The
results confirmed that detailed spatiotemporal characteristics of fog in Korea can be analyzed if such
HRBFD is generated for a long time.

Keywords: fog; visibility data; GK2A fog product; blending; grid data

1. Introduction

Fog is a meteorological phenomenon in which horizontal visibility is reduced to less
than 1 km due to minute water droplets or ice crystals floating near the surface [1–5]. The
extreme reduction in visibility when fog occurs not only causes obstacles to the operation
of all transportation systems but inhibits the spread of pollutants and causes the corrosion
of cultural assets [6–12]. In addition, the fatality rate of traffic accidents due to fog is 3.9 per
100 cases, which is higher than other meteorological phenomena [13]. Therefore, to reduce
the damage caused by fog, it is primarily necessary to accurately detect (or observe) the fog
occurrence area [14].

There are two methods for detecting fog: a method of naked-eye observation, or using
a visibility meter in the field, and a method using satellite data. There are advantages
and disadvantages to detecting fog using visibility meters and using satellite data. The
visibility meter objectively measures visibility by using the properties of fog that affect
light dissipation [15,16]. The visibility meter has the advantage of a short observation
period (1 min) and relatively high accuracy [16,17]. However, due to the nature of the
measurement method, spatial representation is basically low, and the detection accuracy
varies greatly depending on the visibility meter model. In addition, most visibility meters
are installed in urban areas where installation and operation are easy, so there are relatively
few observation points in the sea or in mountain areas. On the other hand, satellites
have the advantage of being able to observe both land and sea with high spatiotemporal
resolution (10 min and 2 km (daytime 500 m)) [18–20]. However, fog cannot be detected in
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the presence of clouds because satellites cannot obtain information near the ground, and
there is a problem with relatively low accuracy compared to field observation.

Various meteorological phenomena occur continuously over time and space, but the
observation systems currently in operation have limitations in observing their temporal and
spatial variability. Therefore, attempts are being made to blend various types of observation
data (e.g., ground/aerological observation, radar, and satellite) and numerical model data
to produce data suitable for analyzing the temporal and spatial characteristics of various
meteorological phenomena. Among them, studies have been actively conducted to produce
high-resolution grid data on major climate elements such as precipitation, temperature, and
aerosols [21–27]. Lee et al. [22] and Jang et al. [23] used a synthesis method of the weighted
average of satellite data and radar data to produce high-quality grid-type precipitation
data. Lee et al. [26] blended the two datasets using the optimal interpolation (OI) method
using the Kalman filter to use the ground observation data and the satellite data as the
initial field of the model. Lim et al. [24] used a method of blending three satellite datasets
to produce aerosol optical thickness data with high spatial-temporal continuity and high
accuracy. In addition, Egli et al. [28] attempted to blend the cloud mask data of the satellite
and the cloud base altitude (CBA) among ground observation data to use it as input data
for a fog detection algorithm using a random forest. Until recently, however, few studies
have been conducted to blend data on visibility, and in Korea, there is no research on
the blending of available data to produce high-resolution grid-type visibility or fog data.
Therefore, considering the strong locality and temporal variability of fog, decision tree
techniques were used to generate gridded fog data by considering the different nature of
the two datasets.

2. Materials and Methods
2.1. Materials

To generate high-resolution grid-type fog monitoring data, we utilized the grid-type
visibility data (GVD) from Kang and Suh [29], the GK2A fog products (GKFP), and the
land–sea mask data from Han et al. [30]. Table 1 summarizes the characteristics of the data
used in this study. The GVD is data obtained by interpolating the visibility data using the
inverse distance weighting (IDW) method and is a continuous variable whose unit is km.
The GVD includes inland and some coastal areas in South Korea, with a period of 10 min
and a spatial resolution of 2 km. The final output of the GK2A fog detection algorithm is a
categorical variable indicating the presence of fog (1–7) and quality (0–15) for each pixel
as the fog detection result and quality data. The GKFP is data with a spatial resolution of
2 km for the East Asian region every 10 min. To use the accurate GKFP, only high-quality
pixels (QC flag = 0) among the fog detection results were used in this study. In addition,
23 fog cases presented in Table 2 were used to construct the blended grid-type fog data and
to analyze the characteristics of fog occurrence in South Korea.

Table 1. Summary of input data used in this study. Detailed explanations of gridded visibility data (GVD)
are provided in Kang and Suh [29], and those of satellite fog (GKFP) are provided in Han et al. [30] and
NMSC [31].

Characteristics Gridded Vis. Sat. Fog Product

Frequency 10 min 10 min

Spatial resolution 2 km 2 km

Domain South Korea (only land) East Asia

Retrieval method IDW method Decision tree method

Initial data Visibility meter GK2A/AMI

Units km
(fog: <1 km) Category (1–7)
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Table 1. Cont.

Characteristics Gridded Vis. Sat. Fog Product

Range of valid values 0–20 km

1: Clear
2: Middle or High Cloud

3: Unknown
4: Probably Fog

5: Fog
6: Snow

7: Desert or Semi-desert

Table 2. Summary of the fog cases used in this study. The number (#) of fog indicates the number of
visibility meters, showing a visibility of less than 1 km.

Case # Date # of Fog

1 4 July 2019 1244
2 14 July 2019 774
3 24 July 2019 320
4 26 July 2019 676
5 25 August 2019 570
6 26 August 2019 815
7 30 August 2019 1464
8 31 August 2019 227
9 17 September 2019 525
10 24 September 2019 2483
11 29 September 2019 2286
12 30 September 2019 2011
13 1 October 2019 719
14 4 October 2019 2385
15 20 October 2019 3823
16 5 November 2019 2995
17 6 November 2019 3360
18 12 November 2019 1893
19 8 December 2019 696
20 19 December 2019 76
21 10 February 2020 72
22 11 February 2020 151
23 1 March 2020 1277

Total 28,570

Figure 1 shows the region of high-resolution blended fog data (HRBFD) generated by
blending the GVD and the GKFP with visibility data. This region includes South Korea’s
inland and coastal areas, Jeju Island, and its surrounding sea. To analyze the characteristics
of fog occurrence in the inland area and surrounding coastal areas in South Korea using the
HRBFD, the land–sea mask data of GK2A provided by the National Meteorological Satellite
Center (NMSC) was reclassified into the land, coast, and sea (Figure 1). Additionally,
altitude data provided by the NMSC was used to analyze the fog occurrence characteristics
according to altitude.

2.2. Methods

The GVD is a continuous variable with a range of 0–20 km, and the GKFP is a categor-
ical variable indicating the presence or absence of fog. Because the variable characteristics
of the two datasets are different, it is difficult to use techniques such as average, ensemble,
and data assimilation. Therefore, in this study, the two datasets were blended using the
decision tree method (DTM) that can be applied to categorical variables. The DTM is one
of the machine-learning methods. First developed by Leo Brayman and colleagues in 1984,
the DTM is a flexible and automated technique for learning the relationship rules between
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predictor and outcome variables [32]. In addition, the learning and reasoning speed is fast,
and the relationship between predictor variables can be easily interpreted [32,33]. However,
due to its sensitivity to thresholds, it may suffer from overfitting in certain cases. To solve
this problem, a random forest model employing multiple decision trees has been developed.
Unlike the DTM, this model is not possible for intuitive interpretability [32]. Therefore, in
this study, we developed a technique that combines the GVD with the GKFPs using the
DTM, which has a fast calculation speed and is capable of physical analysis.
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Figure 2 illustrates the method of blending GVD and GKFPs, which can be categorized
into three types based on the presence of data: when both GVD and GKFP data exist,
when only GVD exists, and when only GKFP data exists. First, when both datasets are
normally present, pixels with the same result in the two datasets were classified as fog
(Both fog, Code 1) or non-fog (Both non-fog, Code 4 and 5). At this time, in order to
solve the data smoothing problem that occurs when calculating GVD, among pixels with
grid-type visibility of 1 km or more (non-fog pixels), the cases where the average visibility
of the surrounding 3 × 3 pixels is less than 2 km were reclassified as a probable fog pixel
(Prob_fog, Code 4). Here, the threshold value of average visibility of 2 km was taken into
consideration, considering the locality of the fog, the limit of IDW, and the limitation of the
visibility meter. Non-fog in the GKFP includes not only non-fog pixels but also middle-high
clouds over the fog, localized fog with sub-pixel size, edges of fog, etc. Also, in the case of
GVD, when the visibility of nearby observation points is high, it is difficult to estimate the
visibility of less than 1 km due to the nature of the interpolation method. Therefore, when



Remote Sens. 2024, 16, 2350 5 of 17

there is a disparity between the two datasets—if only the GVD indicates fog (Vis_Only_fog;
visibility < 1 km, Code 2) or only the GKFP indicates fog (GK2A_Only_fog, Code 3)—the
grid is classified as fog to address the limitations of both datasets.
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Figure 2. Flow chart for the blending of gridded visibility data and satellite fog product data. The
number in parentheses means the code number that matches Table 3. Both fog is expressed in red,
fog only in GVD is expressed in deep red, and fog only in GKFP is expressed in orange. Pixels with a
possibility of fog and no fog are expressed in yellow and colorless, respectively.

Table 3. Summary of gridded fog product retrieved from the blending method developed in this study.

GVD GKFP Product Name Code Color Comments

Fog
Fog Both fog 1 Red Both data are fog

Non-fog Vis_Only_fog 2 Deep red Visibility < 1 km
No data Vis_Only_fog 6 Deep red Only gridded visibility data

Non-fog

Fog GK2A_Only_fog 3 Orange GK2A fog value is fog

Non-fog Prob_fog 4 Yellow 1 km ≤ ave. 3 × 3 < 2 km
Non-fog 5 - Both data are non-fog

No data
Prob_fog 7 Yellow 1 km ≤ ave. 3 × 3 < 2 km
Non-fog 8 - Only gridded visibility data

No data
Fog GK2A_only_fog 9 Orange Only satellite fog data

Non-fog Non-fog 10 - Only satellite fog data
No data Missing −999 - Both data are missing

Second, the accuracy of the GKFP is low due to the absence of GK2A data (e.g., wheel
off-loading, albedo monitoring, visible channel test, etc.) and the quality deterioration
of Level 1B (L1B) or Level 2 (L2) data from the GK2A. That is, in the case where only
GVD exists, according to the meteorological definition of fog, pixels with grid visibility of
less than 1 km are fog pixels (Vis_Only_fog, Code 6), and non-fog pixels with an average
visibility of the surrounding 3 × 3 pixels of less than 2 km are probably fog pixels (Prob_fog,
Code 7). The remaining pixels are classified as non-fog pixels (Code 8).

Third, there is no GVD, which is a typical case in the sea area where there is no
ground observation data. In this case, since we have no choice but to rely on the satellite’s
fog detection data, it was classified into fog (Code 9) or non-fog (Code 10) according to
the GKFPs.

Finally, HRBFD was generated at intervals of 2 km every 10 min for the area shown
in Figure 1. Like the GKFP, the product is categorical data classified from 1 to 10, and the
value description is summarized in Table 3.
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3. Results
3.1. Qualitative Analysis

To qualitatively analyze the output level of the HRBFD, we visually compared and
analyzed the GVD, the GKFPs, the DCD (Dual Channel Difference: BT3.9 − BT11) image
of GK2A, and the visible image of GK2A (Figures 3–6). To analyze the qualitative level of
HRBFD according to the type and intensity of fog and the presence or absence of clouds,
we analyzed the case where sea fog and land fog occurred simultaneously (Figure 3) and
the case where fog occurred under the middle-high cloud (Figure 4). In addition, dawn
(Figure 5) and early morning (Figure 6) time zones were selected and analyzed for radiation
fog cases.
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Figure 3. Sample image of blending results of the gridded visibility and the GK2A fog product for
the case of 04:00 KST on 4 July 2019. (a) Image of gridded visibility, (b,c) fog image of GK2A and
image of blending result with brightness temperature, respectively, and (d) image of dual channel
difference (DCD). The red color in (b) indicates foggy pixels.
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the case of 07:00 KST on 26 July 2019. (a) Image of gridded visibility, (b,c) fog image of GK2A and
image of blending result with brightness temperature, respectively, and (d) reflectivity of a visible
channel. The red color in (b) indicates foggy pixels.
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the case of 06:00 KST on 26 August 2019. (a) Image of gridded visibility, (b,c) fog image of GK2A and
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difference (DCD). The red color in (b) indicates foggy pixels.
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Figure 6. Sample image of blending results of the gridded visibility and the GK2A fog product for the
case of 09:00 KST on 24 September 2019. (a) Image of gridded visibility, (b,c) fog image of GK2A and
image of blending result with brightness temperature, respectively, and (d) reflectivity of a visible
channel. The red color in (b) indicates foggy pixels.

Figure 3 shows a case where radiation fog that occurred in the inland area of South
Korea and sea fog that occurred widely in the West Sea existed simultaneously on 4 July
2019. Middle-high clouds, including semi-transparent cirrus clouds, are distributed in the
east–west direction along the coast of the South Sea (Figure 3d). In the grid-type visibility
image, fog and low visibility were widely observed mainly in Gyeonggi-do and Gyeonggi
Bay, Chungcheongbuk-do and Jeollabuk-do, the south coast, and parts of Gyeongsangbuk-
do and Gangwon-do (Figure 3a). However, in the GKFP, fog was mainly detected in the
West Sea (including Gyeonggi Bay), Jeollabuk-do, the North Gyeonggi region, and in the
mountainous regions of Gangwon (Figure 3b). There are areas where the detection results
of the two datasets match, such as Gyeonggi Bay and Jeollabuk-do, but there are also
areas where the detection results do not match, such as the west coast, south coast, and
Gangwon-do. In the HRBFD, which is a blending of the two grid-type datasets, sea fog that
did not exist in the GVD was detected well (Figure 3c). It also detects the fog that occurs



Remote Sens. 2024, 16, 2350 10 of 17

widely in Gangwon-do, which is under-detected in the GVD. The widespread occurrence
of undetected fog in the GVD derived from the visibility meter is probably because the
visibility meter is rarely installed in Gangwon-do, where there are many mountainous
areas (Figure 1). In addition, the HRBFD detects the fog that occurred on the south coast,
which was impossible to detect in the GKFP due to middle-high clouds, and some localized
fogs in Jeollabuk-do, which were not detected in the GKFP.

Figure 4 shows a case where localized fog occurred in Seoul, Gyeonggi-do,
Chungcheongbuk-do, the south coast, all over the inland area (Figure 4a), and most of
the Gyeongsang region (Gyeongsangbuk-do and Gyeongsangnam-do) except for some
areas, and where the south coast was extensively clouded (Figure 4a,d). In the GVD, the
fog that occurred locally in the inland area of South Korea was observed well regardless
of the clouds, whereas in the GKFP, the fog was not detected due to the middle-high
clouds that occurred above the fog (Figure 4a,b). In the HRBFD, localized fog in areas with
clouds is well detected along with sea fog on the south coast (Figure 4c). However, when
compared with the GK2A visible image, the cloud edges and low clouds seen in some areas
of the Gyeongsang region and the south coast of the South Sea were falsely detected as fog
(Figure 4c,d). This appears to be a false detection due to an error in the clear sky radiance
data used to distinguish between low clouds and fog in the GK2A fog detection algorithm,
and it is considered to be a problem that will be resolved if the accuracy of the GK2A fog
detection algorithm is improved [30].

As shown in the GVD, Figure 5 shows the dawn (06:00 KST) when the fog was strongly
generated as a case of radiation fog that occurred strongly throughout the inland area of
South Korea. The fog was mainly generated in Jeollanam-do and Gyeongsangnam-do, and
it can be seen that localized fog occurred in some areas of northern South Korea (Figure 5a).
The GKFP detects fog in Jeollanam-do and Gyeongsangnam-do but not localized fog
(Figure 5b). Even in the HRBFD, fog that occurred in southern South Korea was detected
well with the fog pixel (Both_fog) in both datasets (Figure 5c). In addition, the HRBFD
detects the fog that occurred widely in northern South Korea, which was not detected by
the GVD, and it also detects the very localized fog well. When visually compared with
the DCD image of GK2A, it can be confirmed that the HRBFD detected the fog strongly
generated throughout the inland area of South Korea (Figure 5d).

Figure 6 shows the result of the early morning (09:00 KST) during which the radiation
fog that occurred strongly inland on 24 September 2019 dissipated after sunrise. Both the
GVD and the GKFP detect locally generated fog (Figure 6a,b). In addition, the HRBFD
also detects localized fog well (Figure 6c). However, compared with the visible image of
GK2A, all three datasets detect only localized fog, unlike the visible image (Figure 6d). To
investigate the cause of the large difference between the visible image and the fog detection
images, the GVD and the visible image of the GK2A were animated. The difference
in fog detection between the two datasets was not significant before sunrise. However,
the difference started to increase after sunrise, and it was confirmed that the difference
increased as the fog dissipated. Therefore, this is due to the problem that the GK2A falsely
detects fog as the visibility is restored on the ground as it is heated from the ground when
the radiation fog is dissipated by sunrise. Still, the upper part of the fog remains as a
low cloud.

3.2. Analysis of Fog Occurrence Characteristics

The average, standard deviation (SD), and maximum frequency were analyzed to
analyze the average characteristics of the fog that occurred inland and in the surrounding
seas of South Korea using HRBFD for 23 cases (Figure 7). Since the occurrence time and
area are different according to the fog cases, the average, SD, and maximum frequency for
23 cases were analyzed after normalizing the fog occurrence frequency for each pixel by
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day, as shown in Equation (1). The results analyzed here differ from the climatological
characteristics of fog occurrence because only 23 fog cases were used.

NFF(i, j) = # of fog at pixel(i, j)/(24 h × 6 scenes/h), (1)
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Here, NFF is the normalized fog frequency for each pixel. The average NFF for 23 cases
occurred inland and on the west coast, and the average value was high, especially in the
vicinity of Cheongyang and Gunsan, with an average value of 0.20 or higher (Figure 7a).
On the other hand, the average of NFF is low in Gyeongsangnam-do Province, Seoul, and
the mountainous regions near the East Sea. In particular, as in Kang and Suh [34], when
examining the average NFF for seven major cities in South Korea, the average NFF in
six cities (the except being Incheon) is 0.03 or less, which is very low. On the other hand,
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the average NFF in Incheon is 0.09, which is relatively higher than in the other cities. As
mentioned by Kang and Suh [34], this phenomenon appears to result from urban heat
islands and changes in surface characteristics. The SD of the fog occurrence frequency in
the inland area is similar to the average NFF. However, the SD is high in the surrounding
seas including the west coast (Figure 7b). This is considered to be a problem caused by
the small number of sea fog cases among the 23 cases used in this study. Figure 7c shows
the maximum value for each pixel in the NFF values of 23 cases. In the surrounding seas,
including the west coast, the maximum value of NFF is higher than 0.5. This high NFF
means fog at the pixels appears for up to 12 h or more. Overall, the maximum value of NFF
appears to be higher in the sea than inland, which seems to be due to the characteristic that
the duration of sea fog is longer than that of radiation fog.

According to Lee and Ahn [35], the average number of fog days in Korea appears in
the order of summer-autumn-spring-winter. Although it is a limited case, here again, in
order to examine the seasonal characteristics of the fog occurrence frequency, we analyzed
summer and autumn, when the average number of fog days is high (Figure 8). The mean
values of NFF in summer and autumn showed distinctly different spatial distributions
(Figure 8a,b). In summer, a lot of sea fog occurs, mainly on the west coast and in the West
Sea, but there is a characteristic that there is less fog inland (Figure 8a). On the other hand,
there is a characteristic that radiation fog frequently occurs inland in autumn (Figure 8b).
The standard deviation for NFF is large mainly in the pixels with high NFF in the West Sea
in summer and mainly in the west coast in autumn (Figure 8c,d). Unlike Lee and Ahn [35],
who analyzed a continuous 20-year period, fog frequency analysis of 23 fog cases shows a
higher fog occurrence frequency in autumn compared to summer. This discrepancy is due
to the difference in the number of samples for fall and summer fog (# of fog in autumn is
22,480 (10 fog cases), and # of fog in summer is 6090 (8 fog cases)).
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Using the land–sea mask data of GK2A, the diurnal characteristics of fog occurrence
frequency according to geographic location were analyzed (Figure 9). At this time, since the
total number of pixels is different according to the geographic location, the normalized fog
occurrence frequency for each case was used, as shown in Equation (2), and the average,
SD, and maximum frequency for 23 cases were analyzed.

NFFL(k, t) = # of fog pixels(k, t)/total pixels for surface type (k) (2)

In Equation (2), NFFL is normalized fog frequency (k, t) by location, k is the ground
cover type (k = 1: land, k = 2: sea, k = 3: coast, k = 4: total), and t stands for time. The total
number of pixels according to geographic location is inland (18,307), sea (26,980), coast
(7613), and total output area (52,900 = 230 (nx) × 230 (ny)).

The temporal variation of the average NFFL(1, t) of 23 cases suggests that fog begins
to occur before dawn inland and occurs most at dawn (06:00–08:00 KST) and that fog
rarely occurs after 10:00 KST (Figure 9a). In particular, from 10:00 KST to 19:00 KST, the
maximum value of NFFL(1, t) also has a value close to 0, so it can be seen that almost no
fog occurs. In other words, in the inland area of South Korea, the univariate characteristic
of radiation fog is prominent. The sea average NFFL(2, t) of 23 cases was relatively high
between 00:00–07:00 KST and 18:00–23:00 KST compared to other times of day but showed
an almost constant fog generation frequency regardless of time (Figure 9b). Although the
coastal areas show relatively stronger diurnal variation than the sea, even after sunrise,
the maximum value of NFFL(3, t) is 0.1 or higher, indicating that fog occurs during the
daytime in some areas (Figure 9c). This is because the characteristics of radiation fog and
sea fog appear complexly in the coastal area. Although the fog is dissipated after sunrise, it
can be seen that the sea fog advected to the coastal area still exists. Despite the use of only
23 cases in this study, these results are in good agreement with the statistical analysis of
past fog [17,34].
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4. Discussion

In precipitation, AOD, etc., the fusion of satellites and various observation data (or
simulation data by various numerical models) has been actively progressing [21,22,24,25,27].
However, there is still no fusion of data for fog. Considering the locality of fog and the
impact of fog on traffic, health, and the radiation budget, high-resolution fog data are
needed in terms of space–time. In South Korea, visibility data are provided every 1 min
in more than 250 observation stations, and fog product with high resolution in space
(2 km) and time (10 min) is provided in real-time from GK2A. Therefore, if these datasets
are properly fused, it will be possible to produce 2 km resolution fog data for the inland
area and nearby seas of South Korea at least every 10 min. In this study, we first tried to
fuse the GVD generated by IDW method at 10 min intervals with the GKFP. As suggested
in the space–time characterization analysis of fog generation using HRBFD data, the fused
data of the GVD and GKFP can compensate for the shortcomings of the visibility data and
satellite fog product.

Using the HRBFD data, it will be possible to analyze the characteristics of fog gen-
eration in South Korea, including sea and mountain areas where there are few or no
observation stations and where the limited visibility allows for low detail in terms of space
and time. For GVD, the spatial distribution analysis showed that the local characteristics
of fog were well preserved without significant attenuation. Additionally, quantitative
validation results indicated a low root mean square error (RMSE), averaging around
140 m, which supports the reliability of the data [29]. Regarding GKFP, the average POD is
above 0.80, and the average FAR is below 0.37. Han et al. [30] suggested that compared to
previous studies from the past five years, GKFP’s fog detection performance is similar to or
better than those studies. Based on this evidence, we assume GKFP to be a reliable dataset.
Thus, in the fusion process of GVD and GKFP, it is basically assumed that the quality of
both datasets is reliable.
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However, in the case of GVD, there are two problems. One is that the accuracy and
spatial representativeness of the observed visibility data have limitations. The other is that
the change in visibility is not simply inversely proportional to distance. In some cases,
visibility changes abruptly in urban areas and at the edges of fog. In addition, GKFP has
four main problems. The first is that the fog detection level is low in some cases. The
second is that there is a temporal discontinuity in the fog detection results due to the
difference in the available satellite channels depending on the day and night. The third
is that there is spatial discontinuity due to the difference in surface characteristics at the
land–sea boundary. And the fourth is that fog cannot be detected if there are clouds over
the fog.

Therefore, here, fusion is performed based on the pixel value of a specific period. In
the future, it is necessary to improve temporal continuity by using data from the previous
time of fusion (10–30 min) and spatial continuity by comprehensively using data from
3 × 3 or 5 × 5 pixels.

5. Conclusions

As high-resolution fog monitoring data for locally occurring fog was required, this
study tried to blend the GVD [29] with the GKFP [30]. The GVD is constructed through
the IDW method using the visibility data of about 250 points located in South Korea.
The GKFP is the fog data detected using the GK2A/AMI and numerical model data.
GK2A land–sea mask data are used to analyze fog occurrence characteristics according to
geographical location.

As a blending method of GVD and GKFP, the DTM, which can quickly and accurately
blend, was used in order to consider the different characteristics of the two-input data
(categorical data and continuity data). The blending was categorized into three types
according to the presence of fog data: when both data exist, when only GVD exists, and
when only the GKFP data exists. The spatiotemporal resolution of HRBFD is a 2 km grid
and 10 min. And the area covers South Korea, including Jeju Island and the surrounding
seas. The data are categorized into ten types depending on the existence and characteristics
of the two datasets.

The GVD, the GKFP, the DCD, and visible images from the GK2A satellite were
visually compared to analyze the quality of the HRBFD. The HRBFD shows the fogs that
occurred in the sea or mountain area and that occurred locally. In particular, it seems to
have improved the level of fog detection in mountainous areas and seas where visibility,
which is a limitation of GVD, is rare or absent. In addition, it seems to solve to some extent
the problem of non-detected fog that occurred under the cloud and the low detection level
of localized fog. However, the HRBFD includes the problems that the GK2A fog detection
algorithm over-detects and shows an inability to detect fog when there are clouds in the
sea. These are considered to be problems to be solved when the accuracy of the GK2A fog
detection algorithm is improved.

The analysis results of the 23 fog cases of HRBFD showed that the characteristics of
fog occurrence in South Korea differ according to geographic location and time. The fog
occurs mainly in the inland area and west coast of South Korea, whereas the occurrence of
fog is low in Gyeongsangnam-do, the mountainous regions near the East Sea, and in six
large cities (but not in Incheon). The duration of fog is longer in sea fog than inland fog.
And the sea fog and inland fog occur mainly in summer and autumn, respectively. Also, in
the inland area, fog appears in the form of typical radiation fog that occurs at dawn and
dissipates after sunrise. On the other hand, in the sea, the frequency of occurrence is almost
constant regardless of time. In the coastal areas, the diurnal variation pattern is similar to
that of sea fog.

The 10 min and 2 km resolution of the HRBFD data produced in this study showed
that it was possible to detect locally occurring fog and fog that occurred in the mountains
and seas. Therefore, if such HRBFD is produced for a long period of time, it will be
possible to analyze the climatic characteristics of fog occurrence in South Korea and to
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verify the accuracy of fog forecasting in detail. Since the currently produced HRBFD data
is categorical data, the intensity of fog cannot be analyzed. To improve this problem, it is
necessary to include fog intensity information in the HRBFD product.
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