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Abstract: Estimating city–scale emissions using gridded inventories lacks direct, precise measure-
ments, resulting in significant uncertainty. A Kalman filter integrates diverse, uncertain information
sources to deliver a reliable, accurate estimate of the true system state. By leveraging multiple
gridded inventories and a Kalman filter fusion method, we developed an optimal city–scale (3 km)
FFCO2 emission product that incorporates quantified uncertainties and connects global–regional–city
scales. Our findings reveal the following: (1) Kalman fusion post–reconstruction reduces estimate
uncertainties for 2000–2014 and 2015–2021 to ±9.77% and ±11.39%, respectively, outperforming
other inventories and improving accuracy to 73% compared to ODIAC and EDGAR (57%, 65%).
(2) Long–term trends in the Greater Bay Area (GBA) show an upward trajectory, with a 2.8% rise
during the global financial crisis and a −0.19% decline during the COVID-19 pandemic. Spatial
analysis uncovers a “core–subcore–periphery” emission pattern. (3) The core city GZ consistently
contributes the largest emissions, followed by DG as the second–largest emitter, and HK as the
seventh–highest emitter. Factors influencing the center–shift of the pattern include the urban form of
cities, population migration, GDP contribution, but not electricity consumption. The reconstructed
method and product offer a reliable solution for the lack of directly observed emissions, enhancing
decision–making accuracy for policymakers.

Keywords: gridded FFCO2 emissions; Kalman filter; scales connecting; “core–subcore–periphery”
pattern; emission center–shift

1. Introduction

Urban areas, covering just 2% of the Earth’s surface, are responsible for over 70% of
global CO2 emissions [1]. In 2020, global fossil fuel CO2 (FFCO2) emissions surpassed
38 Gt, constituting more than 77% of total fossil fuel greenhouse gas (GHG) emissions
worldwide [2]. Cities themselves contribute over 70% of global FFCO2 emissions [3,4]
making them crucial units for implementing mitigation policies [5]. The IPCC emphasizes
the significant emission reduction potential in urban areas, which are both vulnerable
to climate change impacts and pivotal for effective solutions [6]. Despite this potential,
enacting mitigation measures at the city level remains challenging; each city’s unique
natural environment, economic status, urbanization level, industrial composition, and
energy consumption profoundly influence its carbon emissions. The diverse emissions
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and socio–economic profiles among cities necessitate tailored policy approaches. China,
experiencing rapid economic growth and urbanization, generates 85% of its direct carbon
emissions from cities, contributing over 27% to global CO2 emissions [7,8]. Pressure mounts
on China to implement effective urban strategies for emission reduction and economic
growth alignment. Therefore, a precise quantification of urban FFCO2 emissions is essential
for crafting mitigation policies that support global warming goals, including achieving
carbon neutrality by 2050 [9].

Three main methods are commonly used to estimate fossil fuel CO2 (FFCO2) emis-
sions: bottom–up, top–down, and hybrid approaches [3,5,10]. Top–down methods rely
on atmospheric and inversion modeling to independently estimate emissions, emphasiz-
ing a production–based accounting method. These methods are valuable for assessing
energy flows between regions and countries, and for evaluating city–level bottom–up
estimates [11,12]. While top–down methods have shifted focus from global/continental to
regional scales, they have proven to be more efficient for non–CO2 greenhouse gases [13].
Bottom–up methods estimate FFCO2 emissions employing standardized protocols, mul-
tiplying sectoral activity data (e.g., fuel sales) with pre–calculated emission factors for
various socio–economic sources at every stage of human activity and a life cycle analysis
(LCA) [14,15]. However, at finer spatial scales, the proxy approach may not accurately
capture emission source distributions [16]. The hybrid approach integrates bottom–up,
top–down, and other methods, utilizing global gridded emission inventories to downscale
total FFCO2 emissions to finer resolutions over specific spatial and temporal intervals [3].
This downscaling involves using spatial surrogates, such as population density [17], land
use [18], or nighttime lights [19,20], or combining point sources like power plants [21]
and line sources like on–road emissions [22,23], to construct high–resolution urban FFCO2
emission maps. Multi–source spatial proxies and linear and panel regression models aid in
downscaling emissions and resolution enhancement. Uncertainty in emission estimates
is categorized into magnitude uncertainty linked to pre–downscaled emissions, which
are typically provided by national fuel consumption accounts [24], and disaggregation
uncertainty, which is associated with the downscaling process, stemming from imperfect
spatial proxies [25]. Uncertainties persist in bottom–up emission estimates at regional
and city scales, largely due to data gaps, insufficient information on energy and fuel use
statistics, and outdated or inaccurate emission factors [16], with city–scale uncertainties
ranging from 50% to 250% for the northeast USA [26] and up to 300% for the Beijing–
Tianjin–Hebei region [27]. These uncertainties surrounding bottom–up inventories hinder
the development of urban carbon emissions mitigation strategies [28]. The current body
of research predominantly centers on leveraging multi–source spatial proxies to facilitate
downscaled emissions and resolution enhancement with the aim of mitigating uncertainty.
Alternatively, various bottom–up FFCO2 emission inventories are juxtaposed to ascertain
discrepancies between them. However, there remains a scarcity of fusion or reconstruction
methodologies that amalgamate the strengths of diverse emission datasets to ascertain the
optimal regional spatial resolution of fossil fuel CO2 emissions.

In light of the aforementioned efforts, this paper aims to enhance the understanding
of the uncertainty and spatial–temporal dynamics of FFCO2 emission in the Guangdong–
Hong Kong–Macao Greater Bay Area (GBA) through a comparative analysis of three
hig–precision global FFCO2 emission products and a fusion algorithm based on a Kalman
filter at an urban scale. This paper addresses the question of the optimal spatial resolution
for the fusion of FFCO2 emission products, with the objective of reconstructing a set of
FFCO2 emission data products representative of regional scale characteristics at 3 km in
the GBA. Through rigorous verification, our dataset, combined with auxiliary data sources
such as nighttime light (NTL), Gross Domestic Product (GDP), population density (POP),
and land use (LU), was utilized to examine the contributing factors influencing FFCO2
emissions in both urban and rural areas.
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2. Materials and Methods
2.1. Study Area

The GBA is a prominent city cluster located in southern China, comprising 11 cities
within Guangdong province (see Figure 1a). With a total area of 56,000 km2 and a popu-
lation of approximately 86.69 million as of the end of 2021, the region boasts a complete
industrial system, a high concentration of innovative elements, and a high degree of in-
ternationalization. Recognized as one of China’s most open and economically dynamic
regions [29], the GBA has achieved a level of development comparable to that of established
economies [30]. The Guangdong–Hong Kong–Macau Bay Area Development Plan Outline [31],
unveiled in 2019, underscores the importance of leveraging the combined advantages
of Guangdong (GD), Hong Kong (HK), and Macao (MC) to drive deeper integration
within the region, foster coordinated economic development, and construct an interna-
tional world–class bay area suitable for living, working and traveling. Additionally, the
GBA is committed to promoting ecological conservation, embracing green development
goals, and advancing sustainable practices. The GBA’s new mission centers on pursu-
ing green, low–carbon circular development and establishing itself as a model of green
development excellence.
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Figure 1. The location, geographic scope, and Urban–Rural Divide of the GBA: (a) The GBA is
comprised of 11 cities, including the core cities of Guangzhou (GZ), Shenzhen (SZ), Hong Kong
(HK), and Macao (MC), as well as the key node cities of Foshan (FS), Dongguan (DG), Zhuhai (ZH),
Zhongshan (ZS), Zhaoqing (ZQ), Jiangmen (JM), and Huizhou (HZ). (Note: ArcGIS Pro, Version 3.0.2,
ESRI was utilized to create this figure). (b) Urban–Rural Divide in 2021 generated from land use
cover of GBA.

2.2. Gridded High–Resolution FFCO2 Emission Inventories and Auxiliary Socio–economic Data

Gridded high–resolution emission inventories, commonly used to pinpoint emission
hotspots, rely on emission bookkeeping and subsequent spatial and temporal allocation
to create a gridded emission dataset, typically at a spatial resolution of 1–10 km [32]. The
spatial allocation of high–resolution grid emission data often involves the use of proxy
variables as allocation factors to distribute total emissions at a finer scale through a down-
scaling technique. However, this method inherently introduces uncertainty, particularly
as the correlation between the proxy variable and emissions diminishes. In this study,
three inventories served as the primary data sources for data reconstruction, with one
near–real–time dataset employed for verification purposes (Table 1).

The Emissions Database for Global Atmospheric Research (EDGARv7.0) undergoes
evaluation by the Joint Research Center (JRC) of the European Commission and the Nether-
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lands Environmental Assessment Agency using Bayesian Estimation and Optimization
(BEO) methodology. International Energy Agency (IEA) CO2 emissions from fossil fuel
combustion sources have been included to harmonize global CO2 emission estimates.
Notably, EDGARv7.0 features updated activity data types, including combustion–related
and agriculture–related emissions, along with refined spatial proxies for electricity genera-
tion, industrial facilities, intensive livestock, population distribution, and non–residential
areas [33,34]. This cutting–edge inventory dataset offers consistent harmonized global
monthly FFCO2 emissions in 16 sectors on a 0.1◦ × 0.1◦ resolution grid, covering an
extensive time series from 1970 to 2021 [35]. The Open–Source Data Inventory for Anthro-
pogenic CO2 (ODIAC2022), commonly integrated into flux inversions and urban carbon
emission estimates [4,36,37], was developed by the National Institute for Environmen-
tal Studies (NIES). ODIAC2022 downscales national FFCO2 emission estimates from the
Carbon Dioxide Information Analysis Center (CDIAC) by incorporating various spatial
proxies, such as individual power plant emissions, location profiles, nightlight observa-
tions, and aircraft and ship fleet tracks for FFCO2 distribution. Evolving since its initial
release in 2011, ODIAC2022 has been enhanced through collaborations with the National
Aeronautics and Space Administration (NASA) Black Marble Nighttime light product
suite (VNP46) (available at 500 m resolution) [38] and the latest country–level FFCO2 es-
timates (2000–2019) from the CDIAC team at the Appalachian State University [39]. The
most recent iteration, ODIAC2022, spans from 2000 to 2021and is available in two resolu-
tions/formats: 1 km × 1 km/GeoTIFF and 1◦ × 1◦/NetCDF. The Peking University CO2
emission inventory version 2 (PKU–CO2–v2) [40] was developed using a bottom–up sub-
national disaggregation method (SDM) [21] based on 64 fuel subtypes across 5 categories
and 6 sectors, featuring a spatial resolution of 0.1◦ × 0.1◦ and a monthly temporal reso-
lution spanning from 1960 to 2014. A collaborative effort between Peking University, the
French Laboratory of Climate and Environmental Sciences, and the Sino–French Institute
for Earth System Science, this product provides detailed insights into CO2 emissions at a
subnational level.

The near–real–time Global Gridded Daily CO2 Emissions Dataset (GRACED) devel-
oped by Tsinghua University offers a detailed gridded representation of CO2 emissions at
a spatial resolution of 0.1◦ × 0.1◦ and a temporal resolution of 1 day, focusing on emissions
from cement production and fossil fuel combustion in seven sectors [41]. GRACED inte-
grates near–real–time daily national CO2 emission estimates from Carbon Monitoring [42],
spatial activity data emissions from multiple sources, and satellite NO2 data to capture
temporal variations in these spatial activities. Notably, GRACED introduces a grid–level
two–sigma uncertainty of ±19.9% in 2021 [43], underscoring the dataset’s reliability, de-
spite its enhanced spatio–temporal resolution. This meticulous approach ensures that the
precision of GRACED remains robust, while providing detailed insights into daily CO2
emissions dynamics.

Table 1. Information about the high–resolution grided FFCO2 emission inventories used in this study.

Property
Datebase

EDGARv7.0 ODIAC2022 PKU–CO2–v2 GRACED

Level National–level data National– and
subnational–level data

National– and
subnational–level data Global and national

Methodology
Bottom–up, transparent,

and IPCC–compliant
approach

Downscaled with
multiple spatial proxy

data (geographical
location of point
sources, satellite
observations of

nightlights, and aircraft
and ship fleet

tracks, etc.)

Bottom–up apparent
consumption Hybrid methods
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Table 1. Cont.

Property
Datebase

EDGARv7.0 ODIAC2022 PKU–CO2–v2 GRACED

Time window 1970–2021 2000–2021 1960–2014 January 2019–October
2023

Spatial resolution 0.1◦ × 0.1◦ 1 km × 1 km/1◦ × 1◦ 0.1◦ × 0.1◦ 0.1◦ × 0.1◦

Original unit kg m−2 s−1 tonne carbon/cell G km−2 month−1 kgC/h

Fossil CO2 sources

Fossil fuel combustion,
metal (ferrous and

non–ferrous) production
processes, non–metallic

mineral processes (such as
cement production), urea
production, agricultural
liming, and solvent use

Fuel use (coal, oil, and
gas), cement

production, and
gas flaring

Wildfires, natural gas
flaring, agricultural

solid wastes,
non–organized waste

incineration, dung
cake, others

Power, industry,
residential

consumption, ground
transportation,

domestic aviation,
international aviation,

and international
shipping

Point source

CARbon Monitoring and
Action (CARMA:

www.carma.org), the place
of the industrial facilities

CARMA CARMA N/A

Non–point source
Agricultural fields,

population,
nighttime light

Nighttime light
(VNP46)

Population, nighttime
light, vegetation

Hourly datasets of
electric power

production and
associated CO2

emissions in
31 countries

Aviation Road network U.N. statistical data
(AERO2k)

Using CO emissions
as a proxy

TomTom, Paris data,
EDGAR “road

transportation” sector,
Flightradar24, EDGAR

shipping emissions

Download link

EDGAR 7.0. Available
online:

https://edgar.jrc.ec.
europa.eu/dataset_ghg70
(accessed on 28 June 2023)

ODIAC2022. Available
online:

http://db.cger.nies.go.
jp/dataset/ODIAC/

(accessed on
28 June 2023)

PKU–Fuel. Available
online: https://gems.

sustech.edu.cn/
(Previous website is

http://inventory.pku.
edu.cn/, accessed on

28 June 2023)

GRACED. Available
online: https://

carbonmonitor-graced.
com/index.html

(accessed on
28 June 2023)

Reference [44–46] [16,19,47] [21,48,49] [41–43,50]

Four key socio–economic indicators—NTL, GDP, POP, and LU—served as founda-
tional data for our spatio–temporal dynamics analysis. We leveraged an extensive time
series spanning 2000 to 2018 of NPP–VIIRS–like NTL data [51] in the WGS84 coordi-
nate system, boasting a spatial resolution of approximately 500 m. This dataset, avail-
able on the Harvard Dataverse website (https://dataverse.harvard.edu/, accessed on
15 March 2024), is the product of a unique cross–sensor calibration approach that inte-
grates a vegetation index and an auto–encoder model built on two types of stable NTL
data. In addition, global 1 km × 1 km gridded revised real GDP data [52], covering the
period from 1992 to 2019, are openly accessible on Figshare (https://figshare.com/, ac-
cessed on 15 March 2024). This dataset, derived from another continuous and calibrated
NTL dataset, offers a growth rate perspective with a top–down method optimized using
Particle Swarm Optimization–Back Propagation (PSO–BP). Furthermore, the WorldPop
datasets provide detailed POP data for individual countries for the years 2000 to 2020
(https://hub.worldpop.org/project/categories?id=18/, accessed on 15 March 2024) with a
resolution of approximately 1 km at the equator for all nations globally. These datasets are

www.carma.org
https://edgar.jrc.ec.europa.eu/dataset_ghg70
https://edgar.jrc.ec.europa.eu/dataset_ghg70
http://db.cger.nies.go.jp/dataset/ODIAC/
http://db.cger.nies.go.jp/dataset/ODIAC/
https://gems.sustech.edu.cn/
https://gems.sustech.edu.cn/
http://inventory.pku.edu.cn/
http://inventory.pku.edu.cn/
https://carbonmonitor-graced.com/index.html
https://carbonmonitor-graced.com/index.html
https://carbonmonitor-graced.com/index.html
https://dataverse.harvard.edu/
https://figshare.com/
https://hub.worldpop.org/project/categories?id=18/
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generated by dividing the population count in each pixel by the pixel surface area, using
an unconstrained top–down methodology.

Sentinel–2 multispectral imagery has proven instrumental in land use/land cover
(LULC) monitoring for urban area mapping [53] and carbon assessments [54]. We delin-
eated the Urban–Rural Divide (see Figure 1b) of the GBA by utilizing a 10 m annual land
use/land cover (9–class) dataset, derived from high–resolution Sentinel–2 imagery. The
segmentation process employed cutting–edge deep learning AI techniques, made freely
accessible through the Esri Sentinel–2 Land Cover Explorer (https://livingatlas.arcgis.com/
landcoverexplorer/, accessed on 29 June 2023). The primary objective of this divide is
to elucidate the impact of the complex interplay of socio–economic factors on transition
dynamics and cross–border emission patterns. It is evident that internal urban and rural
development levels among the city cluster are uneven, with suburban areas and rural areas
dispersed throughout the 11 cities. Grids with a resolution of 3 km were established on the
Esri Sentinel–2 Land Cover Type (LCT) within ArcGIS to align with the GBA scale. The
categorization into “Urban areas”, “Rural areas”, “Suburban areas”, and “Ocean areas”
was based on the proportions of “Built areas” or “Water areas” within each grid. The
classification criteria [55] were defined as follows, and the 10 m–resolution land cover
product enhanced the accuracy of the classification results: (1) grids with a “Built areas”
proportion > 10% were classified as “Urban areas”; (2) grids with a “Built areas” proportion
between 1% and 10% were classified as “Suburban areas”; (3) grids with a “Built areas”
proportion < 1% were classified as “Rural areas”; and (4) grids with a “Water” propor-
tion > 80% were classified as “Ocean areas”. This methodology provides a comprehensive
framework for characterizing land use patterns within the GBA region.

2.3. Fine Spatial Resolution Fusion Method

Accurately characterizing spatial and temporal patterns of urban surface emissions
poses a challenge for individual FFCO2 emission inventories. The differences and coeffi-
cients of variation (CVs) among these inventories must be quantified and incorporated into
the reconstruction algorithm. A crucial aspect of the reconstruction process is establish-
ing a connection between global and regional scales. Various studies have demonstrated
that leveraging mathematical models such as regression, assimilation, and neural net-
works, along with data sources like population figures, road networks, and NTL data, can
significantly enhance the accuracy of the spatio–temporal allocation of FFCO2 emission
inventories [56]. This study introduces a Kalman filter fusion algorithm to reconstruct a
new FFCO2 emission dataset at regional and urban scales. Subsequently, the temporal
trends and spatial characteristics are verified based on Carbon Budget and GRACED data
(refer to Figure 2).

The Kalman filter, an optimal estimation method encompassing prediction and correc-
tion, is a linear filtering technique that minimizes mean–square error. It excels in making
informed predictions for multiple sets of measurements with uncertain information [57].
Unlike other fusion methods with inherent limitations (e.g., the weighted average method’s
unsuitability for complex signal processing, Bayesian estimation’s requirement for prior
probabilities, the intricate nature of the Dempster–Shafer (DS) evidence theory, and the
computational intensity and local optimal solution challenges of artificial neural networks),
the Kalman filter fusion algorithm effectively compensates for errors between diverse
datasets, reducing spatial uncertainty at the regional scale. Additionally, it maintains tem-
poral consistency across multiple data sources, ensuring data smoothness and mitigating
the impact of outliers by iteratively updating estimates within the time series.

https://livingatlas.arcgis.com/landcoverexplorer/
https://livingatlas.arcgis.com/landcoverexplorer/
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In our specific calculation approach, considering the inherent errors in the ODIAC,
EDGAR, and PKU FFCO2 emission inventories that follow a Gaussian distribution, we
established a linear model. We utilized the uncertainties from these inventories as standard
deviations to build a relationship between the source inventory data and the predicted
FFCO2 emissions (Equations (1) and (2)). By iteratively updating the Kalman gain and esti-
mation error (Equations (3)–(5)), we derived the best–estimated value of FFCO2 emissions
when multiple sets of source inventory data are input for reconstruction in the GBA region.

The Kalman filter comprises five key formulas for prediction and correction. The
prediction Formulas (1) and (2) compute an a priori estimate and its covariance, while the
correction Formulas (3)–(5) determine the Kalman gains, an a posteriori estimate, and its
covariance, respectively.

X̂−
k = AkX̂−

k−1 + Bkuk, (1)

P−
k = AkPk−1 AT

k + Q, (2)

Kk =
P−

k HT
k

HkP−
k HT

k + R
, (3)

X̂k = X̂−
k + Kk(Zk − HkX̂−

k ), (4)

Pk = (I − Kk Hk)P−
k , (5)

The EDGAR data with the lowest uncertainty were used as the initial value to calculate
the first set of a priori estimates x̂−k and the a priori uncertainty as P−

k with its FFCO2
emissions and uncertainty. The uncertainty P−

k was then iterated as the standard deviation
R for updating, and the second set of inventory data was input to generate the a posteriori



Remote Sens. 2024, 16, 2354 8 of 19

estimate x̂k and the a posteriori estimate covariance Pk by the Kalman gain, which is the best
estimate and improved the uncertainty of the fusion result of these two sets of inventory
data. This best estimate was then iterated with the third set of emission data as the a priori
input value, and the resulting a posteriori estimate is the best estimate of the fusion result of
the three sets of inventory data, and the a posteriori estimate covariance is the uncertainty
of the fusion result of the three sets of inventory data.

In Equation (1), x̂−k denotes the a priori FFCO2 emissions of the kth set of emission
inventories, x̂k−1 denotes the best estimate of FFCO2 of the (k − 1)th set of emission
inventories fused by Kalman filtering, Ak denotes the state transfer matrix, and Bk and uk
represent the control input matrix and the control input vector at time step (k), respectively.
In Equation (2), P−

k denotes the uncertainty prediction value of the kth set of emission
inventories, and Pk−1 denotes the best covariance of FFCO2 of the (k − 1)th set of emission
inventories fused by Kalman filtering, and Q denotes the systematic error matrix, i.e.,
the systematic model error. In Equation (3), Kk denotes the Kalman gains, Hk denotes
the transformation matrix, and R denotes the uncertainty of each emission inventory. In
Equation (4), x̂k denotes the best fusion estimate of the kth set of emission inventories, and
Zk denotes the kth set of FFCO2 emissions of the emission inventories. In Equation (5),
Pk denotes the best covariance of the kth set of FFCO2 emission inventories fused by the
Kalman filter, and I denotes the unit matrix, which ensures the positive semi–definiteness
and physical reliability of the covariance matrix during state estimation.

3. Results
3.1. Kalman Fusion Results of Temporal Trends in FFCO2 Emissions

Comparing biases between ODIAC, EDGAR, and PKU, we found that the smallest
bias with a spatial resolution of 3 km × 3 km is optimally characterized in the GBA. Figure 3
illustrates the long–term trend of Kalman filter–fused FFCO2 emissions in the GBA from
2000 to 2021, along with a comparison to ODIAC, EDGAR, and PKU. The fusion results for
2000–2014 are based on three datasets. As PKU data are only available up to 2014, the fusion
results for 2015–2021 are reconstructed using ODIAC and EDGAR data only. Over the
21 years, FFCO2 emissions in the GBA have shown a continuous increase, with a faster rate
of increase in the first decade compared to the last decade. This trend is consistent with the
global fossil CO2 emissions reported by the Global Carbon Project (GCP) [58]. Specifically:
(1) From 2000 to 2009, the Kalman fusion results increased from 145.48 Mt in 2000 to
311.93 Mt in 2009, closest to PKU’s FFCO2 emissions. These values were significantly
lower than ODIAC’s (14.97~37.82 Mt) and higher than EDGAR’s (7.18~26.09 Mt) during
2007–2009; A 1.4% decrease occurred during the global financial crisis [59], reflected only in
ODIAC. The Kalman fusion results, EDGAR, and PKU continued to grow by 2.80%, 9.49%,
and 7.87%, respectively. (2) Between 2010 and 2014, PKU’s FFCO2 emissions exhibited a
decreasing trend of 2.90% and 4.50% in 2012 and 2014, while the Kalman fusion results
gradually aligned with ODIAC and EDGAR, showing similar trends and values, with
a maximum deviation of 9.73 Mt. (3) Post–2015, the Kalman fusion results followed a
similar trend to EDGAR and ODIAC, demonstrating greater data stability. Notably, during
the 8.8% decrease in 2020 due to COVID-19 restrictions [50], ODIAC showed the most
prominent decline (0.73%), followed by the Kalman fusion results (0.19%), with a slight
increase in EDGAR (0.37%).
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3.2. Kalman Fusion Results of FFCO2 Spatial Distribution

Figure 4 illustrates the spatial distribution of Kalman filter–fused FFCO2 emissions
in the GBA for the years 2000, 2009, 2010, 2011, 2014, 2016, 2019, 2020, and 2021. These
selected years capture significant changes in emissions patterns over time. Before fusion,
the uncertainties (standard deviation) of ODIAC, EDGAR, and PKU were ±17.5%, ±15%,
and ±19%, respectively. Post–fusion, the uncertainties of the Kalman fusion results for
the periods 2000–2014 and 2015–2021 are reduced to ±9.77% and 11.39%, respectively,
enhancing data accuracy and enabling a more precise characterization of spatial and
temporal FFCO2 emission patterns in the GBA at a regional scale. The spatial distribution
of FFCO2 emissions in the GBA over the 21–year period reveals a consistent trend: high–
emission zones centered around core cities (GZ, SZ, HK, and MC) and key node cities
(FS, DG, ZH, ZS) gradually tapering towards lower–emission zones at the periphery,
encompassing other key node cities (ZQ, JM, HZ). This regional development pattern
showcases the leadership role of central cities over key nodes. Moreover, the spatial
distribution demonstrates an overall annual growth trend, aligning with the findings in
Figure 3. Over the 21–year span, FFCO2 emissions escalated from below 100 kt yr−1 km−2

in most cities (except HK) to exceeding 500 kt yr−1 km−2 in some areas of some cities (HK,
GZ, FS, DG, and SZ). In particular, in 2000, almost all the cities in the GBA had FFCO2
emissions below 100 kt yr−1 km−2, except for the whole region of HK and parts of GZ,
FS, DG, and SZ, where emissions were 100 kt yr−1 km−2, and only sporadic locations had
emissions above 500 kt yr−1 km−2; by 2009, compared with the spatial distribution in 2000,
large areas with emissions exceeding 500 kt yr−1 km−2 appeared in the core cities of the
GZ–SZ border, in the southern part of SZ, and the eastern and southern parts of Hong
Kong, while the areas in the emission range (10~500 kt yr−1 km−2) were clearly spreading
out in all directions. In the following decade or so, the spatial distribution of the high–value
emission zones did not differ, although the trend of the regional average value continued to
rise slowly. The objective here is to illustrate the distribution of exceptionally high values
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(exceeding 500 kt yr−1 km−2) in the figure. By selecting 300 kt yr−1 km−2 as the dividing
line, we can observe the outward diffusion characteristics of the purple highest value.
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4. Discussion
4.1. Validation, Connecting Scales, and Uncertainties from Transferring Information from National
to Local

Significant relative differences in emissions estimates from four widely used global
inventories have been observed at regional (20%) and city scales (50–250%) [26]. In fact,
over half of the grid cells in the 0.1◦ domain exhibit differences exceeding 100%, with the
most substantial disparities occurring in urban areas and regions associated with oil and
gas production. Spatial emission patterns also display considerable variations (10–100%
relative difference at 1 km), particularly in urban–rural transition zones (90–100%) [16].
An analysis of the relative percentage error of grid cells at a 3 km resolution reveals an
average variability of 140% within the Greater Bay Area (GBA). More than half of the grids
exhibit a variability exceeding 130%, while over three–quarters demonstrate a variability
greater than 80%. Additionally, the coefficient of variation (CV) for emission grids in the
GBA ranges from 6% to 94% at resolutions between 0.5 and 5 km. Our reconstruction
results account for these differences and variability. Notably, the ODIAC data exhibit
significant instability and consistent deviations from EDGAR and PKU at resolutions of
0.5–5 km, as depicted in Figure 5a, corroborating findings from prior studies [36]. These
results underscore the prevailing uncertainties in fossil fuel CO2 (FFCO2) inventories at the
regional scale [15,27,37,60] and emphasize the importance of considering global–regional–
scale linkages when reconstructing inventory data. Our analysis indicates that the optimal
spatial resolution for reconstructing FFCO2 emissions in the GBA is 3 km × 3 km, with the
smallest deviation ranging from 0.12 to 63.84 Mt. This finding partially alleviates concerns
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raised in previous studies [26,61], as the significant uncertainties in these inventories do
not provide entirely accurate representations of FFCO2 emissions at subnational or urban
scales. Moreover, it offers a relatively reliable solution in the absence of other directly
observed emissions data.
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Figure 5. Scale verification of Kalman filter fusion results and comparison with Carbon Budget and
GRACED data: (a) Scale effects and uncertainties in data sources before reconstruction. (b) Compari-
son of global and regional Kalman fusion results and Carbon Budget emissions from 2000 to 2021
(sampling annual emission values in the European Union, Africa, Asia, Central America, Europe,
the Middle East, Oceania, South America, and North America). (c) Comparison of FFCO2 emissions
between Kalman fusion results and GRACED CO2 emission estimates in GBA. (d–f) Spatial difference
between Kalman integration results and GRACED CO2 emission estimates in GBA from 2019 to 2021.

To validate the accuracy and reliability of the reconstructed emissions, we compared
them with the Carbon Budget (see Figure 5b) and GRACED emission data (see Figure 5c–f).
Over the 21–year period at the global scale, the reconstructed results and the Carbon Budget
assessment exhibit a convergence over time, demonstrating a high correlation of 0.99. Both
datasets reflect the impact of significant global events that have imposed constraints on
human activities and global CO2 emissions. Notably, since 2014, the reconstructed results
have fluctuated marginally above and below the Carbon Budget assessment due to the
absence of PKU data. At the regional scale, the correlation coefficient between the Kalman
fusion results and the GRACED emissions reaches 73% when considering the annual
emission values of the 11 major cities in the GBA. This confirms that our estimates in the
GBA offer more accurate representations of FFCO2 emissions at the urban scale compared
to ODIAC and EDGAR, which exhibit correlation coefficients of 57% and 65%, respectively,
for New York City [26]. To further assess the spatial accuracy of the reconstructed data, we
compared them with GRACED emission data, which have a spatial resolution of 0.1◦ × 0.1◦

(derived from TROPOMI NO2 column data modeling). The analysis revealed that between
2019 and 2021, over half of the grids exhibited an absolute difference in emissions of less
than 7 kt C, while more than three–quarters of the grids showed an absolute difference
of less than 40 kt C. Additionally, less than 10% of grids displayed an absolute difference
exceeding 150 kt C. Large deviations (>100 kt C) were predominantly observed in the
core cities, indicating that the reliability of our fusion results is comparable to that of
GRACED [41,43]. These discrepancies may be attributed to the exclusion of domestic
aviation, international aviation, and international shipping data sources in our fusion data.
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4.2. City–Level Variation Pattern with Improved Estimates of FFCO2 Emissions

To determine the Kalman fusion results at the city level and analyze the regular center–
shift pattern of intercity emissions [62,63], we further estimated the FFCO2 emissions of
cities in the GBA during significant transition years, as illustrated in Figure 6. It is evident
that prior to 2014, both the reconstruction results and the PKU data exhibit higher sensitivity
to high–value emission zones. However, post–2014, the reconstruction results demonstrate
similar sensitivities to high–value emission zones as ODIAC and EDGAR. This indicates
that the reconstruction results can effectively capture the emission status of key cities in the
GBA, revealing the shift in emission centers among cities. Overall, the FFCO2 emissions
of all 11 cities in the GBA exhibit an upward trend over the 21–year period, aligning with
previous research findings [64,65]. This trend contradicts the notion that emissions peaked
in 2016 and subsequently declined annually [62]. Our results suggest a temporary growth
slowdown between 2014 and 2016, followed by a sustained increase in emissions.
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In terms of individual cities, particularly among the core cities, Macao SAR has consis-
tently been identified as a high–emission area, yet its total urban emissions have remained
relatively low due to its small footprint. Among the other core cities (GZ, SZ, HK), GZ has
consistently emerged as the largest contributor [62,65,66] to emissions over the 21–year
period, with emissions escalating from 29.76 Mt in 2000 to 82.21 Mt in 2021. While HK and
SZ held the second and third positions in 2000, this trend underscores the transformation
of core cities into major emission hubs, driven by factors such as favorable geographical
positioning, advanced economic development, high urbanization rates, robust industrial
configurations, and technological innovation [67,68]. By 2009, a shift in emissions focus had
already begun. While SZ, the former third–largest emitting city, has retained its position,
key node cities like FS and DG have experienced rapid emission growth, particularly DG,
which has ascended to become the second–largest emitting city. The strategic geographical
location of DG, positioned between GZ and HK, exposes it to the directional shift of carbon
emissions from southeast to northwest. Additionally, changes in urban morphology sig-
nificantly influence the carbon emissions of counties within DG. The emissions of other
key node cities like HZ and ZS have also surged, surpassing those of Hong Kong in 2010.
From 2011 to 2021, HK’s emission levels have consistently ranked seventh, attributed to the
city’s adoption of optimized economic development models and stringent environmental
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protection measures in alignment with emission reduction policies [69]. Conversely, other
key node cities like JM and ZH have exhibited lower emissions over the 21–year period
due to their distance from economic hubs, relative industrial and energy structures, limited
heavy industrial presence, and less–developed high–tech facilities. It is noteworthy that ZH,
despite its advantageous geographic positioning, has only experienced a modest increase
in FFCO2 emissions (12.02 Mt) over the 21–year period. In late 2014, ZH was designated as
a pilot demonstration city for low–carbon ecological collaboration between China and the
European Union. As the sole city in Guangdong province to receive this distinction, ZH’s
policy initiatives serve as a model for emulation in promoting sustainable practices.

4.3. FFCO2 Emission Contributors by Urban–Rural Divide

In the context of shifting FFCO2 emissions within the GBA over time, the conventional
‘core–periphery’ pattern [67] may no longer serve as the most reliable indicator of transition
or cross–border emission dynamics. To better understand these changes, we delineated the
Urban–Rural Divide within GBA lands based on 10 m Esri Sentinel–2 Land Cover Type
data, categorizing regions into ‘Urban’, ‘Suburban’, and ‘Rural’ areas. Concurrently, we
integrated spatio–temporal socio–economic data (NTL, GDP, POP) to gain insights into the
sources of emissions at the urban–rural interface (refer to Figure 1b). Using the Urban–Rural
Divide as a mask, we conducted a comprehensive analysis employing multiple regression
analysis to assess the contributions of factors such as GDP, POP, and energy consumption
(EC) which can be indirectly inferred from NTL data [70], to emissions in urban, suburban,
and rural areas of the GBA. Our findings, illustrated in Figure 7, reveal intriguing trends
in the sensitivity of FFCO2 emission formation based on the aforementioned contributors
over time. From 2000 to 2009, there was a notable increase in the share of EC–contributed
emissions across the GBA, followed by a decline from 2011 to 2019. This decline aligns with
heightened restrictions and controls on energy consumption, indicating a positive impact
on reducing FFCO2 emissions regionally. However, a contrasting pattern emerged in urban
areas, where the proportion of EC–contributed emissions exhibited fluctuations, suggesting
challenges in effectively curbing urban energy consumption despite ongoing emission
reduction policies. Interestingly, suburban areas maintained a relatively stable share of EC–
contributed emissions, while rural regions experienced a decline, possibly reflecting a trend
of rural–to–urban migration within the GBA. The diminishing role of energy consumption
and population [71] in rural emissions underscores the shifting dynamics within the region.
Moreover, our analysis highlights the significant influence of energy consumption on
suburban emissions, with GDP playing a more prominent role in suburban areas compared
to their urban and rural counterparts. Notably, suburbs located in peripheral cities like
ZQ, HZ, and JM demonstrate a balanced interplay between GDP and energy consumption
effects over the 21–year period. This approach and these findings quantitatively estimate
the relevance of different development levels of Urban–Rural Divides to specific human
activities or emission sources, explore cross–border emission dynamics. However, they
imply the intricate interplay of socio–economic factors in driving emissions patterns within
the GBA. It is therefore recommended that more high–precision data and targeted strategies
be employed to address the evolving dynamics of urban–rural emissions.
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5. Conclusions

This study utilized a variety of monitoring and reanalysis data spanning from 2000
to 2021 for the GBA, China. The aim was to develop an optimal regional spatial resolu-
tion product for FFCO2 emissions and enhance our understanding of the regional–scale
spatio–temporal dynamics of these emissions. To address uncertainties among the three
selected global–scale inventories in the GBA, a comparison and quantification of relative
differences and CVs were incorporated into the reconstruction algorithm. A Kalman filter
fusion method was then employed to reconcile errors between inventories and reduce
uncertainties in their spatial characteristics at the regional scale, resulting in a new regional
FFCO2 emission product that bridges the global and regional scales. The accuracy and
reliability of the reconstructed emissions in the GBA were further validated using real–time
data and an Urban–Rural Divide approach to analyze spatio–temporal variation patterns,
conduct a city–level cross–validation, and identify emissions contributors. The empirical
findings and conclusions are summarized as follows.
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Significant differences and CVs are observed among the inventories, particularly
at the regional and urban scales. The ODIAC inventory exhibits notable instability and
consistent deviations from EDGAR and PKU within the range of 0.5–5 km, with the smallest
deviation occurring at a 3 km × 3 km resolution. Grid cell variability in the three global
emission inventories in the GBA reaches up to 140%, with over half of the grid cells
showing a variability greater than 130% and more than three–quarters exceeding 80% at
3 km resolution. The CV of emission grids within the 0.5–5 km range varies from 6% to 94%.
Consequently, reconstructing the inventories offers a more reliable method for determining
the optimal spatial resolution with minimal deviation by linking global and regional scales,
when direct emissions data are unavailable.

Prior to reconstruction, uncertainties in the ODIAC, EDGAR, and PKU inventories
were ±17.5%, ±15%, and ±19%, respectively. Following the reconstruction, the uncertain-
ties in the Kalman fusion results for the periods 2000–2014 and 2015–2021 were reduced to
±9.77% and ±11.39%, significantly enhancing data accuracy, to better depict the spatial
and temporal patterns of FFCO2 emissions in the GBA at the regional scale. Our esti-
mates for FFCO2 emissions in the GBA offer a more precise reflection (73%) of urban–scale
emissions compared to ODIAC (57%) and EDGAR (65%) estimates for New York City.
Temporally, FFCO2 emissions in the GBA have shown a consistent upward trend over the
21–year period, with a faster increase in the first decade compared to the last. The result
does not show a decline in 2010, but rather an increase of 2.8%, influenced by the global
financial crisis. Nevertheless, the results demonstrate a notable decline of 0.19% due to the
implementation of restrictions associated with the global pandemic in 2020. Spatially, a
“core–subcore–periphery” pattern emerges, with economically robust cities such as GZ, SZ,
HK, and MC at the core, less developed cities like FS, DG, ZH, and ZS at the subcore, and
least developed cities like ZQ, JM, and HZ on the periphery.

The temporal evolution of the center–shift of the “core–subcore–periphery” pattern
was investigated through a city cross–variation analysis and contributors from the Urban–
Rural Divide. The FFCO2 emissions of all 11 cities in the GBA exhibited a consistent upward
trend over a 21–year period. While there was a brief slowdown in growth between 2014
and 2016, emissions continued to rise thereafter. The core city GZ consistently emerges as
the largest contributor to emissions throughout the 21–year period. By 2009, a noticeable
shift in emission centers had already begun. SZ, previously the third–largest emitter,
maintained its position, with subcore cities like FS and DG experiencing rapid emission
growth, particularly DG, which ascended to become the second–largest emitting city.
Starting from 2011, HK transitioned to the seventh–highest emitter position. The main
drivers behind the center–shift of the “core–subcore–periphery” pattern include the urban
layout of the 11 cities, influence from neighboring core cities, rural–to–urban population
migration, and the significant contribution of GDP from suburban areas. Notably, there
was no significant correlation found with electricity consumption

Given the pressing nature of the current decarbonization challenge, it is critical for
policymakers to rigorously evaluate the accuracy of foundational data, the spatio–temporal
dynamics of “core–subcore–periphery” emissions, the center–shift of the pattern, and
the key influencing contributors. This scrutiny will bolster the precision of decision–
making processes and expedite the decarbonization endeavor. In future studies, it is
recommended to integrate satellite CO2 observations with emission inventories to validate
the “core–subcore–periphery” emission pattern in the GBA. While current satellite data
may not yet be optimal for urban–scale emission research, preliminary investigations can
leverage multi–source satellite observations in conjunction with atmospheric chemistry
models. Subsequent research endeavors should focus on identifying relevant driving factor
variables, conducting quantitative analyses of the driving mechanisms using appropriate
models and research methodologies, and undertaking a systematic and comprehensive
examination of the underlying motivations behind the temporal and spatial evolution of
carbon emissions in the GBA.
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