Observation and Projection of Marine Heatwaves in the Caribbean Sea from CMIP6 Models
Abstract
:1. Introduction
- Characterize MHWs in the CAR using different metrics (mean intensity, duration, and frequency) calculated from daily SST time series from 1983–2012 period;
- Evaluate the reliability of 19 CMIP6 models to simulate MHWs in the CAR during the period of SST observations;
- Assess MWH projections from 2041 to 2100 using CMIP6 models under two SSPs scenarios (SSP245 and SSP585), providing insights into future MHW variations in the CAR.
2. Materials and Methods
2.1. MHWs Definition
2.2. Models and Observational Datasets
3. Results
3.1. Evaluation of CMIP6 Models Performance
3.2. MHWs from Observations in the 1983–2012 Period and Comparison to Models
3.2.1. Annual Variability
3.2.2. Interannual and Sub Annual Variability
3.2.3. Spatial Variability
3.2.4. MHWs Events
3.3. MHWs Projections for the 21st Century
4. Summary and Final Remarks
- -
- CMIP6 models showed significant trends in the spatially averaged MHWs frequency and mean duration but not in mean intensity during 1983–2012;
- -
- MHWs are more intense and frequent in warm–rainy months and longer-lasting in late boreal winter;
- -
- MHWs conditions at the beginning of the century will be nearly permanent in the Caribbean’s future.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, W.; Jiang, Z.; Li, L. Probabilistic Projections of Climate Change over China under the SRES A1B Scenario Using 28 AOGCMs. J. Clim. 2011, 24, 4741–4756. [Google Scholar] [CrossRef]
- Roemmich, D.; John Gould, W.; Gilson, J. 135 Years of Global Ocean Warming between the Challenger Expedition and the Argo Programme. Nat. Clim. Chang. 2012, 2, 425–428. [Google Scholar] [CrossRef]
- Cheng, L.; Zhu, J.; Abraham, J.; Trenberth, K.E.; Fasullo, J.T.; Zhang, B.; Yu, F.; Wan, L.; Chen, X.; Song, X. 2018 Continues Record Global Ocean Warming; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 1861-9533. [Google Scholar]
- Johnson, G.C.; Lyman, J.M. Warming Trends Increasingly Dominate Global Ocean. Nat. Clim. Chang. 2020, 10, 757–761. [Google Scholar] [CrossRef]
- Hobday, A.J.; Alexander, L.V.; Perkins, S.E.; Smale, D.A.; Straub, S.C.; Oliver, E.C.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Feng, M. A Hierarchical Approach to Defining Marine Heatwaves. Prog. Oceanogr. 2016, 141, 227–238. [Google Scholar] [CrossRef]
- Oliver, E.C.; Donat, M.G.; Burrows, M.T.; Moore, P.J.; Smale, D.A.; Alexander, L.V.; Benthuysen, J.A.; Feng, M.; Sen Gupta, A.; Hobday, A.J. Longer and More Frequent Marine Heatwaves over the Past Century. Nat. Commun. 2018, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Frölicher, T.L.; Laufkötter, C. Emerging Risks from Marine Heat Waves. Nat. Commun. 2018, 9, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Smale, D.A.; Wernberg, T.; Oliver, E.C.; Thomsen, M.; Harvey, B.P.; Straub, S.C.; Burrows, M.T.; Alexander, L.V.; Benthuysen, J.A.; Donat, M.G. Marine Heatwaves Threaten Global Biodiversity and the Provision of Ecosystem Services. Nat. Clim. Chang. 2019, 9, 306–312. [Google Scholar] [CrossRef]
- Pearce, A.; Jackson, G.; Moore, J.; Feng, M.; Gaughan, D.J. The “Marine Heat Wave” off Western Australia during the Summer of 2010/11; Western Australian Fisheries and Marine Research Laboratories: Hillarys, WA, Australia, 2011. [Google Scholar]
- Eakin, C.M.; Morgan, J.A.; Heron, S.F.; Smith, T.B.; Liu, G.; Alvarez-Filip, L.; Baca, B.; Bartels, E.; Bastidas, C.; Bouchon, C. Caribbean Corals in Crisis: Record Thermal Stress, Bleaching, and Mortality in 2005. PLoS ONE 2010, 5, e13969. [Google Scholar] [CrossRef] [PubMed]
- Holbrook, N.J.; Scannell, H.A.; Sen Gupta, A.; Benthuysen, J.A.; Feng, M.; Oliver, E.C.; Alexander, L.V.; Burrows, M.T.; Donat, M.G.; Hobday, A.J. A Global Assessment of Marine Heatwaves and Their Drivers. Nat. Commun. 2019, 10, 1–13. [Google Scholar] [CrossRef]
- Plecha, S.M.; Soares, P.M. Global Marine Heatwave Events Using the New CMIP6 Multi-Model Ensemble: From Shortcomings in Present Climate to Future Projections. Environ. Res. Lett. 2020, 15, 124058. [Google Scholar] [CrossRef]
- IPCC The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 2021; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- McCarthy, J.J. Climate Change 2001: Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001; Volume 2, ISBN 0-521-01500-6. [Google Scholar]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.; Senior, C.; Stevens, B.; Ronald, S. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organisation. Geosci. Model Dev. Discuss. 2015, 8, 10539–10583. [Google Scholar] [CrossRef]
- Qiu, Z.; Qiao, F.; Jang, C.J.; Zhang, L.; Song, Z. Evaluation and Projection of Global Marine Heatwaves Based on CMIP6 Models. Deep Sea Res. Part II Top. Stud. Oceanogr. 2021, 194, 104998. [Google Scholar] [CrossRef]
- Pilo, G.S.; Holbrook, N.J.; Kiss, A.E.; Hogg, A.M. Sensitivity of Marine Heatwave Metrics to Ocean Model Resolution. Geophys. Res. Lett. 2019, 46, 14604–14612. [Google Scholar] [CrossRef]
- Richardson, P.L. Caribbean Current and Eddies as Observed by Surface Drifters. Deep Sea Res. Part II Top. Stud. Oceanogr. 2005, 52, 429–463. [Google Scholar] [CrossRef]
- Darmaraki, S.; Somot, S.; Sevault, F.; Nabat, P.; Cabos Narvaez, W.D.; Cavicchia, L.; Djurdjevic, V.; Li, L.; Sannino, G.; Sein, D.V. Future Evolution of Marine Heatwaves in the Mediterranean Sea. Clim. Dyn. 2019, 53, 1371–1392. [Google Scholar] [CrossRef]
- Oliver, E.C.; Burrows, M.T.; Donat, M.G.; Sen Gupta, A.; Alexander, L.V.; Perkins-Kirkpatrick, S.E.; Benthuysen, J.A.; Hobday, A.J.; Holbrook, N.J.; Moore, P.J. Projected Marine Heatwaves in the 21st Century and the Potential for Ecological Impact. Front. Mar. Sci. 2019, 6, 734. [Google Scholar] [CrossRef]
- Plecha, S.M.; Soares, P.M.; Silva-Fernandes, S.M.; Cabos, W. On the Uncertainty of Future Projections of Marine Heatwave Events in the North Atlantic Ocean. Clim. Dyn. 2021, 56, 2027–2056. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, T.; Zhang, L.; Chen, X.; Zhang, W.; Jiang, J. Global Land Monsoon Precipitation Changes in CMIP6 Projections. Geophys. Res. Lett. 2020, 47, e2019GL086902. [Google Scholar] [CrossRef]
- Grose, M.R.; Narsey, S.; Delage, F.P.; Dowdy, A.J.; Bador, M.; Boschat, G.; Chung, C.; Kajtar, J.B.; Rauniyar, S.; Freund, M.B. Insights from CMIP6 for Australia’s Future Climate. Earth’s Future 2020, 8, e2019EF001469. [Google Scholar] [CrossRef]
- Kajtar, J.B.; Hernaman, V.; Holbrook, N.J.; Petrelli, P. Tropical Western and Central Pacific Marine Heatwave Data Calculated from Gridded Sea Surface Temperature Observations and CMIP6. Data Brief 2022, 40, 107694. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Song, Z.; Wang, X.; Misra, V. An Ocean Perspective on CMIP6 Climate Model Evaluations; Elsevier: Amsterdam, The Netherlands, 2022; p. 105120. ISBN 0967-0645. [Google Scholar]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and Their Energy, Land Use, and Greenhouse Gas Emissions Implications: An Overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Samuels, T.; Rynearson, T.A.; Collins, S. Surviving Heatwaves: Thermal Experience Predicts Life and Death in a Southern Ocean Diatom. Front. Mar. Sci. 2021, 8, 600343. [Google Scholar] [CrossRef]
- Holbrook, N.J.; Hernaman, V.; Koshiba, S.; Lako, J.; Kajtar, J.B.; Amosa, P.; Singh, A. Impacts of Marine Heatwaves on Tropical Western and Central Pacific Island Nations and Their Communities. Glob. Planet. Chang. 2022, 208, 103680. [Google Scholar] [CrossRef]
- Donovan, M.K.; Burkepile, D.E.; Kratochwill, C.; Shlesinger, T.; Sully, S.; Oliver, T.A.; Hodgson, G.; Freiwald, J.; van Woesik, R. Local Conditions Magnify Coral Loss after Marine Heatwaves. Science 2021, 372, 977–980. [Google Scholar] [CrossRef]
- Bove, C.B.; Mudge, L.; Bruno, J.F. A Century of Warming on Caribbean Reefs. PLoS Clim. 2022, 1, e0000002. [Google Scholar] [CrossRef]
- Smith, K.E.; Burrows, M.T.; Hobday, A.J.; Sen Gupta, A.; Moore, P.J.; Thomsen, M.; Wernberg, T.; Smale, D.A. Socioeconomic Impacts of Marine Heatwaves: Global Issues and Opportunities. Science 2021, 374, eabj3593. [Google Scholar] [CrossRef]
- Reyes, O.; Manta, G.; Carrillo, L. Marine Heatwaves and Marine Cold-Spells on the Yucatan Shelf-Break Upwelling Region. Cont. Shelf Res. 2022, 239, 104707. [Google Scholar]
- Martinez, S. THEMATIC REPORT FOR THE CENTRAL/SOUTH AMERICAN SUB-REGION. In Unpublished. CLME Project Implementation Unit, Centre for Resource Management and Environmental Studies (CERMES); University of the West Indies: Saint Michael, Barbados, 2007. [Google Scholar]
- Wilkinson, T.A.; Wiken, E.; Creel, J.B.; Hourigan, T.F.; Agardy, T. Marine Ecoregions of North America; Instituto Nacional de Ecología: Ciudad de México, Mexico, 2009; ISBN 2-923358-41-4. [Google Scholar]
- Torres, R.R.; Latandret, S.; Salon, J.; Dagua, C. Water Masses in the Caribbean Sea and Sub-Annual Variability in the Guajira Upwelling Region. Ocean Dyn. 2023, 73, 39–57. [Google Scholar] [CrossRef]
- GEBCO Gridded Bathymetry Data. Gridded Bathymetry Data. Available online: https://www.gebco.net/data_and_products/gridded_bathymetry_data/ (accessed on 30 April 2021).
- Jacox, M.G. Marine Heatwaves in a Changing Climate; Nature Publishing Group: London, UK, 2019. [Google Scholar]
- Hayashida, H.; Matear, R.J.; Strutton, P.G.; Zhang, X. Insights into Projected Changes in Marine Heatwaves from a High-Resolution Ocean Circulation Model. Nat. Commun. 2020, 11, 4352. [Google Scholar] [CrossRef] [PubMed]
- Sen, P. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods. Griffin, London. J. Econ. 1975, 13, 245–259. [Google Scholar]
- Mann, H.B. Nonparametric Tests against Trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Mitchell, J.M.; Dzerdzeevskii, B.; Flohn, H. Climate Change, 79th ed.; World Metereological Organization: Geneva, Switzerland, 1966. [Google Scholar]
- Huang, B.; Liu, C.; Banzon, V.; Freeman, E.; Graham, G.; Hankins, B.; Smith, T.; Zhang, H.-M. Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Clim. 2021, 34, 2923–2939. [Google Scholar] [CrossRef]
- Manta, G.; de Mello, S.; Trinchin, R.; Badagian, J.; Barreiro, M. The 2017 Record Marine Heatwave in the Southwestern Atlantic Shelf. Geophys. Res. Lett. 2018, 45, 12449–12456. [Google Scholar] [CrossRef]
- Perkins-Kirkpatrick, S.; King, A.D.; Cougnon, E.A.; Grose, M.R.; Oliver, E.C.J.; Holbrook, N.; Lewis, S.; Pourasghar, F. The Role of Natural Variability and Anthropogenic Climate Change in the 2017/18 Tasman Sea Marine Heatwave. Bull. Am. Meteorol. Soc. 2019, 100, S105–S110. [Google Scholar] [CrossRef]
- Ibrahim, O.; Mohamed, B.; Nagy, H. Spatial Variability and Trends of Marine Heat Waves in the Eastern Mediterranean Sea over 39 Years. J. Mar. Sci. Eng. 2021, 9, 643. [Google Scholar] [CrossRef]
- Cui, T.; Zhang, J.; Groom, S.; Sun, L.; Smyth, T.; Sathyendranath, S. Validation of MERIS Ocean-Color Products in the Bohai Sea: A Case Study for Turbid Coastal Waters. Remote Sens. Environ. 2010, 114, 2326–2336. [Google Scholar] [CrossRef]
- Taylor, K.E.; Juckes, M.; Balaji, V.; Cinquini, L.; Denvil, S.; Durack, P.J.; Elkington, M.; Guilyardi, E.; Kharin, S.; Lautenschlager, M. CMIP6 Global Attributes, DRS, Filenames, Directory Structure, and CV’s; PCMDI Document; 2018. Available online: https://docs.google.com/document/d/1h0r8RZr_f3-8egBMMh7aqLwy3snpD6_MrDz1q8n5XUk/edit (accessed on 26 June 2024).
- Gidden, M.J.; Riahi, K.; Smith, S.J.; Fujimori, S.; Luderer, G.; Kriegler, E.; van Vuuren, D.P.; van den Berg, M.; Feng, L.; Klein, D.; et al. Global Emissions Pathways under Different Socioeconomic Scenarios for Use in CMIP6: A Dataset of Harmonized Emissions Trajectories through the End of the Century. Geosci. Model Dev. 2019, 12, 1443–1475. [Google Scholar] [CrossRef]
- Torres, R.R.; Tsimplis, M.N. Seasonal Sea Level Cycle in the Caribbean Sea. J. Geophys. Res. Ocean. 2012, 117, C07011. [Google Scholar] [CrossRef]
- Kim, Y. KIOST KIOST-ESM Model Output Prepared for CMIP6 CMIP Historical. Earth Syst. Grid Fed. 2019. [Google Scholar]
- Taylor, K.E. Summarizing Multiple Aspects of Model Performance in a Single Diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Wehner, M.; Gleckler, P.; Lee, J. Characterization of Long Period Return Values of Extreme Daily Temperature and Precipitation in the CMIP6 Models: Part 1, Model Evaluation. Weather Clim. Extrem. 2020, 30, 100283. [Google Scholar] [CrossRef]
- Yang, X.; Huang, P. Improvements in the Relationship between Tropical Precipitation and Sea Surface Temperature from CMIP5 to CMIP6. Clim. Dyn. 2022, 60, 3319–3337. [Google Scholar] [CrossRef]
- Nooni, I.K.; Ogou, F.K.; Chaibou, A.A.S.; Nakoty, F.M.; Gnitou, G.T.; Lu, J. Evaluating CMIP6 Historical Mean Precipitation over Africa and the Arabian Peninsula against Satellite-Based Observation. Atmosphere 2023, 14, 607. [Google Scholar] [CrossRef]
- Gleckler, P.J.; Taylor, K.E.; Doutriaux, C. Performance Metrics for Climate Models. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Flato, G. Evaluation of Climate Models. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2013; pp. 741–866. [Google Scholar]
- Bustos, D.; Torres, R. Ocean and Atmosphere Changes in the Caribbean Sea during the Twenty-First Century Using CMIP5 Models. Ocean Dyn. 2021, 71, 757–777. [Google Scholar] [CrossRef]
- Costa, N.V.; Rodrigues, R.R. Future Summer Marine Heatwaves in the Western South Atlantic. Geophys. Res. Lett. 2021, 48, e2021GL094509. [Google Scholar] [CrossRef]
- Le Grix, N.; Zscheischler, J.; Rodgers, K.B.; Yamaguchi, R.; Frölicher, T.L. Hotspots and Drivers of Compound Marine Heatwaves and Low Net Primary Production Extremes. Biogeosciences 2022, 19, 5807–5835. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Shea, D.J. Atlantic Hurricanes and Natural Variability in 2005. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Gamble, D.W.; Curtis, S. Caribbean Precipitation: Review, Model and Prospect. Prog. Phys. Geogr. Earth Environ. 2008, 32, 265–276. [Google Scholar] [CrossRef]
- Wang, C.; Lee, S. Atlantic Warm Pool, Caribbean Low-Level Jet, and Their Potential Impact on Atlantic Hurricanes. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Enfield, D.B.; Lee, S.-K.; Wang, C. How Are Large Western Hemisphere Warm Pools Formed? Prog. Oceanogr. 2006, 70, 346–365. [Google Scholar] [CrossRef]
- Boehme, L.; Lonergan, M.; Todd, C.D. Comparison of Gridded Sea Surface Temperature Datasets for Marine Ecosystem Studies. Mar. Ecol. Prog. Ser. 2014, 516, 7–22. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Ebi, K.L.; Kemp-Benedict, E.; Riahi, K.; Rothman, D.S.; van Ruijven, B.J.; van Vuuren, D.P.; Birkmann, J.; Kok, K.; et al. The Roads Ahead: Narratives for Shared Socioeconomic Pathways Describing World Futures in the 21st Century. Glob. Environ. Chang. 2017, 42, 169–180. [Google Scholar] [CrossRef]
- DellaSala, D.A.; Goldstein, M.I.; Elias, S.A.; Lacher, T.E.; Pyare, S.; Jennings, B.; Mineau, P. Encyclopedia of the Anthropocene; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 0-12-813576-X. [Google Scholar]
- Cramer, K.L.; Jackson, J.B.; Donovan, M.K.; Greenstein, B.J.; Korpanty, C.A.; Cook, G.M.; Pandolfi, J.M. Widespread Loss of Caribbean Acroporid Corals Was Underway before Coral Bleaching and Disease Outbreaks. Sci. Adv. 2020, 6, eaax9395. [Google Scholar] [CrossRef] [PubMed]
- Graham, N.A.; Jennings, S.; MacNeil, M.A.; Mouillot, D.; Wilson, S.K. Predicting Climate-Driven Regime Shifts versus Rebound Potential in Coral Reefs. Nature 2015, 518, 94–97. [Google Scholar] [CrossRef]
- Lough, J.M.; Anderson, K.D.; Hughes, T.P. Increasing Thermal Stress for Tropical Coral Reefs: 1871–2017. Sci. Rep. 2018, 8, 6079. [Google Scholar] [CrossRef]
- Mumby, P.J.; Flower, J.; Chollett, I.; Box, S.J.; Bozec, Y.-M.; Fitzsimmons, C.; Forster, J.; Gill, D.; Griffith-Mumby, R.; Oxenford, H.A. Towards Reef Resilience and Sustainable Livelihoods: A Handbook for Caribbean Coral Reef Managers; University of Exeter: Exeter, UK, 2014; ISBN 0-902746-31-6. [Google Scholar]
- Barbeaux, S.J.; Holsman, K.; Zador, S. Marine Heatwave Stress Test of Ecosystem-Based Fisheries Management in the Gulf of Alaska Pacific Cod Fishery. Front. Mar. Sci. 2020, 7, 703. [Google Scholar] [CrossRef]
No. | Model Acronym | Country | Horizontal Resolution (Lon × Lat in Degrees) | References |
---|---|---|---|---|
1 | ACCESS-CM2 | Australia | 1.0 × 1.0 | [48] |
2 | ACCESS-ESM1-5 | Australia | 1.0 × 1.0 | [49] |
3 | BCC-CSM2-MR | China | 1.0 × 1.0 | [50] |
4 | CanESM5 | Canada | 1.0 × 0.5 | [51] |
5 | CESM2 | USA | 1.1 × 0.6 | [52] |
6 | CMCC-CM2-SR5 | Italy | 0.9 × 0.3 | [53] |
7 | CMCC-ESM2 | Italy | 1.0 × 0.8 | [54] |
8 | EC-Earth3 | UK | 1.0 × 1.0 | [55] |
9 | EC-Earth3-CC | UK | 1.0 × 1.0 | [55] |
10 | EC-Earth3-Veg | UK | 1.0 × 0.8 | [55] |
11 | EC-Earth3-Veg-LR | UK | 0.9 × 0.9 | [55] |
12 | GFDL-CM4 | USA | 1.0 × 1.0 | [56] |
13 | GFDL-ESM4 | USA | 0.5 × 0.5 | [57] |
14 | KIOST-ESM | South Korea | 0.5 × 0.8 | [44] |
15 | MIROC6 | Japan | 1.0 × 0.7 | [58] |
16 | MPI-ESM1-2-HR | Germany | 0.4 × 0.5 | [59] |
17 | MPI-ESM1-2-LR | Germany | 1.4 × 0.8 | [60] |
18 | NorESM2-LM | Norway | 1.0 × 0.5 | [61] |
19 | NorESM2-MM | Norway | 1.0 × 0.8 | [62] |
Model | STD | CORR | RMSE |
---|---|---|---|
ACCESS-CM2 | 1.10 | 0.50 | 1.07 |
* ACCESS-ESM1-5 | 1.05 | 0.74 | 0.74 |
BCC-CSM2-MR | 1.38 | 0.78 | 0.84 |
CanESM5 | 1.60 | 0.74 | 1.12 |
* CESM2 | 0.86 | 0.80 | 0.61 |
CMCC-CM2-SR5 | 1.59 | 0.76 | 1.07 |
CMCC-ESM2 | 1.27 | 0.77 | 0.81 |
EC-Earth3 | 1.46 | 0.76 | 0.93 |
EC-Earth3-CC | 1.39 | 0.76 | 0.85 |
EC-Earth3-Veg | 1.47 | 0.75 | 0.91 |
EC-Earth3-Veg-LR | 1.46 | 0.76 | 0.90 |
GFDL-CM4 | 1.11 | 0.73 | 0.92 |
* GFDL-ESM4 | 0.98 | 0.72 | 0.76 |
KIOST-ESM | 1.42 | 0.70 | 1.02 |
MIROC6 | 1.79 | 0.73 | 1.27 |
MPI-ESM1-2-HR | 1.21 | 0.72 | 0.83 |
MPI-ESM1-2-LR | 1.52 | 0.74 | 1.06 |
* NorESM2-LM | 0.81 | 0.68 | 0.76 |
* NorESM2-MM | 0.84 | 0.69 | 0.74 |
MMM | 0.95 | 0.77 | 0.64 |
5-MMM | 0.74 | 0.81 | 0.59 |
Intensity (°C) | Frequency (Total Events) | Duration (Days) | |||||||
---|---|---|---|---|---|---|---|---|---|
OISST | 5MMM | CESM2 | OISST | 5MMM | CESM2 | OISST | 5MMM | CESM2 | |
Mean | 0.94 | 0.41 | 0.59 | 362.77 | 244.01 | 208.73 | 7.96 | 15.97 | 14.71 |
Std | 0.06 | 0.02 | 0.06 | 409.29 | 291.19 | 259.84 | 1.88 | 7.97 | 6.48 |
MaV | 1.08 | 0.45 | 0.80 | 1525 | 929 | 888 | 14.25 | 38.50 | 31.35 |
Year MaV | 2005 | 1986 | 2007 | 2005 | 2004 | 1988 | 2010 | 2005 | 2008 |
MiV | 0.83 | 0.37 | 0.51 | 7.00 | 0.00 | 0.00 | 5.55 | 5.00 | 5.95 |
Year MiV | 2009 | 2006 | 2009 | 1991 | 1985 | 1986 | 1989 | 1999 | 1998 |
SSP245 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2041–2070 | 2071–2100 | |||||||||||
Intensity (°C) | Frequency (Total Events) | Duration (Days) | Intensity (°C) | Frequency (Total Events) | Duration (Days) | |||||||
5MMM | CESM2 | 5MMM | CESM2 | 5MMM | CESM2 | 5MMM | CESM2 | 5MMM | CESM2 | 5MMM | CESM2 | |
Mean | 0.72 | 0.78 | 417.93 | 291.53 | 85.62 | 90.48 | 1.18 | 1.34 | 237.35 | 200.17 | 101.92 | 110.58 |
Std | 0.18 | 0.34 | 105.82 | 122.40 | 10.61 | 19.80 | 0.12 | 0.32 | 25.54 | 12.20 | 7.54 | 4.60 |
MaV | 1.05 | 1.71 | 644.20 | 625.00 | 103.64 | 109.81 | 1.40 | 1.89 | 302.40 | 238.00 | 117.30 | 115.00 |
SSP585 | ||||||||||||
2041–2070 | 2071–2100 | |||||||||||
Mean | 1.10 | 1.29 | 299.47 | 239.40 | 95.66 | 98.30 | 2.23 | 2.75 | 196.71 | 186.79 | 111.84 | 130.56 |
Std | 0.31 | 0.51 | 94.85 | 100.47 | 12.42 | 16.51 | 0.34 | 0.48 | 2.82 | 16.79 | 5.94 | 4.57 |
MaV | 1.53 | 2.14 | 510.49 | 604.00 | 116.00 | 115.33 | 2.69 | 3.56 | 204.60 | 198.00 | 118.33 | 154.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bustos Usta, D.F.; Torres Parra, R.R.; Rodríguez-López, L.; Castillo Alvarez, M.; Bourrel, L. Observation and Projection of Marine Heatwaves in the Caribbean Sea from CMIP6 Models. Remote Sens. 2024, 16, 2357. https://doi.org/10.3390/rs16132357
Bustos Usta DF, Torres Parra RR, Rodríguez-López L, Castillo Alvarez M, Bourrel L. Observation and Projection of Marine Heatwaves in the Caribbean Sea from CMIP6 Models. Remote Sensing. 2024; 16(13):2357. https://doi.org/10.3390/rs16132357
Chicago/Turabian StyleBustos Usta, David Francisco, Rafael Ricardo Torres Parra, Lien Rodríguez-López, Maibelin Castillo Alvarez, and Luc Bourrel. 2024. "Observation and Projection of Marine Heatwaves in the Caribbean Sea from CMIP6 Models" Remote Sensing 16, no. 13: 2357. https://doi.org/10.3390/rs16132357
APA StyleBustos Usta, D. F., Torres Parra, R. R., Rodríguez-López, L., Castillo Alvarez, M., & Bourrel, L. (2024). Observation and Projection of Marine Heatwaves in the Caribbean Sea from CMIP6 Models. Remote Sensing, 16(13), 2357. https://doi.org/10.3390/rs16132357