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Abstract: Retrogressive thaw slumps (RTS) are a form of abrupt permafrost thaw that can rapidly
mobilize ancient frozen soil carbon, magnifying the permafrost carbon feedback. However, the
magnitude of this effect is uncertain, largely due to limited information about the distribution and
extent of RTS across the circumpolar region. Although deep learning methods such as Convolutional
Neural Networks (CNN) have shown the ability to map RTS from high-resolution satellite imagery
(≤10 m), challenges remain in deploying these models across large areas. Imagery selection and
procurement remain one of the largest challenges to upscaling RTS mapping projects, as the user
must balance cost with resolution and sensor quality. In this study, we compared the performance
of three satellite imagery sources that differed in terms of sensor quality and cost in predicting RTS
using a Unet3+ CNN model and identified RTS characteristics that impact detectability. Maxar
WorldView imagery was the most expensive option, with a ground sample distance of 1.85 m in
the multispectral bands (downloaded at 4 m resolution). Planet Labs PlanetScope imagery was
a less expensive option with a ground sample distance of approximately 3.0–4.2 m (downloaded
at 3 m resolution). Although PlanetScope imagery was downloaded at a higher resolution than
WorldView, the radiometric footprint is around 10–12 m, resulting in less crisp imagery. Finally,
Sentinel-2 imagery is freely available and has a 10 m resolution. We used 756 RTS polygons from
seven sites across Arctic Canada and Siberia in model training and 63 RTS polygons in model testing.
The mean IoU of the validation and testing data sets were 0.69 and 0.75 for the WorldView model,
0.70 and 0.71 for the PlanetScope model, and 0.66 and 0.68 for the Sentinel-2 model, respectively. The
IoU of the RTS class was nonlinearly related to the RTS Area, showing a strong positive correlation
that attenuated as the RTS Area increased. The models were better able to predict RTS that appeared
bright on a dark background and were less able to predict RTS that had higher plant cover, indicating
that bare ground was a primary way the models detected RTS. Additionally, the models performed
less well in wet areas or areas with patchy ground cover. These results indicate that all imagery
sources tested here were able to predict larger RTS, but higher-quality imagery allows more accurate
detection of smaller RTS.

Keywords: Arctic; permafrost; retrogressive thaw slump; deep learning; remote sensing

1. Introduction

As the Arctic warms roughly four times faster than the global average [1], permafrost
is thawing, causing these ecosystems to release CO2 and CH4 into the atmosphere and
accelerate climate change [2,3]. While gradual increases in active layer thickness, the
seasonally thawed layer at the top of the soil profile, have been well documented across
many sites in the Arctic [4–15], melting of excess ice contained within permafrost introduces
the potential for ground subsidence and thermokarst, the formation of depressions caused
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by differential rates of subsidence across the landscape [16–21]. Although field-based
studies on the impact of thermokarst processes on carbon cycling are too spatially and
temporally limited to provide circumpolar estimates [17,22–27], initial modeling efforts
suggest that thermokarst processes could double the warming impact of gradual permafrost
thaw [19]. Additionally, abrupt thaw accelerates lateral export of particulate and dissolved
organic carbon in water [28,29] and negatively impacts the travel and subsistence activities
of Arctic residents [30]. The combined global and local repercussions of this permafrost
carbon feedback make it important to understand where and how quickly permafrost is
thawing. Despite being widespread, thermokarst formation is challenging to detect due
to its sporadic nature in both time and space [31–37], meaning that circumpolar maps of
thermokarst disturbances do not exist. In part due to this, thermokarst is not represented
in Earth system models [38].

Although some forms of thermokarst, such as retrogressive thaw slumps (RTS), can
be visible in satellite imagery, and machine learning models have improved automated
detection of these features, mapping these features across the circumpolar region still
poses considerable challenges [39]. RTS are formed when thermoerosion exposes ice-rich
permafrost on a slope, forming a steep headwall above a highly disturbed slump floor
where bare ground is exposed [40,41]. Once exposed, the headwall continues to thaw
and erode, growing retrogressively up the slope at a rate of up to tens of meters per
year [42–46]. RTS can be active for decades before they stabilize and vegetation can re-
establish [47]. A number of remote sensing data types and techniques, such as LiDAR,
InSAR, and multispectral imagery, have been used to identify RTS [48–52]. Typically, these
data sources have been combined with manual image interpretation by researchers for RTS
detection in bounded study areas [33,42,45,50,52–59]. LiDAR and InSAR methods rely on
the elevational profile or elevational changes of RTS, while multispectral imagery relies
on the distinctive appearance of RTS due to steep headwalls that cast dark shadows and
exposed ground in the slump floor. Multispectral satellite imagery is particularly suited
to RTS mapping due to the greater availability of imagery with circumpolar coverage
at sufficiently high temporal and spatial resolutions to detect these small (typically <10
ha) disturbances. For these reasons, methods for automating the detection of RTS from
multispectral imagery have been developed in recent years [39,60–65].

Various multispectral satellite imagery products have been used for mapping RTS
with trade-offs between sensor quality, spatial resolution, temporal resolution, and cost.
Two proprietary satellite imagery products that have been commonly used in recent efforts
to map RTS features are WorldView (produced by Maxar) and PlanetScope (produced by
Planet Labs) [39,61–63]. WorldView imagery is available at up to 1.8 m spatial resolution
for the multispectral sensor and 0.46 m for the panchromatic sensor and has a revisit time of
up to 1.1 days. While WorldView imagery is very high quality, the cost can be prohibitive at
continental or global scales, although choosing a lower resolution for download reduces the
cost. The PlanetScope constellation of approximately 130 CubeSats provides daily global
coverage with a ground sample distance of 3.0–4.2 m (reprocessed to 3 m resolution in the
orthorectified products). These satellites provide less crisp images than larger satellites
like WorldView, but this is balanced by faster revisit times and lower costs. Open-access
imagery has lagged behind proprietary imagery in spatial and temporal resolution, but
Sentinel-2 imagery may be sufficient for mapping RTS features at large scales. With a
10 m resolution in the visible and near-infrared bands and a revisit time of 5 days, the
spatial resolution of Sentinel-2 multispectral imagery may be sufficient to map many RTS
features, although it would likely miss many smaller features. Because this imagery is
freely available and easy to access in Google Earth Engine (GEE) [66], the barriers to use
are minimal.

In this study, we compared the performance of WorldView, PlanetScope, and Sentinel-
2 imagery in mapping RTS features using a convolutional neural network (CNN) in order
to help inform the selection of imagery for future automated RTS mapping and identified
characteristics of RTS which impact their detectability. We expected that WorldView



Remote Sens. 2024, 16, 2361 3 of 21

imagery would provide the best RTS classification, followed by PlanetScope, and then
Sentinel-2, as WorldView imagery appears significantly more crisp than the other imagery
sources. As performance is not the only consideration, however, we also aimed to determine
if the performance of either PlanetScope or Sentinel-2 imagery was sufficient to justify
the lower (or nonexistent) cost of these imagery sources. To this end, we compared the
performance of each image type across RTS feature sizes, determined the RTS feature size
at which reliable results can be obtained from each, and identified characteristics of RTS
that can improve or hinder model predictions.

2. Materials and Methods
2.1. Study Regions

We selected seven sites across Arctic Canada and Russia where RTS have previously
been identified (Figure 1; see Nitze et al. 2021; Yang et al. 2023 for further details) [39,63].
These sites span a broad range of environmental conditions from taiga to Arctic desert.
Additionally, a subset of RTS features had already been manually delineated at these
sites for model training and validation. In Arctic Canada, the study regions included
Banks Island, Herschel Island, Horton Delta, and Tuktoyaktuk Peninsula. In Russia,
the sites included Kolguev Island, a small section of the Lena River, and the Yamal and
Gydan Peninsulas. Banks Island, Horton Delta, the Yamal and Gydan Peninsulas, and the
Lena River site tend to have RTS formation along lakes or rivers, while Herschel Island,
Tuktoyaktuk Peninsula, and Kolguev Island tend to have RTS formation along the coast.
Herschel Island and the Yamal and Gydan Peninsulas have the smallest RTS features
(typically <1 ha), while Banks Island has the largest features (exceeding 10 ha in some
cases). All regions were used in model training, and all sites except the Lena River and
Kolguev Island were used during model testing.

Remote Sens. 2024, 16, x FOR PEER REVIEW 3 of 23 
 

 

(CNN) in order to help inform the selection of imagery for future automated RTS 
mapping and identified characteristics of RTS which impact their detectability. We 
expected that WorldView imagery would provide the best RTS classification, followed 
by PlanetScope, and then Sentinel-2, as WorldView imagery appears significantly more 
crisp than the other imagery sources. As performance is not the only consideration, 
however, we also aimed to determine if the performance of either PlanetScope or 
Sentinel-2 imagery was sufficient to justify the lower (or nonexistent) cost of these 
imagery sources. To this end, we compared the performance of each image type across 
RTS feature sizes, determined the RTS feature size at which reliable results can be 
obtained from each, and identified characteristics of RTS that can improve or hinder 
model predictions. 

2. Materials and Methods 
2.1. Study Regions 

We selected seven sites across Arctic Canada and Russia where RTS have 
previously been identified (Figure 1; see Nitze et al. 2021; Yang et al. 2023 for further 
details) [39,63]. These sites span a broad range of environmental conditions from taiga to 
Arctic desert. Additionally, a subset of RTS features had already been manually 
delineated at these sites for model training and validation. In Arctic Canada, the study 
regions included Banks Island, Herschel Island, Horton Delta, and Tuktoyaktuk 
Peninsula. In Russia, the sites included Kolguev Island, a small section of the Lena River, 
and the Yamal and Gydan Peninsulas. Banks Island, Horton Delta, the Yamal and Gydan 
Peninsulas, and the Lena River site tend to have RTS formation along lakes or rivers, 
while Herschel Island, Tuktoyaktuk Peninsula, and Kolguev Island tend to have RTS 
formation along the coast. Herschel Island and the Yamal and Gydan Peninsulas have 
the smallest RTS features (typically <1 ha), while Banks Island has the largest features 
(exceeding 10 ha in some cases). All regions were used in model training, and all sites 
except the Lena River and Kolguev Island were used during model testing. 

 
Figure 1. Map of the locations of RTS features used in model testing. The Arctic Circle is shown as a
dashed line. Regions used only in model training are shown in gray, while all other regions, which
were used in model training and testing, are coded by color.
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2.2. Data
2.2.1. WorldView

We purchased 10,551 individual WorldView images taken during the summer be-
tween 2003 and 2020 (75% later than 2015) at 4 m resolution (Imagery ©2017–2021 Maxar,
Westminster, CO, USA; [63]) from imagery with a ground sample distance of 1.85 m. No
pre-processing of the images was deemed necessary. A single composite image in the
visible bands (RGB) was created for each region in Google Earth Engine.

2.2.2. PlanetScope

Composite images were created from PlanetScope PSScene surface reflectance imagery
(ortho_analytic_4b_sr and ortho_analytic_8b_sr bundles) for each study region [67]. This
imagery has a ground sample distance of approximately 3.0–4.2 m, depending on the
altitude and satellite version, and is available for download at 3 m resolution. However, the
full width at half maximum (FWHM) of PlanetScope ranges from 3.59 to 3.70 pixels in the
visible bands [68], indicating that the light included in the reflectance values of each pixel is
actually sourced from an approximately circular area with a diameter of at least 10 m. We
selected images for download programmatically and applied additional pre-processing to
improve geometric and radiometric calibration. Pre-processing was completed in Python,
as the geometric and radiometric calibration algorithms we used have been implemented
in Python, and compositing was completed in GEE. All code for PlanetScope download
and pre-processing is available on GitHub (https://github.com/whrc/planet_processing).

Images were selected based on year, season, and metadata provided by Planet Labs
and supplemented with metadata calculated from daily moderate resolution imaging
spectroradiometer (MODIS) imagery. For each composite image, we downloaded enough
individual images to cover the entire region ten times. All images were taken during the
period between spring snowmelt (the snow-free date was determined from MODIS) and
the end of September. We started by downloading images from July 31st and sequentially
added images from earlier and later in the growing season as needed to achieve our
desired image coverage. Years were selected to correspond to the dates of imagery used in
manual RTS delineation: 2018 for the Yamal/Gydan region and 2018–2019 for the remaining
regions. Cloud cover metadata provided by Planet Labs was used to further filter imagery
for download (max 40% cloud cover, but typically much less) and was supplemented by
cloud cover estimates from concurrent MODIS imagery, as there were a number of Planet
images with 100% cloud cover that were marked as 0% cloud cover in the Planet metadata,
and MODIS data could often catch these falsely marked images. While this method had the
potential to falsely mark clear PlanetScope images as cloudy based on the MODIS metadata,
we found that far more cloudy images were removed in this step than clear ones, thereby
avoiding the download of large quantities of cloudy imagery.

Following download, PlanetScope images were processed to improve geometric and
radiometric calibration and combined into composite images (Figure S1). Within each re-
gion, each image was geometrically aligned to a common Sentinel-2 composite image from
the same time period using the Automated and Robust Open-Source Image Co-Registration
(AROSICS) algorithm [69]. Second, variation in the magnitude of surface reflectance values
between images was reduced by radiometrically calibrating to the Sentinel-2 composite
using the Iteratively Reweighted Multivariate Alteration Detection (IRMAD) algorithm
(Figure S2). This algorithm identifies invariant pixels that can be used to develop a linear
regression between the two images [70,71]. The calibrated images were finally combined
into composite RGB+Near-Infrared (NIR) images (bands 1,2, 3, and 4 for the four-band
product, and bands 2, 4, 6, and 8 for the eight-band product) for each region by taking the
median surface reflectance value of each band on a cell-by-cell basis.

2.2.3. Sentinel-2

A single composite image was made from Sentinel-2 (European Space Agency) data in
GEE (https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2

https://github.com/whrc/planet_processing
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED#description
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED#description
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_SR_HARMONIZED#description, accessed on 15 June 2024). Surface reflectance images
between days of year 180 (end of June) and 273 (end of September) from 2017–2021 were
selected, as there were insufficient cloud-free pixels in the 2018–2019 Sentinel-2 data to
create a composite image which corresponded to the RTS delineation dates. A cloud filter
was applied to the images using a threshold of 15% from the Sentinel-2: Cloud Probability
layer in GEE, and a composite RGB+NIR image was created by taking the median value on
a cell-by-cell basis across all remaining images.

2.2.4. Additional Data Sources

In addition to the red, green, and blue (RGB) bands from one of the three imagery
sources, we also included five other bands in the imagery used for model training: Near
Infrared (NIR), Normalized Difference Vegetation Index (NDVI; (NIR − R)/(NIR + R)),
Normalized Difference Water Index (NDWI; (G − NIR)/(G + NIR)), and elevation data
(Figure S3). NIR was derived from the 10 m Sentinel-2 band 8 (WorldView and Sentinel-2
models) or the 3 m PlanetScope (PlanetScope model) band 4 (four-band PSB and PS2.SD
sensors) or 8 (eight-band PSB.SD sensors). NDVI and NDWI were derived from Sentinel-2
imagery as additional layers to represent vegetation growth and open water. Two additional
layers related to elevation were derived from the ArcticDEM [72]. First, we calculated
relative elevation from the ArcticDEM by subtracting a mean filter (30 m kernel) from the
raw elevation values. This layer was intended to enhance the signal of the characteristic
elevation difference of RTS features, which is often smaller than larger-scale topographic
features such as ridges and valleys. Second, we created an enhanced shaded relief layer
to highlight the slope and headwall of RTS features. The ArcticDEM is available at 2 m
resolution; therefore, all other image bands were upsampled to 2 m resolution prior to
model training in order to match the resolution of the ArcticDEM.

2.3. RTS Digitization

RTS feature outlines were manually digitized in ArcGIS Pro using the Esri base imagery
for use in model training, validation, and testing, as previously described in Yang et al. [63].
Manually searching for and digitizing RTS features from satellite imagery is a highly
time-consuming task as these features are small, spatially and temporally sporadic, and
highly changeable. Therefore, we were limited to 888 RTS polygons that were available for
use in model training, validation, and testing, even after pooling observations with another
lab [39]. Although some of these RTS polygons were previously delineated from individual
PlanetScope images by Nitze et al. [39], all polygons were re-delineated from the Esri base
imagery for this study to ensure consistency in methods between study regions and to allow
the use of higher-resolution imagery in determining “ground truth” than could be used in
the rest of the study (Esri base imagery cannot be downloaded for research purposes).

2.4. Deep Learning Model

We trained convolutional neural network models on three different imagery sources
to perform semantic segmentation of RTS features. Each model used the Unet3+ architec-
ture [61] with the EfficientnetB7 backbone [73], as this was the best-performing model in
Yang et al. [63]. Each model used the eight bands of input data described in Section 2.2,
with the only difference between the three models being the source of the RGB base map:
WorldView, PlanetScope, or Sentinel-2 (Figure S3). Satellite images and additional data
sources were cropped into 256 × 256 pixels using eight-band tiles containing RTS features.
All image bands were normalized to the range of 0 to 1. We tested more than 50 combina-
tions of different hyperparameters, loss functions, optimizers, batch sizes, and learning
rates manually and adopted the best set for use in model training. We used Tensorflow [74]
on Google Colaboratory (A100 GPU on Colab Pro+) to train our model. A total of 756
RTS scenes (85%) were used in training combined with image augmentation techniques
(scaling, flipping, affine transformation, elastic transformation, degradation, and dropout)
to alleviate overfitting. We used a geographically separated set of RTS polygons for valida-

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED#description
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED#description
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED#description
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tion during the model training process (69 features; 8%). The trained models were then
used to predict RTS on a geographically separated set of 63 testing image tiles (7%) that
the model had not seen before. We manually selected the training, validation, and testing
data sets to ensure geographically separated samples because it otherwise would have
been possible for RTS that appeared in multiple tiles to be included in more than one of
the training, validation, or testing groups. Model segmentation results (probability of RTS)
of the testing tiles were reclassified using a threshold of 0.5 to produce maps containing
RTS and background classes. For more details on the deep learning methods, please see
Yang et al. [63].

2.5. Testing/Analyses

All analyses were completed in R [75], primarily using the terra [76], sf [77,78], and
tidyverse packages [79]. All code used in analyzing the model testing results is publicly
available on GitHub (https://github.com/whrc/rts_data_comparison).

Intersection over union (IoU) was used to evaluate model performance. IoU is cal-
culated by taking the area of the intersection of a single predicted class and the ground
truth for that class divided by the area of the union of the same predicted class and the
ground truth. The mean IoU was calculated by taking the mean of the IoU for the RTS
class and the IoU of the background class for each model. Although each RTS feature had
its own data tile, there were cases where multiple RTS features appeared within a single
tile. To ensure that only one RTS feature was being analyzed within each tile, we masked
tiles with multiple RTS features such that only pixels that were closer to the RTS feature of
interest (the RTS feature for which that tile was created) than to any other RTS feature were
included in the calculation. The mean IoU is used for comparison with other models and
to allow for test images without RTS to be scored. However, the mean IoU is less useful
for evaluating individual RTS because the extent of background pixels is typically much
larger than the extent of RTS pixels (Figure S4). Often, this caused mean IoU to be much
higher than the RTS IoU, particularly in tiles with small, undetected, or poorly-predicted
RTS. Therefore, we used the RTS IoU in the following analyses to ensure that the results
reflected the ability of the CNN models to identify RTS specifically.

We determined how RTS feature area impacts the RTS IoU scores by fitting asymptotic
curves using the following equation:

RTSIoU =
A ∗ RTS Area
B + RTS Area

(1)

for each imagery type, where A is a horizontal asymptote representing the maximum
(predicted) RTS IoU and B is a vertical asymptote representing the minimum RTS Area
included in the nonlinear model.

Various thresholds were calculated to understand how large an RTS feature must
be for reliable detection across imagery types (Figure S5). First, we defined the detection
threshold as the RTS Area at which the predicted IoU exceeded 0.5, as this reflects the
threshold at which 50% of the union of the prediction and ground-truth overlap and is a
concrete threshold that researchers can base their imagery decisions on. Although this is a
somewhat arbitrary threshold value, we chose to use a value of 0.5 because it is halfway
between 0 (the model missed the feature) and 1 (perfect agreement between prediction and
ground truth), and the exact value of the threshold does not impact the order of the imagery
rankings. Second, we defined the model convergence threshold as the RTS Area at which
the slope of the predicted IoU approached zero (slope = 1 × 10−5; less than 0.1 increase in
the IoU per 1 ha), indicating that an increase in the RTS Area beyond this threshold did not
improve model predictions. Finally, the maximum RTS IoU was defined as the value of
parameter A (horizontal asymptote) from the fit asymptotic curves.

To investigate the characteristics of the imagery that allowed certain features to be
predicted better than others, we compared the input data based on the quality of model
predictions. We first normalized for the relationship between RTS Area and the IoU based

https://github.com/whrc/rts_data_comparison
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on the expectation that small RTS features would be too small to be easily detectable
in satellite imagery. Individual RTS features for which the RTS IoU fell above the 50%
confidence interval (CI) of the nonlinear model were considered to have a “high” prediction
quality (i.e., better prediction than expected for the size of the RTS feature), features which
fell below the 50% CI were considered to have a “low” prediction quality (i.e., worse
prediction than expected for the size of the RTS feature), and all others were considered
“expected”. For each of these classes, we compared the values of the individual input data
layers (e.g., relative elevation) within the RTS outline and in background pixels in order to
identify environmental conditions in the imagery that contribute to model performance.

In addition to the RTS Area, RTS shape may impact both the visibility of a feature
within different imagery products and the ability of the models to detect those features. For
example, long, narrow features might remain invisible in imagery despite covering a large
area, while smaller, round features could be visible. Therefore, we analyzed the additional
effect that RTS shape has on the relationship between the RTS Area and the RTS IoU using
linear models with interaction terms. To quantify shape in a single value, we calculated the
Polsby–Popper score [80], which measures the compactness of a shape. Scores approaching
0 have a small area and long perimeter, while a score of 1 indicates a perfect circle. The RTS
IoU was modeled using a maximum model that included log-transformed RTS Area, RTS
shape, and the interaction between the two. Akaike Information Criterion (AIC) and the
coefficient of determination (r2) were calculated to compare the models.

3. Results
3.1. General Metrics of Model Performance

All three CNN models performed well, with mean IoU scores ≥ 0.68 in testing. Never-
theless, higher-quality images resulted in better model predictions. The mean validation
and testing IoU scores across all features were 0.69 and 0.75 for the WorldView model, 0.70
and 0.71 for the PlanetScope model, and 0.66 and 0.68 for the Sentinel-2 model, respectively
(Table 1). Testing scores were higher than validation scores due most likely to the small
validation and testing data set sizes and high variability in detection difficulty between
RTS. In general, the predictions reflected the shape of the ground-truth polygons quite well
(Figure 2), although the RTS Area tended to be slightly overestimated, and linear models
of ground-truth vs. predicted Polsby–Popper shape showed a statistically insignificant
relationship (Figure S6). IoU scores for the RTS class averaged 0.37 for WorldView, 0.30 for
PlanetScope, and 0.28 for Sentinel-2, highlighting the difference in performance between
imagery types more strongly than the mean IoU (Table 1; Figure 3). The poorer RTS IoU
scores indicated that high mean IoU scores could be achieved due to the (usually) larger
extent of background pixels within testing tiles, even where the models failed to predict RTS
features well. Additionally, the low RTS IoU scores seemed to be caused in large part by
small features (by area) that went undetected rather than poor delineation of features that
were detected, as RTS IoU scores rose to 0.48, 0.47, and 0.38 for WorldView, PlanetScope,
and Sentinel-2, respectively, when undetected features were omitted. Out of 63 testing
features, the WorldView model missed 15 (24%), the Sentinel-2 model missed 17 (27%), and
the PlanetScope model missed 23 (37%; Table 1). Across all models, all of the undetected
features were 0.46 ha or smaller, and >80% of undetected features were 0.15 ha or smaller,
compared to a mean RTS Area of 0.93 ha and a median RTS Area of 0.27 ha, indicating that
image resolution was insufficient to detect the smallest features (Figure S7). Additionally,
we saw evidence of false positives, when non-RTS Areas were sometimes predicted to be
RTS by the models (e.g., the WorldView snow example in Figure 2).
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Table 1. Metrics of model performance. “Validation” refers to tiles used in the validation steps of
model training, and “testing” refers to testing tiles on which predictions were made.

Validation Testing

Imagery Mean
IoU

Mean
IoU RTS IoU Median

RTS IoU
Undetected RTS

Undetected
RTS Max

Area

Detection
Thresh-

old

Model
Convergence

Threshold
(Count (%)) (ha) (ha) (ha)

WorldView 0.75 0.76 0.37 0.36 15 (24%) 0.46 0.7 4.69
PlanetScope 0.71 0.75 0.30 0.25 23 (37%) 0.38 1.01 5.09
Sentinel-2 0.68 0.70 0.28 0.23 17 (27%) 0.29 1.51 4.62Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 23 
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Figure 2. RGB imagery and prediction outlines for a subset of the 63 RTS testing features. The
quality of the prediction relative to feature size is indicated by the color of the prediction outline.
The RTS feature of interest is shown in light gray. In cases where there are multiple RTS features
within a tile, the other RTS features are shown in a thinner light gray line, and the mask area is
shown in a dashed light gray line. Columns show the different imagery sources, and rows show
different RTS features, which were selected to display differences in the predictions and imagery.
Rows labeled “Good Prediction” show predictions that had some of the highest IoU scores. Rows
labeled “Bright RTS” show examples of how bright RTS on a dark background were predicted well
in the PlanetScope imagery. The row labeled “Variable Performance” shows predictions that varied
significantly among imagery types. The row labeled “Green RTS” shows an RTS with a high plant
cover that was undetected in all models. The rows labeled “Small RTS” show some of the smaller
RTS features, which were often undetected. The row labeled “Snow” shows one example of how
snow in the WorldView image was inaccurately labeled as an RTS feature.
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3.2. RTS Area and Model Performance

There was a strong, nonlinear relationship between the RTS Area and the RTS IoU. At
small sizes, RTS IoU scores increased rapidly as the RTS Area increased, and at larger sizes,
the slope of the relationship decreased and eventually plateaued (Figure 4; Table 2). The
maximum modeled RTS IoU was 0.83 for the WorldView model, 0.78 for the PlanetScope
model, and 0.69 for the Sentinel-2 model (Table 2). The detection threshold (predicted
IoU > 0.5) was 0.70 ha for WorldView, 1.01 ha for PlanetScope, and 1.51 ha for Sentinel-2.
The model convergence threshold was 4.69 ha for the WorldView model, 5.09 ha for the
PlanetScope model, and 4.62 ha for the Sentinel-2 model (Table 1).
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are shown in light gray. RTS feature predictions that fell outside of the 50% confidence interval were
considered of higher or lower prediction quality than expected, and this is indicated by point color.

Table 2. Parameters of the nonlinear models of RTS IoU by RTS Area for each imagery type.

Imagery Term Estimate SE t-Statistic p-Value

WorldView Km 3883.292 1022.569 3.798 <0.001
Vmax 0.833 0.077 10.795 <0.001

PlanetScope Km 4671.998 1299.752 3.595 0.001
Vmax 0.775 0.079 9.799 <0.001

Sentinel-2 Km 4689.771 1377.305 3.405 0.001
Vmax 0.694 0.075 9.275 <0.001

Formula: RTS IoU ~ Vmax × RTS Area(m2)/(Km + RTS Area(m2)).

3.3. Environmental Drivers of Model Performance

A few RTS features had exceptionally high or low RTS IoU scores for their size, as
determined by the 50% CI of the asymptotic models (Figure 4). Specific RTS features tended
to have the same or similar prediction quality across imagery types, indicating that there
were some characteristics of each feature that made it more or less detectable regardless
of imagery type (Figure 5). For example, in the PlanetScope model, RTS features with a
high prediction quality had significantly higher surface reflectance values in the visible
bands (hereafter “luminance”) within the RTS feature than in the background pixels (i.e.,
bright RTS features on a dark background were detected more easily; Figure 6). This trend
was also present in the other two models, although the differences were not statistically
significant. Plant cover within RTS also impacted the ability of the model to detect RTS.
In both the PlanetScope and Sentinel-2 models, RTS were predicted poorly in cases where
plant cover (measured by NDVI and NIR values) within RTS was similar to plant cover
in background pixels. Across all imagery types, the models were less able to detect RTS
that occurred in areas with variable, or patchy, ground cover (measured by the standard
deviation of surface reflectance in the visible bands), indicating that the models struggled to
identify the boundary between tundra and RTS pixels when patchy ground cover concealed
this transition. Additionally, the PlanetScope model performed poorly in areas with higher
NDWI (Figure S8), indicating that wet soils or the presence of lakes could pose a challenge
to RTS detection.
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Figure 6. The difference in input data values between RTS and non-water background (BG) pixels
(RTS—BG) across prediction quality classes. The points were calculated by first taking the difference
in mean pixel values (z-score) between RTS and non-water background (BG) pixels on a tile-by-tile
basis and then averaging this value across all 63 testing tiles. The error bars show the standard
deviation across tiles. Z-scores were calculated using all pixel values, including water pixels. Relative
elevation and shaded relief are not included, as there were no discernable patterns across classes.
Statistically different groups are indicated with lines between the two classes and a label for the level
of significance (p < 0.1: ‘.’, p < 0.05: ‘*’).

3.4. Regional Patterns of Model Performance

Prediction quality tended to be lower in the Yamal/Gydan and Banks Island regions
than in the other regions within the study (Figure 7). In the Yamal/Gydan region, this
seemed to be due primarily to the small size of RTS features (Figure 8). Additionally, RTS
features in the Yamal/Gydan region comprised the majority of the undetected features;
73%, 78%, and 82% of the undetected features were located within the Yamal/Gydan
region in the WorldView, PlanetScope, and Sentinel-2 models, respectively. The overall
poor prediction quality in the Banks Island region did not seem to be related to RTS Area,
as RTS features in that region included the largest within the study. However, Banks Island
was the most northerly site in this study, and the limited vegetation apparent in the images
of this polar desert region may have decreased the difference in appearance between RTS
and background tundra pixels. Additionally, the RTS in this region tended to have a less
compact morphology than other regions, which may have counteracted the larger size
of the RTS somewhat (Figure 8). The high prediction quality of RTS within the Herschel
Island region was likely a coincidence due to the small sample size.
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Figure 7. Prediction quality across geographic regions. The percentage of predictions that were high,
expected, and low is shown on the Y-axis. The total count of RTS features within each region is
indicated at the top of the bars. Banks Island and the Yamal/Gydan region had the highest percentage
of low-quality predictions.
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3.5. RTS Shape and Model Performance

In addition to the RTS Area, the RTS shape also influenced the RTS IoU, although the
influence of shape was much smaller (Figure S8). Based on AIC, we would have slightly
preferred the linear model of the RTS IoU that did not include RTS shape or interactions
for each imagery type (Table 3). However, including the RTS shape and the interaction
between area and shape showed slightly increased r2 values for each imagery type. This
indicates that the RTS shape and the interaction between area and shape do influence the
ability of the three deep learning models to detect RTS, but that with our small sample size,
the influence is small enough to be ignored.

Table 3. AIC scores and r2 values for the linear models of RTS IoU by RTS Area and RTS shape. For
each imagery type, all possible models between the intercept-only model and the model with both
explanatory variables and their interaction were tested. Using AIC, the model with only RTS Area
would be selected for each imagery type (bold). However, the r2 values indicate that including RTS
shape and the interaction between area and shape improves model fit slightly (about 1%) for each
imagery type (r2 bold).

Imagery Model AIC r2

WorldView IoU ~ 1 26.52 -
IoU ~ Area −32.752 0.622

IoU ~ Area + Shape −30.754 0.622
IoU ~ Area × Shape −31.256 0.637

PlanetScope IoU ~ 1 25.699 -
IoU ~ Area −34.658 0.628

IoU ~ Area + Shape −34.192 0.637
IoU ~ Area × Shape −32.349 0.638

Sentinel-2 IoU ~ 1 10.222 -
IoU ~ Area −43.671 0.588

IoU ~ Area + Shape −42.324 0.592
IoU ~ Area × Shape −41.063 0.597
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4. Discussion
4.1. Trade-Offs between Imagery Sources

Overall, all three models had mean IoU scores within the range of those reported in
other studies that used similar deep learning methods for RTS detection [39,63], although
there were considerable differences across the three imagery types. As we hypothesized,
WorldView imagery performed the best of the three imagery types across all metrics. The
WorldView model had a smaller detection threshold than the other two models and also
had a higher maximum RTS IoU, indicating that the WorldView model was the best at
predicting RTS across all RTS Areas. At small RTS Areas, this can be explained purely by
the sensor specifications; the higher-quality of WorldView imagery makes smaller objects
visible and larger objects appear crisper, which allows for improved classification [81]. The
fact that this improved performance even for larger RTS that were readily visible in both
PlanetScope and Sentinel-2 may suggest that the models relied on smaller characteristics of
RTS features that do not scale linearly with RTS Area and are more accurately represented
by higher-resolution imagery. For example, the size of the RTS headwall is unlikely to
change as rapidly as the area of the entire feature: the headwall length and depth could
change somewhat, and sun direction and angle will affect its visibility across images, but
the headwall will always remain a narrow strip in satellite imagery. Therefore, all else
being equal, WorldView imagery should allow better detection of smaller characteristics of
RTS regardless of the total area of the feature.

While all of the models were unable to detect some RTS features, none of the unde-
tected features were larger than 0.46 ha, and the maximum size of undetected features
did not correspond to image resolution, although this seems largely related to the small
sample size (Figure S6). Interestingly, the PlanetScope model had more undetected RTS
features than the Sentinel-2 model despite its higher resolution, higher maximum RTS IoU,
and smaller detection threshold. This could be related to the large FWHM of the Plan-
etScope sensors [68], which results in each pixel reflecting an area on the ground similar
to a Sentinel-2 pixel, or it could be related to the magnitude of geometric offsets between
each of the imagery sources and the ArcticDEM. It could also be that the Sentinel-2 model
actually performed comparably well or better than the PlanetScope model but that the
combination of low sample sizes (particularly of large RTS) and one low prediction quality
outlier around 10 ha in the Sentinel-2 model was responsible for reducing the maximum
predicted IoU relative to the PlanetScope model (Figure 4). Without a larger testing dataset,
particularly at large RTS Areas, however, this potential explanation is inconclusive.

Based on our findings, we recommend using the highest resolution imagery possible,
taking into account the FWHM or other metrics of line spread of each imagery source.
WorldView imagery, which had the smallest radiometric footprint of the options tested here,
despite being downloaded at a lower resolution than PlanetScope imagery, was able to
detect smaller RTS features and more accurately delineate RTS features of all sizes than the
models trained and predicted on the other imagery options. This is due to the large FWHM
of the PlanetScope sensors, which results in image clarity that is more similar to Sentinel-2
than WorldView. Even with the 4 m WorldView imagery, though, model performance
suffered as the RTS Area decreased. While improvements in the size of the training set
or model framework could alleviate this issue somewhat, imagery resolution seems to be
the primary limiting factor, and access to higher-resolution imagery could improve model
performance considerably.

Recognizing that the cost of high-resolution imagery can be prohibitive, our results
can help inform when and where to make compromises. First, we recommend that re-
searchers consider the typical size of RTS features in a given region and compare that
to the resolution/quality of possible imagery choices. For example, in an area like the
Yamal/Gydan region in this study, where the median RTS Area was 0.12 ha, the cost of
higher-quality imagery seems necessary, as even WorldView only had a predicted RTS IoU
of 0.18 at 0.12 ha (PlanetScope: 0.13, Sentinel-2: 0.12). On Banks Island, however, where the
median RTS Area was 0.91 ha, Sentinel-2 imagery may be sufficient, with a predicted RTS
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IoU of 0.43, although higher-quality imagery could still improve performance. Second, if
sufficient ground-truth data exist, it would be helpful to consider the total extent of RTS
features that are too small to reliably detect. For example, if RTS features smaller than the
detection threshold for a specific imagery type compose 50% of the total extent of RTS
features within a region, then higher-resolution imagery would be strongly recommended.
If, however, the extent of small RTS features is only 5% of the total extent, higher-resolution
data may not deliver sufficient improvement in results to be worth the cost. While these
recommendations cannot remove all subjectivity from this process, they should decrease
the guesswork and help guide researchers in imagery selection.

4.2. RTS Area and Shape

Around 60% of the variability in the RTS IoU was explained by the RTS Area for each
of the imagery types, and adding the RTS shape increased this by about 1%, even though
AIC scores indicated that the RTS shape should not be included in the linear regressions.
We concluded that the RTS shape likely does impact the visibility of RTS features, but that
the small sample size in the linear regressions (63 points) meant that the error was too large
to conclusively recommend the inclusion of this variable in the regression. Theoretically,
the mechanism by which the RTS shape would determine the visibility of RTS, particularly
small RTS, is clear: a very elongated shape will have a small width relative to a compact
(round) shape, and the width of a shape should determine whether it appears as a discrete
feature in the imagery of a certain resolution. Therefore, we expect that there should be
an interaction between RTS Area and RTS shape in determining how well RTS features
can be predicted from different imagery types, and that this relationship would be more
apparent with a larger testing dataset. Researchers could use this as an additional piece of
information when deciding on imagery requirements for mapping tasks, particularly in
cases where an analysis of the size distribution of RTS does not provide a clear answer.

4.3. Characteristics Affecting RTS Detection

We were not able to directly inspect the patterns that were important to the CNN
models because there are few methods for the interpretation of AI models, and we were
unable to find a suitable method for our needs [82]. Instead, we employed a relatively
simplistic statistical test of individual input data layers to determine important factors for
RTS detection. These statistical tests cannot fully explain the complex spatial patterns or
relationships between different layers of the input data that are represented within convo-
lutional layers of the CNN model. However, these statistical tests still elucidated important
factors in the ability of the CNN models to detect RTS and highlighted environmental
conditions that pose challenges to mapping RTS, which future research can address.

Beyond RTS Area and shape, we found that RTS luminance, RTS plant cover, and the
nature of the landscape in which RTS occurred were important in determining how well
RTS features could be predicted. The importance of luminance in RTS detection was very
prominent in a handful of the PlanetScope tiles where RTS features appeared only as a
blurry clump of bright pixels (Figure 2). The high luminance of these pixels was likely
due to the relatively high reflectance of bare soil, which is a prominent characteristic of
RTS [83]. Additionally, higher plant cover within RTS made it harder for the models to
detect RTS, consistent with our conclusion that the models relied on bare-ground pixels to
identify RTS. For both luminance and variables related to plant cover, it seems plausible
that the lack of statistical significance in the WorldView model could be because the model
could rely on more complex and detailed spatial patterns that we were not able to directly
test. Finally, RTS detection in regions that were particularly wet or had patchy ground
cover was more challenging to the PlanetScope model, indicating that areas that look
more disturbed make it harder for the model to detect the differences between RTS and
background pixels. Therefore, additional training data are needed in challenging areas to
improve model performance.
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Across all three models, relative elevation and shaded relief derived from the Arctic-
DEM did not have a discernible impact on model performance, despite the clear elevation
changes associated with RTS. This could be due to insufficient vertical resolution of the
ArcticDEM (absolute vertical precision of the ArcticDEM has not been verified), image
quality issues such as noise and artifacts in the ArcticDEM [51], and issues with geometric
alignment and temporal offsets between the various imagery sources and the ArcticDEM.
It is possible that mismatches between input data layers reduced the statistical strength of
our tests, that the quality of the elevation data was insufficient, or that these variables were
actually less important in the CNN models. With our current methods and data sources,
we were unable to definitively disentangle these possibilities, although we suspect that
the quality and vertical resolution of the ArcticDEM is the primary reason that elevation
did not emerge as an important variable. Luckily, recent improvements in methodology,
quantity of input data, and quality control to the ArcticDEM in version 4.1 should alleviate
data quality issues in future RTS mapping work [84]. Additionally, it may be possible that
different methods for calculating relative elevation or shaded relief maps could improve
the usefulness of these layers in predicting RTS. For example, testing different distances
over which to calculate the relative elevation, or including multiple layers that each use a
different distance, could allow larger or smaller RTS or components of RTS (e.g., headwall,
floor) to be better targeted [17].

4.4. Regional Challenges to RTS Detection

Even by using WorldView imagery, the highest quality imagery tested here, 32% of
the RTS features in the Yamal/Gydan region were undetected. This number rose to 41%
in the Sentinel-2 imagery and to 53% in the PlanetScope imagery. Additionally, there
were a higher number of RTS features with low prediction quality and a lower number
of RTS features with high prediction quality in this region, indicating that the unusually
small size of features in this region was not the only factor causing poor RTS prediction.
We originally hypothesized that this might be due to different RTS morphology in the
region; if the RTS features in this region tended to be less compact and, therefore, had a
narrower width, it would follow that they would be less visible in the imagery. However,
this hypothesis proved to be incorrect, as the RTS features in the Yamal/Gydan region were
slightly more compact than features in other regions and should, therefore, be slightly more
visible on average than RTS of the same size in other regions. Additionally, RTS features on
Banks Island tended to have a low prediction quality relative to other features of similar
size. This could be explained by the relatively shallow headwall heights of features in this
region [33], as this would reduce the visibility of the headwall and its shadow in satellite
images or by the sparse Arctic desert vegetation reducing the contrast between RTS and
background pixels.

4.5. Challenges Associated with RTS Delineation

In a few cases, we noticed that the RTS predictions seemed more aligned with the
imagery they were predicted on than to the ground-truth polygons, indicating that reported
IoU scores may have been reduced by inaccurate ground-truth polygons. There are many
possible mechanisms through which this can occur, and this will be an ongoing challenge
to the automated detection of RTS. One major reason for this is that the ground-truth
RTS polygons were delineated on different imagery than was used for predictions (high-
resolution ESRI basemap imagery used in delineations cannot be exported and used for
other tasks), and sometimes multiple imagery sources were used in this process. This
allowed us to use high-quality imagery for delineation and confirm through multiple
images that disturbances noted on the ground were actually RTS. However, this also means
that there could be differences between images used for delineation and prediction due
to misalignment and temporal offsets. Despite our best efforts to address these issues,
we found a few examples in which the RTS feature had evidently expanded between the
date of the imagery used for delineation and the date of the imagery used for prediction
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(see the second row in Figure 2). Additionally, manual delineation of RTS features is an
inherently subjective task, and features delineated by different people or from different
imagery can differ significantly [85]. Inconsistent delineation could have an adverse effect
on model performance.

4.6. Remaining Challenges and Future Improvements

This study was motivated by the reality of limitations to accessing and purchasing
high-resolution imagery, which remains a major barrier to conducting large-scale geospa-
tial science for many applications, especially in the rapidly warming permafrost region.
Although high-resolution images of the planet are being produced at an unprecedented
rate, the time and cost required to access this imagery can still be considerable. Even when
funding can be procured for high-resolution imagery, the time required to reach licensing
agreements with proprietary imagery providers, download imagery, and provide for data
storage slows the pace of research. Although some proprietary imagery can be made
available to researchers funded by government grants through agreements between the
granting institution and the imagery provider, our experience indicates that this access is
typically limited and insufficient for global-scale scientific research. Open access to high-
resolution satellite imagery for research purposes (e.g., requiring government-facilitated
data buys) would, therefore, rapidly accelerate scientific progress in geospatial fields, with
implications for human well-being in a changing world.

There are a number of possible directions for future research to improve model per-
formance and scale-up RTS predictions. First, additional training, validation, and testing
polygons are needed to improve model performance [61,63] and increase statistical power
in analyses of model predictions. A current effort to pool currently available RTS poly-
gon data created by different lab groups and allow ongoing incorporation of new data
as they are created will soon allow researchers access to a much larger dataset for these
purposes [86]. As this data set grows, it will be important to ensure that new contributions
are targeted to represent the wide variety of environments in which RTS occur. Second,
current RTS models have a high false positive rate [39,63,87]. The addition of “negative”
training data (i.e., imagery tiles without RTS features) is one step that could limit false
positives in future wall-to-wall predictions, but other methods, such as incorporating data
layers that represent landscape change, such as LandTrendr [64,88], or using model ensem-
bles to reduce non-RTS noise in model outputs could also be necessary. Third, adherence
to standardized methods for RTS delineation is required to decrease differences in RTS
delineation between people and lab groups. Guidelines are currently being developed
by the International Permafrost Association RTSInTrain Action group [85]. Fourth, the
incorporation of the newest ArcticDEM into RTS modeling efforts will reduce errors as-
sociated with poor elevation data. Fifth, further image pre-processing methods could be
considered to improve image quality and resolution (e.g., point spread deconvolution or
creation of super-resolution images) [81,89,90]. Finally, there are still computational chal-
lenges associated with deploying these models in wall-to-wall predictions across the Arctic,
and research is needed to establish a streamlined workflow for this process. Addressing
these challenges will ultimately lead to large-scale mapping of RTS and other thermokarst
features, which is desperately needed to monitor the rapidly warming permafrost zone
and inform models of permafrost carbon–climate feedbacks.

5. Conclusions

Thermokarst processes are known to exert a large impact on Arctic carbon cycling but
have yet to be incorporated into Earth system models, in part due to the lack of geospatial
products available for these processes. RTS are one form of thermokarst for which auto-
mated mapping seems feasible, but challenges, such as imagery acquisition, remain for
developing a circumpolar map. We compared three CNN models trained on different im-
agery sources for detecting RTS in order to inform choices related to imagery procurement.
For these small, sporadic features, we found that it is important to procure the highest
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resolution data possible and that considering metrics of radiometric footprint/line spread
is imperative in this process. Additionally, we analyzed how the spectral characteristics
of RTS features determine variability in model performance. RTS features that appeared
bright were easier for the models to detect, while increased plant cover within RTS and wet
or patchy ground cover surrounding RTS hindered model performance.
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Percent cover of RTS pixels across the 63 testing tiles used in this study; Figure S5: Conceptual
diagram of the metrics used to describe the performance of the deep learning models; Figure S6:
Linear regressions between the metrics of the ground truth polygons and prediction polygons;
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