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Abstract: Differential absorption lidar is an advanced tool for investigating tropospheric ozone
transport and development. High-quality differential absorption lidar data are the basis for studying
the temporal and spatial evolution of ozone pollution. We assessed the quality of the ozone data
generated via differential absorption lidar. By correcting the ozone lidar profile in real-time with an
atmospheric correction term and comparing the lidar data to ozone data collected using an unmanned
aerial vehicle (UAV), we quantified the statistical error of the ozone lidar data in the vertical direction
and determined that the data from the two instruments were generally in agreement. To verify
the reliability of the ozone lidar system and the atmospheric correction algorithm, we conducted
a long-term comparison experiment using data from the Canton Tower. Over the two months, the
UAV and lidar data were consistent with one another, which confirmed the viability of the ozone
lidar optomechanical structure and the atmospheric correction algorithm, both in real-time and over
a given time duration. In addition, we also quantified the relationship between statistical error
and signal-to-noise ratio. When the SNR is less than 10, the corresponding statistical error is about
40%. The statistical error was less than 15% when the signal-to-noise ratio was greater than 20, and
the statistical error was mostly less than 8% when the signal-to-noise ratio was greater than 40. In
general, the statistical error of the differential absorption lidar data was inversely proportional to the
signal-to-noise ratio of each echo signal.

Keywords: ozone DIAL; atmospheric correction; error analysis; remote sensing

1. Introduction

Ozone in the troposphere plays a central role in the oxidation of chemically and
climatically relevant trace gases [1]. Urban ozone is photo-chemically produced from
nitrogen oxides and volatile organic compounds (VOCs) from primarily anthropogenic
sources [2,3]. In recent years, ozone pollution has been a recurring problem throughout
China, especially in central and southern China [4–7]. Researchers have developed a
variety of detection methods to measure the types and concentrations of air pollutants in
the atmosphere, including balloons with ozone sondes [8–10], tethered balloons [11–13],
unmanned aerial vehicles (UAV) [14,15], satellites [16–18], and lidar. Except for lidar, these
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methods are limited to only collecting ozone profile data at one point in time; lidar can
detect vertical variations in ozone characteristics both temporally and spatially.

Differential absorption lidar is based on the principle that gases absorb light wave-
lengths differently, depending on the types and concentrations of gases present in a given
area [19–22]. In this method, a transmitter emits two laser pulses with different wave-
lengths; those laser pulses can be strongly absorbed by the atmospheric gases, weakly
absorbed, or not absorbed at all. The differential absorption of the two laser pulses by the
gas defines a common laser pulse path that can be used to determine the concentration of
the gas in the vertical direction. Differential absorption lidar is a powerful tool for continu-
ously monitoring the spatial and temporal distribution of ozone in the troposphere with
high resolution and accuracy. The researchers developed a series of differential absorption
lidar systems for ozone monitoring. For example, the University of Alabama developed a
differential absorption lidar system based on two wavelength-tunable dye lasers and three
telescopes. The system can measure the ozone concentration profile of 0.125~12 km [23].
The Langley mobile ozone lidar was built and utilized a Ce:LiCAF laser to produce 286 nm
and 291 nm ultraviolet lasers. The system provided ozone profiles from the ground to
approximately 4 km and had been validated by numerous ozone launches. This technique
is the latest detection technique in differential absorption lidar of ozone, and it is also a
rare technique to measure the vertical profile of ozone with high repetition frequency [24].
Deutsches and Raumfahrt developed a pulsed optical parametric oscillator with intracavity
sum-frequency mixing generating energies of up to 16 mJ in the 281–293 nm wavelength
range and built a very compact set-up and stable and reliable operation. This system was
successfully employed to measure tropospheric ozone [25]. Other studies used excimer
lasers or Nd:YAG lasers as pumping light sources and pumped H2, D2 [26], and CO2
reactive gas Raman media to produce Stokes lights as differential absorption sources for
ozone detection. The ozone profiling atmospheric lidar developed by National Oceanic and
Atmospheric Administration (NOAA) is a scanning four-wavelength ultraviolet differential
absorption lidar that measures tropospheric ozone and aerosols [27]. The ozone data ranged
from 280 m to about 1.2 km with 100 m resolution. The Nd:YAG quadruply-frequency
266 nm laser pumped D2 and H2 mixed gas Raman cell to produce 289 nm and 299 nm
wavelength laser as the light source for detecting tropospheric ozone, and 355 nm laser as
the light source for aerosol measurement. The meteorological research institute developed
and evaluated a UV ozone differential-absorption lidar utilizing a Nd:YAG laser and a
single Raman cell filled with carbon dioxide, the observations confirmed that 30 min of
integration were sufficient to observe ozone concentration profiles up to 10 km [28]. The
Tropospheric Ozone Lidar Network (TOLNet) [29] was formed by National Aeronautics
and Space Administration (NASA) in conjunction with NOAA, the University of Alabama,
and Environmental and Climate Change Canada. TOLNet is a unique network of lidar
systems that measure high-resolution atmospheric profiles of ozone. TOLNet provided
time and space distribution measurements of ozone from the planetary boundary to the
top of the troposphere for scientific research, satellite validation, and model evaluation.

As differential absorption lidar is a vital tool in the effort to quantify ozone pollution
in time and space [30,31], researchers must constantly evaluate the quality of differential
absorption lidar data to ensure that their conclusions and recommendations are backed
by robust data. Lidar data are primarily assessed in two ways: detection accuracy and
detection height, and detection reliability analysis (e.g., deformation of instrument optics
may cause signal misalignment).

Before 2017, an ozone lidar system was developed based on the Q-smart 850 laser
developed by Quantel (Les Ulis Cedex, France) and self-developed Raman tube, known as
the first-generation ozone lidar. This technology scheme is widely used in environmental
monitoring systems and it is necessary to conduct a detailed assessment of the accuracy of
this system. From 2018 to 2020, efforts were focused on developing a second-generation
ozone lidar system based on self-developed solid-state Raman light sources. For a detailed
introduction of the second-generation ozone lidar, please refer to [32]. From 2020 to 2023, a
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third-generation ozone lidar system was developed, which has full independent intellectual
property rights from the pump source to the Raman light source. Currently, there is the
capacity to conduct a systematic assessment of the accuracy of these three generations of
ozone lidar. This study is the first work in this series.

The ozone differential absorption lidar includes a high-efficiency Raman frequency-
shifting source and a multi-wavelength grating spectrometer. We compared the ozone
lidar data to additional data collected via a personal ozone monitor (POM) in a UAV,
which verified the accuracy of the ozone lidar data and the detection height. This compar-
ison also enabled us to determine the detection errors of the ozone lidar results through
statistical analyses.

Using lidar and the ultraviolet method analyzer at the Canton Tower, we conducted a
long-term joint observation experiment from September to November of 2017 in Guangzhou.
Ozone mass concentrations measured at a height of 498 m (Canton Tower) and 495 m (ozone
lidar) with both methods were comparable, a finding which validates the accuracy and
reliability of the ozone lidar data. Finally, we quantified the relationship between statistical
errors within the lidar data and the signal-to-noise ratio (SNR), which allows us to quickly
and accurately determine the quality of any given set of ozone lidar data.

2. Equipment and Sites
2.1. Ozone Lidar
2.1.1. Lidar Equation

A differential absorption laser echo signal can be expressed as [33]:

P(λi, z) = Ci
β(λi, z)

z2 exp
{
−2

∫ z

0
[α(λi, z)] + N(z)δ(λi, z)]dz

}
, i = on, o f f . (1)

where P(λi,z) is the atmospheric backscatter echo signal at certain wavelengths (the “on”
wavelength is on the strong absorption line, and the “off” wavelength is on the weak
absorption line). z is the altitude, Ci is the lidar system constant, β(λi,z) is the atmospheric
backscatter coefficient, α(λi,z) is the atmospheric extinction coefficient (excluding the ex-
tinction effect caused by atmospheric ozone), N(z) is the ozone concentration, and δ(λi,z) is
the ozone absorption cross-section at λi.

The ozone concentration is derived from the dual-wavelength echo signal equation:

N(z) =
1

2∆δ

d
dz

−ln

 P(λon, z)

P
(

λo f f , z
)
+ B − Ea − Em − Egas, (2)

B =
1

2∆δ

d
dz

ln

 β(λon, z)

β
(

λo f f , z
)
, (3)

Ea =
1

∆δ

[
αa(λon, z)− αa

(
λo f f , z

)]
, (4)

Em =
1

∆δ

[
αm(λon, z)− αm

(
λo f f , z

)]
, (5)

Egas =
∆δgasN′

gas

∆δ
, (6)

where B, Ea, and Em are the systematic errors introduced by atmospheric backscattering,
aerosol extinction, and molecular extinction, respectively, on ozone concentration inversion,
and Egas is the systematic error introduced by the presence of other trace gases in the
ozone concentration inversion calculation. ∆δ and ∆δgas are the absorption cross-section
differences of ozone and other trace gases, respectively, at λon and λoff. Ngas’ is the concen-
tration of the other trace gases, and αa and αm are the extinction coefficients of aerosol and
atmospheric molecular extinction, respectively, at a specific wavelength.
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2.1.2. System Error Correction, Statistical Errors, and Effective Vertical Resolution

Ozone lidar measurement uncertainties are mainly attributed to systematic errors
caused by atmospheric molecular extinction, aerosol extinction, atmospheric backscatter,
and absorption by other gases, but other statistical errors may be introduced by signal
quantum noise and background radiation. We apply corrections to systematic errors B, Ea,
and Em to minimize their effect on the ozone concentration inversion calculation. In our
experiment, echo signals of laser pulses with wavelengths of 266 nm, 289 nm, and 316 nm
were used in the inversion calculation for the vertical ozone profile. The atmospheric
molecular distribution is stable and changes minimally over time. Therefore, we used the
extinction coefficient of atmospheric molecular extinction given by the American standard
atmosphere model to correct for Em [34]. Because ozone absorption at a wavelength
of 316 nm is almost negligible, we used that echo signal in the inversion calculation to
determine the aerosol extinction and backscattering coefficients via the aerosol wavelength
index and the Fernald algorithm [35], which is well-suited for measuring scenarios where
aerosols are unevenly distributed in the vertical spatial range; these calculations allow us
to correct for B and Ea.

After these corrections, we defined the expression of trace gas concentration by sig-
nal inversion:

N(z) =
1

2∆δ

d
dz

−ln

 P(λon, z)

P
(

λo f f , z
)
, (7)

The statistical error is [36,37]:

δ(N(z))
N(z)

=
1

2∆δ∆zN(z)

√√√√√√ δP(λon, z)2

P(λon, z)2 +
δP(λon, z + ∆z)2

P(λon, z + ∆z)2 +
δP

(
λo f f , z

)2

P
(

λo f f , z
)2 +

δP(λon, z + ∆z)2

P(λon, z + ∆z)2 . (8)

The statistical error of ozone lidar data is inversely proportional to the absorption
cross-section difference, the difference distance, the unknown gas concentration, and the
SNR of the ozone data. Under the same laser energy, the signal-to-noise ratio (SNR) at
the “on” echo is lower due to greater absorption. Ideally, it is usually desired that both
“on” and “off” echo have the same SNR, so optimization is carried out in terms of energy
distribution. In this paper, we use the effective vertical resolution of 100 m to analyze and
invert the signals.

2.1.3. Saturation (Pulse Pile-Up) and Signal Induced Noise

Pulse pile-up is one of the key problems of the photon counter. The output pulse of the
photomultiplier tube (PMT) has a certain width, which is also known as the resolution time
of PMT. The pulse width and the discriminator of the photon counter determine the dead
zone time of the system. To measure the photon pulse width, a photonic pulse experiment
platform was built. LED was used as the light source, Hamamatsu R7400 PMT produced by
Hamamatsu Corporation (Hamamatsu, Japan) was used as the detector, and a high-speed
oscilloscope was used to collect the photon pulse signal. The full width of the photon pulse
is 4 ns.

The correction of saturation can be written as [38]:

S =
N

1 − Nτd
, (9)

where S is the true photon count rate, N is the measured count rate, and τd is the dead
time parameter.

When the ozone lidar is exposed to strong backscattered light or stray light, it will
cause the pulse delay of the PMT. The main characteristic of the effect is the long delay
of the exponential distribution of the background signal. The addition of the background
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signal to the original echo signal will cause signal distortion and the signal will have a
higher detection altitude than the actual value. Theoretically, the signal after the correction
of the distance square of the original echo signal (denoted by PRR) should decrease with
the increase in distance. However, the PRR will increase with the increase of distance when
significantly affected by the signal-induced noise (denoted by SIN). The laser emission
unit and the near-field light from the laser emission to the emission window are all sealed
with a sealing cover to avoid stray light in the emission path entering the subsequent path
and reduce the SIN. The comparison between the normalized PRR measured by ozone
lidar and the simulated PRR can effectively identify whether there is a SIN effect in the
signal. Simulated PRR is determined with aerosol backscattering coefficient, backscattering
coefficient of air molecules, and ozone profile given by a reference standard atmosphere
(US standard, 1976) [39]. As can be seen from Figure 1, the PRR simulated by the model
and the PRR measured by ozone lidar above 4 km show the same trend, confirming that
the SIN effect does not exist in the signal. If the SIN effect appears in the ozone lidar, the
PRR will show a trend of increasing with height.
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2.2. 3 Ozone Lidar System

The Ozone lidar system consists of three instruments: the laser transmitter, the optical
receptors, and the data acquisition and control units (Figure 2, Table 1). A Quantel Q-
Smart 850 pulsed Nd:YAG laser has been optimized with one independent parallel laser
cavity. Dual lamps side pump YAG rods and the energy of fundamental frequency laser
reaches 850 mJ pulse−1. The beam then passes through potassium di-deuterium phosphate
(KD*P) crystal and Barium metaborate crystal (BBO). The nonlinear optical crystals serve
the purpose of generating the second and fourth harmonics of the fundamental Nd:YAG
frequency. The quadrature fundamental frequency laser has an energy output of 90 mJ
pulse−1 and the initial pump beam is approximately 9 mm in diameter with a beam
divergence of 0.5 mrad. The frequency of the laser is 10 Hz.

It pumps Raman cells to produce laser sources with wavelengths of 289 nm and
316 nm using a D2 Raman cell with a length of 1 m. The converging lens also acts as a
seal for the Raman cell, which focuses the beam waist near the center of the Raman cell
giving the highest interaction of pump photons into first Stokes shift photons. The 266 nm
laser pumps D2, which produces laser pulses with wavelengths of 289 nm and 316 nm by
first- and second-order Stokes shifts, respectively. The energy of the 289 nm and 316 nm
laser pulses reach 10 mJ and 9 mJ, respectively. An achromatic lens is used to reduce the
dispersion difference between the 289 nm and 316 nm wavelength laser and to reduce the
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difference of the incomplete overlap between the two differential echo signals. After the
beams exit the Raman cell, they are collimated with the achromatic lens to minimize beam
divergence to 0.2 mrad.
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Table 1. The key parameters of the differential absorption lidar system.

Parameters Specifications

Laser Nd:YAG (266 nm)
Raman active gasses D2
Shifted wavelength 289 nm, 316 nm

Output energy 10 mJ, 9 mJ
Divergence angle 0.2 mrad

Telescope Cassegrain
Telescope diameter 250 mm

Detector PMT (Hamamatsu R7400)
Data acquisition AD and photon counter

These pumped laser sources and the original 266 nm laser beam are propagated verti-
cally into the atmosphere, where they experience Rayleigh scattering with air molecules,
Mie scattering with atmospheric aerosol particles, and absorption by trace gases. The
ozone lidar has a 250 mm diameter Cassegrain telescope. The backscattered lights are
focused at the field stop with a 1.0 mrad aperture, which defines the field of view of the
telescope. The grating spectrometer is located behind the optical receiving telescope and
consists of a collimating mirror, a high-resolution planar holographic grating, a concave
mirror, a high-efficiency optical reflector, and multiple photomultiplier tubes. The use of a
grating spectrometer can improve the signal-to-noise ratio and long-term stability of the
subsequent optical system.

A/D and photon counter-acquisition systems are used to simultaneously collect
differential Lidar echo signals. The selected AD acquisition card has an accuracy of 12 bits
and a sampling rate of 40 MHz. The maximum count rate of the photon counter is 250 MHz.
This process is controlled by a data acquisition program. The data acquisition program
completes the initialization of the A/D and photon counter, determines whether the
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acquisition software and the acquisition system communicate normally, and then carries
out the collection and suspension of the working cycle, realizing automatic saving of the
acquisition data during the cycle.

In this paper, two ozone lidars are utilized to acquire data separately in Shanghai
and Guangzhou. Both ozone lidar hardware configurations are identical. However, the
ozone lidar in Shanghai adopts the coaxial design of transmitting and receiving optical
paths while the ozone lidar in Guangzhou adopts the off-axis design, so the overlap of the
two ozone lidars is different. The data of ozone lidar are valid from 0.2 km at Shanghai
while the data of ozone lidar are valid beginning at 0.4 km at Guangzhou. The ozone unit
from the ozone lidar is in the unit of number density, the ozone unit from POM is parts per
billion (ppb), and the ozone concentration unit from the analyzer mounted on the tower is
µg m−3. In order to better evaluate the quality of the ozone lidar data using third-party
detection equipment, it is necessary to convert the number density from the ozone lidar
into the unit corresponding to the respective device.

2.3. Unmanned Aerial Vehicle (UAV) and Personal Ozone Monitor (POM)

To verify the accuracy of the ozone lidar data, we collected additional ozone data on
the Lingang campus of the Shanghai Maritime University using a personal ozone monitor
(POM produced by 2B Technologies, Inc. (Broomfield, CO, USA) [40] mounted onto an
unmanned aerial vehicle (UAV) with an ascending and descending speed of 2 m s−1

(Figure 3). The Lingang campus is about 70 km from the center of Shanghai, facing the
East China Sea. The POM adopts the principle of ultraviolet absorption; ozone molecules
have an absorption peak at 254 nm, coincident with the principal emission wavelength of a
low-pressure mercury lamp. The device is equipped with such a lamp, which emits light
with a wavelength of 254 nm. An air pump draws sample air into the instrument at a flow
rate of approximately 0.75 L min−1. A solenoid valve switch sends the air either directly
into the absorption cell or through an ozone scrubber and then into the absorption cell. The
intensity of light at the photodiode is measured in air before and after the ozone scrubber.
The ozone volume mixing ratio (in parts per billion) of the air in the absorption cell is
obtained by comparing the light intensities pre- and post-scrubbing. A POM can measure
ozone concentrations from 2 ppb to 10 ppm, with an uncertainty of less than 2 ppb.
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2.4. Canton Tower

Ozone measurement sites are located in the Canton Tower in Guangzhou City [41,42].
Canton Tower (23◦6′31.4′ ′N, 113◦19′4.1′ ′E, Figure 4), which has a tower height of 454 m, is
located on the new central axis of Guangzhou City, where the primary north-south and
east-west pollutant paths of Guangzhou City intersect one another. There are four air
quality monitoring platforms in the Canton Tower air quality monitoring station: they are
located at ground level and heights of 118 m, 168 m, and 488 m. The instrumentation on
the observation platforms in Canton Tower can measure the ozone mass concentration at
heights of 128 m, 178 m, and 498 m. The ozone monitoring instrument employs the 49i
ultraviolet method analyzer produced by Thermo Scientific (Waltham, MA, USA). The
analyzer, which has been certified by the Environmental Protection Agency (EPA), has
a detection limit of 1 ppb and a response time of 20 s. The ozone lidar resides in the
Guangdong Environmental Monitoring Center 1.2 km southeast of the Canton Tower.
The ozone mass concentration measured by the instrument at 498 m is data we use as a
benchmark for our ozone lidar analysis.
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Figure 4. Location of the four layers of the air pollutants sampled on the Canton Tower.

3. Results
3.1. Comparison and Analysis with UAV-Mounted Equipment

While the ozone concentration profile measured by differential absorption lidar is the
cumulative average of 7 min worth of data (averaged from 18:39 to 18:46 LT on 24 July
2017), the UAV-mounted POM recorded ozone data during a takeoff and landing cycle that
took 21 min (from 18:28 to 18:49 LT on 24 July 2017). The ascending and descending vertical
ozone profiles are quite similar as shown in Figure 5b; the vertical ozone distribution did
not change during this time. Because the UAV can only fly to an altitude of 1 km, we
only compared the UAV vertical ozone distribution profile with ozone lidar data below
1 km. Because aerosol interference cannot be ignored in ozone measurements, we used the
real-time aerosol backscattering coefficient for a 316 nm wavelength signal to correct for
aerosol influence after formula conversion. Correcting for air molecule extinction, aerosol
extinction, and atmospheric backscattering has a significant effect on the ozone profiles as
shown in Figure 5a. After applying the corrections, the ozone vertical distribution profiles
measured by ozone lidar and the POM largely agree between 0.2 km and 1.0 km. The
effective vertical resolution of the ozone profile is 100 m. Seven ozone profiles from 18:14 to
19:41 LT on 24 July 2017 were used for statistical analysis, as shown in Figure 6, and the
average statistical error of the ozone lidar dataset is 6.4%. The statistical error of ozone
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between 200 m and 300 m is more than 10%. That is because the ozone concentration is
only about 50 ppb, so the changes in ozone within one and a half hours caused a dramatic
increase in the statistical error of ozone. The statistical error of the zone at 1.8 km increased
sharply by more than 15% since the SNR decreased to less than 10.
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was measured by ozone lidar at 18:42 LT on 24 July 2017.

Figure 7 shows the spatial and temporal distribution of ozone measured by ozone lidar
during the comparison period. The first two panels show the wind speed and direction
derived from the WRF (Weather Research and Forecasting) model. The bottom panel shows
the ozone concentrations. From 24 July to 25 July, the wind direction in the upper air is
mainly northwest, and the wind direction in the lower altitudes is mainly southeast. The
wind speeds at high altitudes are greater than those at lower altitudes; when wind shear
occurs at higher altitudes, and fast wind speeds spread to lower altitudes, upper air ozone
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undergoes mixing and transport to lower altitudes. From Figure 7c, it can be seen that the
height of the ozone pollution plume at 2 km is continuously decreasing over time, until the
afternoon of July 25th, when a significant high value of near-surface ozone begins to appear.
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3.2. Comparison with Ozone Instrument of Canton Tower

From September to October 2017, we collected ozone data from the Canton Tower
instrument at 498 m and used these data as a benchmark against which to judge both
the stability of the optical-mechanical structure of the ozone lidar methodology and the
influence of complex atmospheric conditions on the inversion accuracy of the lidar results.
While the weather in Guangzhou was cloudy and sunny in the middle of September
2017, the latter part of September was dominated by thunderstorms. At times, these high-
humidity and stormy weather conditions affected data quality above 2 km. However, the
use of a heating module to rapidly evaporate rainwater on the skylight glass helped to
preserve the quality of the ozone data near 2 km. In October, weather conditions were
mainly cloudy and sunny, but it rained heavily from 14 October to 18 October, resulting in
data loss during that period. Figure 8 shows the ozone lidar data and the Canton Tower
ozone data at 498 m. Excluding the rainfall-induced data loss, the data recorded by the
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two instruments are a close match and the correction coefficient reached 0.87; the lidar
instrumentation setup is stable and reliable, and no deformation affects the detection of
ozone lidar signals during the observation period. At the same time, we have shown
that the atmospheric correction algorithm can account for the interference of complex
atmospheric conditions with ozone detection in real time.
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4. Discussion

As mentioned previously, the statistical error of the ozone lidar method depends on
the SNR of the echo signal, the difference distance, and the difference of the absorption
cross-sections of the different wavelengths. After selecting a difference distance and
differential absorption wavelength pairs, the statistical error mainly depends on the SNR
of the differential absorption lidar echo signals.

The laser pulse energy, the degree of optical coupling, the reflectivity of the transmit-
ting optical unit, the telescope aperture, the reception efficiency of the optical units, and
the quantum efficiency of photomultiplier tubes all influence the reception of echo signals
in differential absorption lidar. Fortunately, the aperture of the telescope, the reception
efficiency of the subsequent optical unit, and the quantum efficiency of the photomultiplier
tube remain essentially unchanged. The main variables affecting the lidar signal are the
laser monopulse energy, the transmitting optical unit, the amount of deformation in the
optical mechanical structure, and the external environmental conditions.

According to the SNR formula, SNR is proportional to the laser monopulse energy,
and the attenuation of the laser energy directly impacts the SNR of the echo signal. The
transmitting optical unit of ozone lidar is mainly composed of an Nd:YAG quadruple
frequency laser, ultraviolet high reflection mirrors, a Raman cell, and a beam expander.
Dust and water vapor in the air can adhere to the reflector mirrors and window plates of
the Raman cell, which can prove problematic when it comes to data collection. Addition-
ally, the reflector mirrors and the window plates are prone to damage when exposed to
the high-powered 266 nm laser for long periods. Deformation of the optical-mechanical
structure can also cause the misalignment of the receiving and transmitting optical units,
which prevents the effective reception of high-altitude signals. Lastly, the ozone lidar
instrumentation has to contend with complex atmospheric conditions such as high humid-
ity, heavy haze, thunderstorms, and extensive cloud cover. Weather conditions impact
both the SNR of the echo signal and the degree of aerosol interference. These factors are
difficult to evaluate independently; therefore, after correcting for aerosol extinction and
atmospheric backscattering in real-time, we only use the SNR to judge the quality of the
ozone differential absorption lidar data.

Figure 9 shows the spatial and temporal distribution of ozone in Guangzhou from
15 September to 20 September 2017. At the height of 0.4–2.0 km, there is no obvious noise
in the upper air data, and the ozone accumulated, diffused away, and accumulated again
during these five days. The local ozone concentration at night was relatively high, and the
ozone above 0.5 km was essentially not consumed. The ozone distribution from 0.4 km to
2.0 km cycled diurnally between 19–20 September; the concentration of ozone decreased
significantly at night and then accumulated again during the day.
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Figure 10 shows the correction terms for air molecule extinction, aerosol extinction,
and atmospheric backscattering, as well as the ozone concentration after atmospheric
correction at a height of 495 m. The correction terms of air molecular extinction and
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aerosol extinction are both negative values and have values of −23 µg m−3 and between
−20 µg m−3 and −70 µg m−3, with an average value of −41.5 µg m−3, respectively. The
atmospheric backscattering correction typically falls between −10 µg m−3 and 40 µg
m−3, with an average value of 14.2 µg m−3. The combined mean value of the three
corrections is −50 µg m−3. NOAA, NASA, Jet Propulsion Laboratory, and other research
institutions have conducted a detailed assessment of the aerosol interference and Rayleigh
scattering effects in the TROPospheric Ozone (TROPOZ) lidar, the Tunable Optical Profiler
for Aerosol and oZone (TOPAZ) lidar, and the Langley Mobile Ozone Lidar (LMOL).
Among these, the aerosol interference is approximately 10%. Aerosol interference is mainly
composed of two parts: B and Ea. The average of the B and Ea is about 27.3 µg m−3 and
the aerosol interference is approximately 13.7% when ozone concentration is 200 µg m−3.
The conclusion is roughly the same. However, we can reduce its impact on ozone retrieval
through aerosol correction. The uncertainty assessed by the three pieces of equipment is
about 14% to 25%, and our results indicate that the performance of the ozone lidar has
reached the same level as that of the three pieces of equipment.
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tering, and ozone concentration after atmospheric correction at a height of 495 m.

Figure 11 compares the inversion results of ozone lidar after the application of the
atmospheric correction and the measurement results of the ozone instrument mounted on
Canton Tower. The two datasets are generally consistent with one another from 15 Septem-
ber to 20 September. The correction coefficient reached 0.9. Figure 12 shows the SNR of
the echo signals and the statistical error of the ozone inversion results. Weather conditions
and the variable distribution of aerosols dramatically affect the atmospheric transmittance,
resulting in changes in the intensity of the echo signals at different heights, which in turn
affects the SNR of the echo signals with wavelengths of 289 nm and 316 nm. At a height
of 495 m, however, the echo signals for those two wavelengths have similar SNR values;
the average SNR values for the 289 nm and 316 nm sources are 40 and 42, respectively. In
differential absorption lidar, two echo signals with similar SNR values will generate the best
ozone inversion results. For most of our dataset, the statistical errors of the ozone inversion
results are less than 20% but can be as high as 40% in some instances. Furthermore, when
the SNR is less than 10, signal uncertainties are on the order of 40 µg m−3 and the corre-
sponding statistical error is about 40%. When the SNR is equal to 20, the corresponding
statistical error is about 15%. When the SNR is equal to 40, the corresponding statistical
error is approximately 8%.
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5. Conclusions

Throughout this experiment, we tested the detection accuracy and environmental
adaptability of the ozone lidar instrumentation setup by comparing the lidar results with
those collected via UAV-mounted POM and the ozone instrument mounted on Canton
Tower. Using the three correction terms—air molecular extinction, aerosol extinction, and
atmospheric backscattering–we were able to correct the ozone inversion calculation in real
time. With those corrections applied, the vertical ozone distribution profile is consistent
with the POM data from 0.1 km to 1.0 km. With respect to the Canton tower data, over the
course of the two-month experiment, the ozone lidar results were a good match for the
tower data in both high and low ozone regions, which confirmed the stability and reliability
of the lidar optomechanical structure. Furthermore, it demonstrates that the atmospheric
correction algorithm can minimize the effects of complex atmospheric conditions on ozone
lidar data in real-time. We also concluded that the statistical error of ozone lidar data is
inversely proportional to the SNR of the echo signal. Therefore, in the absence of other
ozone instruments, the quality of upper-air ozone observations can be judged solely (and
accurately) on the SNR of the echo signals.
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