Evolution and Spatiotemporal Response of Ecological Environment Quality to Human Activities and Climate: Case Study of Hunan Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
3. Methods
3.1. Remote Sensing Ecological Index Based on Coefficient of Variation Weighting (RSEI-v)
3.2. Trend Analysis
3.3. Pixel-Based Correlation Analysis
4. Results
4.1. RSEI-v Performance Verification
4.2. Spatial Pattern of and Changes in EEQ
4.3. Spatiotemporal Responses of EEQ to Changes in Human Activities and Climate
5. Discussion
5.1. The Effect of Various Variables in Driving EEQ
5.2. Spatiotemporal Pattern of, Changes in, and Mechanisms Driving EEQ in Hunan Province
5.3. Comparison of Ideas for Improving the RSEI
5.4. Shortcomings and Prospects
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Baste, I.A.; Watson, R.T.; Brauman, K.I.; Samper, C.; Walzer, C. Making Peace with Nature: A Scientific Blueprint to Tackle the Climate, Biodiversity and Pollution Emergencies; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2021. [Google Scholar]
- Cai, W.J. Focus on health for global adaptation to climate change. Nature 2023, 618, 457. [Google Scholar] [CrossRef]
- Waldron, A.; Miller, D.C.; Redding, D.; Mooers, A.; Kuhn, T.S.; Nibbelink, N.; Roberts, J.T.; Tobias, J.A.; Gittleman, J.L. Reductions in global biodiversity loss predicted from conservation spending. Nature 2017, 551, 364–367. [Google Scholar] [CrossRef]
- Chakraborty, S.; Maity, I.; Dadashpoor, H.; Novotny, J.; Banerji, S. Building in or out? Examining urban expansion patterns and land use efficiency across the global sample of 466 cities with million plus inhabitants. Habitat Int. 2022, 120, 102503. [Google Scholar] [CrossRef]
- Lei, K.P.; Zhou, S.Q. Per capita resource consumption and resource carrying capacity: A comparison of the sustainability of 17 mainstream countries. Energy Policy 2012, 42, 603–612. [Google Scholar] [CrossRef]
- Aplin, P. Remote sensing: Ecology. Prog. Phys. Geogr.-Earth Environ. 2005, 29, 104–113. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. A new index for delineating built-up land features in satellite imagery. Int. J. Remote Sens. 2008, 29, 4269–4276. [Google Scholar] [CrossRef]
- Gong, C.; Lyu, F.; Wang, Y. Spatiotemporal change and drivers of ecosystem quality in the Loess Plateau based on RSEI: A case study of Shanxi, China. Ecol. Indic. 2023, 155, 111060. [Google Scholar] [CrossRef]
- Liao, W.; Jiang, W. Evaluation of the Spatiotemporal Variations in the Eco-environmental Quality in China Based on the Remote Sensing Ecological Index. Remote Sens. 2020, 12, 2462. [Google Scholar] [CrossRef]
- Liu, P.; Ren, C.; Yu, W.; Ren, H.; Xia, C. Exploring the ecological quality and its drivers based on annual remote sensing ecological index and multisource data in Northeast China. Ecol. Indic. 2023, 154, 110589. [Google Scholar] [CrossRef]
- Sun, C.; Li, J.L.; Liu, Y.C.; Cao, L.D.; Zheng, J.H.; Yang, Z.J.; Ye, J.W.; Li, Y. Ecological quality assessment and monitoring using a time-series remote sensing-based ecological index (ts-RSEI). Gisci. Remote Sens. 2022, 59, 1793–1816. [Google Scholar] [CrossRef]
- Yang, H.; Yu, J.; Xu, W.; Wu, Y.; Lei, X.; Ye, J.; Geng, J.; Ding, Z. Long-time series ecological environment quality monitoring and cause analysis in the Dianchi Lake Basin, China. Ecol. Indic. 2023, 148, 110084. [Google Scholar] [CrossRef]
- Yuan, B.; Fu, L.; Zou, Y.; Zhang, S.; Chen, X.; Li, F.; Deng, Z.; Xie, Y. Spatiotemporal change detection of ecological quality and the associated affecting factors in Dongting Lake Basin, based on RSEI. J. Clean. Prod. 2021, 302, 126995. [Google Scholar] [CrossRef]
- Zaki, A.; Buchori, I.; Pangi, P.; Sejati, A.W.; Liu, Y. Google Earth Engine for improved spatial planning in agricultural and forested lands: A method for projecting future ecological quality. Remote Sens. Appl. Soc. Environ. 2023, 32, 101078. [Google Scholar] [CrossRef]
- Zhou, M.; Li, Z.; Gao, M.; Zhu, W.; Zhang, S.; Ma, J.; Ta, L.; Yang, G. Revealing the Eco-Environmental Quality of the Yellow River Basin: Trends and Drivers. Remote Sens. 2024, 16, 2018. [Google Scholar] [CrossRef]
- Xiao, W.; Guo, J.; He, T.; Lei, K.; Deng, X. Assessing the ecological impacts of opencast coal mining in Qinghai-Tibet Plateau-a case study in Muli coal field, China. Ecol. Indic. 2023, 153, 110454. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, W.; Ji, J.; Chen, C. Urban Ecological Quality Assessment Based on Google Earth Engine and Driving Factors Analysis: A Case Study of Wuhan City, China. Sustainability 2024, 16, 3598. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, X.; Gao, X.; Zhang, J.; Kang, L. Analysis of Spatio-Temporal Evolution and Driving Factors of Eco-Environmental Quality during Highway Construction Based on RSEI. Land 2024, 13, 504. [Google Scholar] [CrossRef]
- Xu, C.; Li, B.; Kong, F.; He, T. Spatial-temporal variation, driving mechanism and management zoning of ecological resilience based on RSEI in a coastal metropolitan area. Ecol. Indic. 2024, 158, 111447. [Google Scholar] [CrossRef]
- Dong, S.; Wang, X.-C.; Dong, X.; Kong, F. Unsustainable imbalances in urbanization and ecological quality in the old industrial base province of China. Ecol. Indic. 2024, 158, 111441. [Google Scholar] [CrossRef]
- Xu, H. A remote sensing index for assessment of regional ecological changes. China Environ. Sci. 2013, 33, 889–897. [Google Scholar]
- Zuo, L.; SUN, L.G.; Xu, Q.H.; Liu, J.F.; Li, X.J.; Lu, J.J. A review of the studies on regional ecological environment evaluation. J. Yunnan Univ. Nat. Sci. Ed. 2021, 43, 806–817. [Google Scholar]
- Zheng, Z.; Wu, Z.; Chen, Y.; Guo, C.; Marinello, F. Instability of remote sensing based ecological index (RSEI) and its improvement for time series analysis. Sci. Total Environ. 2022, 814, 152595. [Google Scholar] [CrossRef] [PubMed]
- Ning, L.; Jiayao, W.; Fen, Q. The improvement of ecological environment index model RSEI. Arab. J. Geosci. 2020, 13, 403. [Google Scholar] [CrossRef]
- Zhang, P.P.; Chen, X.D.; Ren, Y.; Lu, S.Q.; Song, D.W.; Wang, Y.L. A Novel Mine-Specific Eco-Environment Index (MSEEI) for Mine Ecological Environment Monitoring Using Landsat Imagery. Remote Sens. 2023, 15, 933. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, W.H.; Hong, Z.H.; Wang, L.G.; Ou, G.L.; Lu, N.; Dai, Q.L. Integrating three-dimensional greenness into RSEI improved the scientificity of ecological environment quality assessment for forest. Ecol. Indic. 2023, 156, 111092. [Google Scholar] [CrossRef]
- Xiong, Y.; Xu, W.; Lu, N.; Huang, S.; Wu, C.; Wang, L.; Dai, F.; Kou, W. Assessment of spatial–temporal changes of ecological environment quality based on RSEI and GEE: A case study in Erhai Lake Basin, Yunnan province, China. Ecol. Indic. 2021, 125, 107518. [Google Scholar] [CrossRef]
- Yang, Y.; Li, H.; Qian, C. Analysis of the implementation effects of ecological restoration projects based on carbon storage and eco-environmental quality: A case study of the Yellow River Delta, China. J. Environ. Manag. 2023, 340, 117929. [Google Scholar] [CrossRef]
- Waleed, M.; Sajjad, M. On the emergence of geospatial cloud-based platforms for disaster risk management: A global scientometric review of google earth engine applications. Int. J. Disaster Risk Reduct. 2023, 97, 104056. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, X.; Wei, B.; Zhang, X.; Tang, L.; Chen, C.; Wang, Y.; Yang, X. Spatiotemporal exploration of ecosystem service value, landscape ecological risk, and their interactive relationship in Hunan Province, Central-South China, over the past 30 years. Ecol. Indic. 2023, 156, 111066. [Google Scholar] [CrossRef]
- Yang, X.; Meng, F.; Fu, P.; Wang, Y.; Liu, Y. Time-frequency optimization of RSEI: A case study of Yangtze River Basin. Ecol. Indic. 2022, 141, 109080. [Google Scholar] [CrossRef]
- Zhou, Y.; Qin, Z.H.; Bao, G. Progress in Retrieving Land Surface Temperature for the Cloud-Covered Pixels from Thermal Infrared Remote Sensing Data. Spectrosc. Spectr. Anal. 2014, 34, 364–369. [Google Scholar]
- Mu, H.; Li, X.; Wen, Y.; Huang, J.; Du, P.; Su, W.; Miao, S.; Geng, M. A global record of annual terrestrial Human Footprint dataset from 2000 to 2018. Sci. Data 2022, 9, 176. [Google Scholar] [CrossRef] [PubMed]
- Crist, E.P. A TM tasseled cap equivalent transformation for reflectance factor data. Remote Sens. Environ. 1985, 17, 301–306. [Google Scholar] [CrossRef]
- Crist, E.P.; Kauth, R. The tasseled cap de-mystified. Photogramm. Eng. Remote Sens. 1986, 52, 19860037907. [Google Scholar]
- Rikimaru, A.; Roy, P.; Miyatake, S. Tropical forest cover density mapping. Trop. Ecol. 2002, 43, 39–47. [Google Scholar]
- Jalilibal, Z.; Amiri, A.; Castagliola, P.; Khoo, M.B.C. Monitoring the coefficient of variation: A literature review. Comput. Ind. Eng. 2021, 161, 107600. [Google Scholar] [CrossRef]
- Amantai, N.; Meng, Y.; Song, S.; Li, Z.; Hou, B.; Tang, Z. Spatial–Temporal Patterns of Interannual Variability in Planted Forests: NPP Time-Series Analysis on the Loess Plateau. Remote Sens. 2023, 15, 3380. [Google Scholar] [CrossRef]
- Pearson, K. Notes on regression and inheritance in the case of two parents proceedings of the royal society of London. K Pearson 1895, 58, 240–242. [Google Scholar]
- Zhang, H.; Li, L.; Zhao, X.; Chen, F.; Wei, J.; Feng, Z.; Hou, T.; Chen, Y.; Yue, W.; Shang, H. Changes in Vegetation NDVI and Its Response to Climate Change and Human Activities in the Ferghana Basin from 1982 to 2015. Remote Sens. 2024, 16, 1296. [Google Scholar] [CrossRef]
- Qi, S.; Chen, S.; Long, X.; An, X.; Zhang, M. Quantitative contribution of climate change and anthropological activities to vegetation carbon storage in the Dongting Lake basin in the last two decades. Adv. Space Res. 2023, 71, 845–868. [Google Scholar] [CrossRef]
- Lu, C.; Shi, L.; Fu, L.; Liu, S.; Li, J.; Mo, Z. Urban Ecological Environment Quality Evaluation and Territorial Spatial Planning Response: Application to Changsha, Central China. Int. J. Environ. Res. Public Health 2023, 20, 3753. [Google Scholar] [CrossRef] [PubMed]
- Tsiaras, S.; Samara, T.; Spanos, I. Exploring linkages among land use/land cover change, ecological footprint and sustainable development. J. Environ. Prot. Ecol. 2017, 18, 879–888. [Google Scholar]
- Hu, P.P.; Li, F.; Sun, X.; Liu, Y.L.; Chen, X.C.; Hu, D. Assessment of Land-Use/Cover Changes and Its Ecological Effect in Rapidly Urbanized Areas-Taking Pearl River Delta Urban Agglomeration as a Case. Sustainability 2021, 13, 5075. [Google Scholar] [CrossRef]
- Li, J.Z.; Ouyang, X.; Zhu, X. Land space simulation of urban agglomerations from the perspective of the symbiosis of urban development and ecological protection: A case study of Changsha-Zhuzhou-Xiangtan urban agglomeration. Ecol. Indic. 2021, 126, 107669. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Fan, Y.G.; Jiao, Z.J.; Fan, B.W.; Zhou, J.W.; Li, Z.H. Vegetation ecological benefits index (VEBI): A 3D spatial model for evaluating the ecological benefits of vegetation. Int. J. Digit. Earth 2023, 16, 1108–1123. [Google Scholar] [CrossRef]
- Zhu, X.R.; Liu, H.Y.; Li, Y.Y.; Liang, B.Y. Quantifying the role of soil in local precipitation redistribution to vegetation growth. Ecol. Indic. 2021, 124, 107355. [Google Scholar] [CrossRef]
- Wang, F.F.; Ma, Y.M.; Darvishzadeh, R.; Han, C.B. Annual and Seasonal Trends of Vegetation Responses and Feedback to Temperature on the Tibetan Plateau since the 1980s. Remote Sens. 2023, 15, 2475. [Google Scholar] [CrossRef]
- Chen, Z.F.; Wang, W.G.; Fu, J.Y. Vegetation response to precipitation anomalies under different climatic and biogeographical conditions in China. Sci. Rep. 2020, 10, 830. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.Y.; Wu, G.C.; Guan, X.B.; Li, X.; Zhang, Z.Y.; Xie, X.Y. Sensitivities of Vegetation Gross Primary Production to Precipitation Frequency in the Northern Hemisphere from 1982 to 2015. Remote Sens. 2024, 16, 21. [Google Scholar] [CrossRef]
- Cho, J.; Lee, Y.W.; Lee, H.S. The effect of precipitation and air temperature on land-cover change in the Sahel. Water Environ. J. 2015, 29, 439–445. [Google Scholar] [CrossRef]
- Li, J.X.; You, J.R.; Xu, Y.F. Vegetation research in Hunan Province: Vegetation types, composition, and distribution pattern (in Chinese). Sci. Sin. Vitae 2021, 51, 275–288. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, P.; Xia, J.; Qi, K.; Wang, W.; Cai, W.; Chen, N. Research and Analysis of Ecological Environment Quality in the Middle Reaches of the Yangtze River Basin between 2000 and 2019. Remote Sens. 2021, 13, 4475. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, T.; Zhu, D.; Jia, K.; Plaza, A. RSEIFE: A new remote sensing ecological index for simulating the land surface eco-environment. J. Environ. Manag. 2023, 326, 116851. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.J.; Zhang, Y.; Kuang, T.Q.; Yang, C.H. Ecological Analysis of Suzhou City Using Improved Urban Remote Sensing Ecological Index. J. Geomat. Sci. Technol. 2021, 38, 323–330. [Google Scholar]
- Xu, H.; Li, C.; Shi, T. Is the z-score standardized RSEI suitable for time-series ecological change detection? Comment on Zheng et al. (2022). Sci. Total Environ. 2022, 853, 158582. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Y.; Yu, T.; Zhong, D. Primary driving factors of ecological environment system change based on directed weighted network illustrating with the Three-River Headwaters Region. Sci. Total Environ. 2024, 916, 170055. [Google Scholar] [CrossRef]
Data | Data Source | Year | Name of Image Collection | Spatial Resolution |
---|---|---|---|---|
Satellite Data | Landsat8 | 2013–2020 | LANDSAT/LC08/C02/T1_L2 | 30 m/100 m |
Landsat7 | 2012 | LANDSAT/LE07/C02/T1_L2 | 30 m/60 m | |
Landsat5 | 2000–2011 | LANDSAT/LT05/C02/T1_L2 | 30 m/120 m | |
MODIS | 2000–2020 | MODIS/006/MOD11A2 | 1 km | |
Temperature | ERA5 | 2000–2020 | ECMWF/ERA5/DAILY | 0.1° |
Precipitation | ERA5 | 2000–2020 | ECMWF/ERA5/DAILY | 0.1° |
Human Activities | GHF | 2000–2020 | GHF | 1 km |
Subindicator | Index | Formula | References |
---|---|---|---|
Greenness | NDVI | Appendix A Formula (A1) | [7] |
Humidity | Tasseled cap Transform | Appendix A Formulas (A2) and (A3) | [37,38] |
Dryness | NDBSI | Appendix A Formulas (A4)–(A6) | [10,39] |
Heat | Surface temperature | MODIS surface temperature products |
HUM 1 | PER 1 | TEM 1 | HUM 2 | PER 2 | TEM 2 | Proportion 3 | |
---|---|---|---|---|---|---|---|
Lv1 (negative) | 3248 | 290 | 1226 | 68.18% | 6.09% | 25.73% | 56.70% |
Lv2 (negative) | 2022 | 200 | 1330 | 56.93% | 5.63% | 37.44% | 35.37% |
Lv3 (negative) | 454 | 55 | 392 | 50.39% | 6.10% | 43.51% | 7.93% |
Lv1 (positive) | 10,223 | 3065 | 2223 | 65.91% | 19.76% | 14.33% | 37.68% |
Lv2 (positive) | 18,868 | 4464 | 2423 | 73.26% | 17.33% | 9.41% | 44.13% |
Lv3 (positive) | 9395 | 1663 | 1135 | 77.05% | 13.64% | 9.31% | 18.19% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hui, J.; Cheng, Y. Evolution and Spatiotemporal Response of Ecological Environment Quality to Human Activities and Climate: Case Study of Hunan Province, China. Remote Sens. 2024, 16, 2380. https://doi.org/10.3390/rs16132380
Hui J, Cheng Y. Evolution and Spatiotemporal Response of Ecological Environment Quality to Human Activities and Climate: Case Study of Hunan Province, China. Remote Sensing. 2024; 16(13):2380. https://doi.org/10.3390/rs16132380
Chicago/Turabian StyleHui, Jiawei, and Yongsheng Cheng. 2024. "Evolution and Spatiotemporal Response of Ecological Environment Quality to Human Activities and Climate: Case Study of Hunan Province, China" Remote Sensing 16, no. 13: 2380. https://doi.org/10.3390/rs16132380
APA StyleHui, J., & Cheng, Y. (2024). Evolution and Spatiotemporal Response of Ecological Environment Quality to Human Activities and Climate: Case Study of Hunan Province, China. Remote Sensing, 16(13), 2380. https://doi.org/10.3390/rs16132380