Pre-Earthquake Oscillating and Accelerating Patterns in the Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) before the 2022 Luding (China) Ms6.8 Earthquake
Abstract
:1. Introduction
2. Data Source
2.1. Lithospheric Data
2.2. Atmospheric Data
2.3. Ionospheric Data
3. Analysis Methods and Results
3.1. The Seismological Data Analysis
3.1.1. b-Value
3.1.2. R-AMR Analysis
3.2. The Electromagnetic Data Analysis on the Ground
3.2.1. Earth Resistivity
3.2.2. ELF Ground Magnetic Field
3.3. The Atmospheric Data Analysis
3.3.1. Atmospheric Electric Field from Ground
3.3.2. SKT and OLR
3.4. The Ionospheric Data Analysis
3.4.1. GNSS TEC
3.4.2. Electron Density from CSES and Swarm Satellites
3.4.3. ELF Magnetic Field from CSES
3.4.4. Parameters from Ionosondes
3.4.5. ULF Magnetic Field from Swarm and CSES
3.4.6. Energetic Electron Precipitation
4. Discussion
4.1. The Preparation Processes and Related Anomalies
4.2. The Coupling Process of Lithosphere–Atmosphere–Ionosphere
4.3. The Coupling Mechanisms
5. Conclusions
- There was a significant exponential increase in anomaly numbers detected in atmospheric and ionospheric parameters from 50 days before the Luding earthquake (i.e., −50 days); the long-term variations continued for more than 1 or 2 years in most lithospheric parameters;
- Simultaneous disturbances have been found in the ground geomagnetic field and ELF EM emissions from the lithosphere, in skin temperature and the atmospheric electric field from the atmosphere, and in the TEC and magnetic field on satellites from the ionosphere on the same day, to illustrate the direct coupling way;
- There were fewer anomalies detected in SKT compared with those electromagnetic parameters in the ionosphere and lithosphere, to demonstrate the more effective electromagnetic coupling way from the lithosphere to the ionosphere directly than the thermodynamic way with the coupling process in the atmosphere;
- The ionospheric disturbances occurred a longer time before the earthquake, more than 2 months, being consistent with the statistical results for strong earthquakes, and the analysis on multiple parameters showed a significant contribution to further the limit for the impending time of the EQ.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayakawa, M. Electromagnetic phenomena associated with earthquakes: A frontier in terrestrial electromagnetic noise environment. Recent Res. Dev. Geophys. 2004, 6, 81–112. Available online: https://www.researchgate.net/publication/291796289_Electromagnetic_phenomena_associated_with_earthquakes_A_frontier_in_terrestrial_electromagnetic_noise_environment#fullTextFileContent (accessed on 1 January 2004).
- Pulinets, S.; Ouzounov, D. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model: An unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Kuo, C.L.; Huba, J.D.; Joyce, G.; Lee, L.C. Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges. J. Geophys. Res. Space Phys. 2011, 116, A10317. [Google Scholar] [CrossRef]
- Kuo, C.L.; Lee, L.C.; Huba, J.D. An improved coupling model for the lithosphere-atmosphere-ionosphere system. J. Geophys. Res. Space Phys. 2014, 119, 3189–3205. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, Y.; Zhao, S.F.; Liu, J.; Zhang, X.; Huang, J.P.; Shen, X.H.; Ni, B.; Zhao, Z.Y. An electric field penetration model for seismo-ionospheric research. Adv. Space Res. 2017, 60, 2217–2232. [Google Scholar] [CrossRef]
- Carbone, V.; Piersanti, M.; Materassi, M.; Battiston, R.; Lepreti, F.; Ubertini, P. A mathematical model of lithosphere-atmosphere coupling for seismic events. Sci. Rep. 2021, 11, 8682. [Google Scholar] [CrossRef]
- Gao, Y.X.; Li, T.; Zhou, G.; Chen, C.H.; Sun, Y.Y.; Zhang, X.; Liu, J.Y.; Wen, J.; Yao, C.; Bai, X. Acoustic-gravity waves generated by a point source on the ground in a stratified atmosphere-Earth structure. Geophys. J. Int. 2023, 232, 764–787. [Google Scholar] [CrossRef]
- Molchanov, O.A.; Hayakawa, M.; Rafalsky, V.A. Penetration characteristics of electromagnetic emissions from an underground seismic source into the atmosphere, ionosphere, and magnetosphere. J. Geophys. Res. 1995, 100, 1691–1712. [Google Scholar] [CrossRef]
- Bortnik, J.; Bleier, T. Full Wave Calculation of the Source Characteristics of Seismogenic Electromagnetic Signals as Observed at LEO Satellite Altitudes//American Geophysical Union. AGU 2004 Fall Meeting Abstracts. San Francisco: AGU: 2004, T51B-0453. Available online: https://ui.adsabs.harvard.edu/abs/2004AGUFM.T51B0453B/abstract (accessed on 31 December 2004).
- Ozaki, M.; Yagitani, S.; Nagano, I.; Miyamura, K. Ionospheric penetration characteristics of ELF waves radiated from a current source in the lithosphere related to seismic activity. Radio Sci. 2009, 44, RS1005. [Google Scholar] [CrossRef]
- Zhao, S.F.; Shen, X.H.; Liao, L.; Zeren, Z. A lithosphere-atmosphere-ionosphere coupling model for ELF electromagnetic waves radiated from seismic sources and its possibility observed by the CSES. Sci. China Technol. Sci. 2021, 64, 2551–2559. [Google Scholar] [CrossRef]
- De Santis, A.; Cianchini, G.; Marchetti, D.; Piscini, A.; Sabbagh, D.; Perrone, L.; Campuzano, S.; Inan, S. A multiparametric approach to study the preparation phase of the 2019 M7.1 Ridgecrest (California, United States) Earthquake. Front. Earth Sci. 2020, 8, 540398. [Google Scholar] [CrossRef]
- Xie, T.; Chen, B.; Wu, L.; Dai, W.; Kuang, C.; Miao, Z. Detecting seismo-ionospheric anomalies possibly associated with the 2019 Ridgecrest (California) earthquakes by GNSS, CSES, and Swarm observations. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028761. [Google Scholar] [CrossRef]
- De Santis, A.; Perrone, L.; Calcara, M.; Campuzano, S.A.; Cianchini, G.; D’Arcangelo, S.; Di Mauro, D.; Marchetti, D.; Nardi, A.; Orlando, M.; et al. A comprehensive multiparametric and multilayer approach to study the preparation phase of large earthquakes from ground to space: The case study of the June 15 2019, M7.2 Kermadec Islands (New Zealand) earthquake. Remote Sens. Environ. 2022, 283, 113325. [Google Scholar] [CrossRef]
- Nie, L.; Zhang, X. Identification and Analysis of Multi-Station Atmospheric Electric Field Anomalies before the Yangbi Ms 6.4 Earthquake on 21 May 2021. Atmosphere 2023, 14, 1579. [Google Scholar] [CrossRef]
- Wu, L.; Wang, X.; Qi, Y.; Lu, J.; Mao, W. Characteristics and mechanisms of near-surface atmospheric electric field negative anomalies preceding the 5 September, 2022, Ms6.8 Luding earthquake, China. Nat. Hazards Earth Syst. Sci. 2024, 24, 773–789. [Google Scholar] [CrossRef]
- Yang, S.-S.; Asano, T.; Hayakawa, M. Abnormal gravity wave activity in the stratosphere prior to the 2016 Kumamoto earthquakes. J. Geophys. Res. Space Phys. 2019, 124, 1410–1425. [Google Scholar] [CrossRef]
- Piersanti, M.; Materassi, M.; Battiston, R.; Carbone, V.; Cicone, A.; D’Angelo, G.; Diego, P.; Ubertini, P. Magnetospheric–Ionospheric–Lithospheric Coupling Model. 1: Observations during the 5 August 2018 Bayan Earthquake. Remote Sens. 2020, 12, 3299. [Google Scholar] [CrossRef]
- Hayakawa, M.; Itoh, T.; Hattori, K.; Yumoto, K. ULF electromagnetic precursors for an earthquake at Biak, Indonesia on February 17, 1996. Geophys. Res. Lett. 2000, 27, 1531–1534. [Google Scholar] [CrossRef]
- Harada, M.; Hattori, K.; Isezaki, N. Transfer function analysis approach for anomalous ULF geomagnetic field change detection. Phys. Chem. Earth 2004, 29, 409–417. [Google Scholar] [CrossRef]
- Parrot, M.; Berthelier, J.J.; Lebreton, J.P.; Sauvaud, J.A.; Santolik, O.; Blecki, J. Examples of unusual ionospheric observations made by the DEMETER satellite over seismic regions. Phys. Chem. Earth 2006, 31, 486–495. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, F.; Li, Z.; Shen, X.; Yang, B.; Li, W.; Zeren, Z.; Lu, H.; Tan, Q. Disturbance identification of electric field data observed by the CSES-01 satellite before earthquakes. Sci. China Earth Sci. 2023, 66, 1814–1824. [Google Scholar] [CrossRef]
- Li, G.; Wang, A.; Gao, Y. Source rupture characteristics of the September 5, 2022 Luding Ms 6.8 earthquake at the Xianshuihe fault zone in southwest China. Earthq. Res. Adv. 2023, 3, 100201. [Google Scholar] [CrossRef]
- Zhang, Z.; Fang, L.H.; Xu, L.S. Primary source characteristics of the 2022 Sichuan Luding Ms6.8 Earthquake. Chin. J. Geophys. 2023, 66, 1397–1408. [Google Scholar] [CrossRef]
- An, Y.; Wang, D.; Ma, Q.; Xu, Y.; Li, Y.; Zhang, Y.; Liu, Z.; Huang, C.; Su, J.; Li, J.; et al. Preliminary report of the September 5, 2022 Ms6.8 Luding earthquake, Sichuan, China. Earthq. Res. Adv. 2023, 3, 100184. [Google Scholar] [CrossRef]
- Jing, F.; Jiang, M.; Zhang, L.; Singh, R.P. Detection and Identification of Preseismic Thermal Anomalies in Cloudy Conditions Associated with the 2022 Luding (China) Mw 6.6 Earthquake. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4104612. [Google Scholar] [CrossRef]
- Lu, C.; Zhou, X.; Chen, Z.; Liu, Z.; Hu, L.; Sun, F.; Martinelli, G.; Ying, L. Earthquake geochemical scientific expedition and research. Earthq. Res. Adv. 2023, 3, 100239. [Google Scholar] [CrossRef]
- Chen, C.-H.; Zhang, S.; Mao, Z.; Sun, Y.-Y.; Liu, J.; Chen, T.; Zhang, X.; Yisimayili, A.; Qing, H.; Luo, T.; et al. The Lithosphere-Atmosphere-Ionosphere Coupling of Multiple Geophysical Parameters Approximately 3 Hours Prior to the 2022 M6.8 Luding Earthquake. Geosciences 2023, 13, 356. [Google Scholar] [CrossRef]
- Dobrovolsky, I.P.; Zubkov, S.I.; Miachkin, V.I. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1979, 117, 1025. [Google Scholar] [CrossRef]
- De Santis, A.; Cianchini, G.; Di Giovambattista, R. Accelerating moment release revisited: Examples of application to Italian seismic sequences. Tectonophysics 2015, 639, 82–98. [Google Scholar] [CrossRef]
- Lu, J.; Xie, T.; Li, M.; Wang, Y.L.; Ren, Y.X.; Gao, S.D.; Wang, L.W.; Zhao, J.L. Monitoring shallow resistivity changes prior to the 12 May 2008 M 8.0 Wenchuan earthquake on the Longmenshan tectonic zone. China. Tectonophysics 2016, 675, 244–257. [Google Scholar] [CrossRef]
- Hattori, K.; Serita, A.; Yoshino, C.; Hayakawa, M.; Isezaki, N. Singular spectral analysis and principal component analysis for signal discrimination of ULF geomagnetic data associated with 2000 Izu Island Earthquake Swarm. Phys. Chem. Earth 2006, 31, 281–291. [Google Scholar] [CrossRef]
- Cianchini, G.; De Santis, A.; Di Giovambattista, R.; Abbattista, C.; Amoruso, L.; Campuzano, S.A.; Carbone, M.; Cesaroni, C.; De Santis, A.; Marchetti, D.; et al. Revised Accelerated Moment Release Under Test: Fourteen Worldwide Real Case Studies in 2014–2018 and Simulations. Pure Appl. Geophys. 2020, 177, 4057–4087. [Google Scholar] [CrossRef]
- Hayakawa, M.; Izutsu, J.; Yu Schekotov, A.; Nickolaenko, A.P.; Galuk, Y.; Kudintseva, I.G. Anomalies of Schumann resonances as observed near Nagoya associated with two huge (M~7) Tohoku offshore earthquakes in 2021. J. Atmos. Solar-Terr. Phys. 2021, 225, 105761. [Google Scholar] [CrossRef]
- Schekotov, A.Y.; Molchanov, O.A.; Hayakawa, M.; Fedorov, E.N.; Chebrov, V.N.; Sinitsin, V.I.; Yagova, N.V. ULF/ELF magnetic field variations from atmosphere induced by seismicity. Radio Sci. 2007, 42, RS6S90. [Google Scholar] [CrossRef]
- Piscini, A.; De Santis, A.; Marchetti, D.; Cianchini, G. A New Multi-Parametric Climatological Approach to the Study of the Earthquake Preparatory Phase: The 2016 Amatrice-Norcia (Central Italy) Seismic Sequence. In: EGU 2017. EGU2017-14105. Available online: https://ui.adsabs.harvard.edu/abs/2017EGUGA..1914105P/abstract (accessed on 30 April 2017).
- Le, H.; Liu, L.Y.; Liu, L. A statistical analysis of ionospheric anomalies before 736 M6.0+ earthquakes during 2002–2010. J. Geophys. Res. 2011, 116, A02303. [Google Scholar] [CrossRef]
- Shen, X.H.; Zong, Q.-G.; Zhang, X.M. Introduction to special section on the China Seismo-Electromagnetic Satelliteand initial results. Earth Planet. Phys. 2018, 2, 439–443. [Google Scholar] [CrossRef]
- De Santis, A.; Marchetti, D.; Pavón-Carrasco, F.J.; Cianchini, G.; Perrone, L.; Abbattista, C.; Alfonsi, L.; Amoruso, L.; Campuzano, S.A.; Carbone, M.; et al. Precursory worldwide signatures of earthquake occurrences on Swarm satellite data. Sci. Rep. 2019, 9, 20287. [Google Scholar] [CrossRef]
- Evans, D.S.; Greer, M.S. Polar Orbiting Environmental Satellite Space Environment Monitor—2 Instrument Descriptions and Archive Data Documentation, Natl. Atmos. and Oceanic Admin., Space Environ. Cent, Boulder, Colorado, NOAA Technical Memorandum OAR SEC 93, Version 1.4. 2004. Available online: https://ngdc.noaa.gov/stp/satellite/poes/docs/SEM2Archive.pdf (accessed on 14 April 2010).
- Fidani, C. West Pacific Earthquake Forecasting Using NOAA Electron Bursts With Independent L-Shells and Ground-Based Magnetic Correlations. Front. Earth Sci. 2021, 9, 673105. [Google Scholar] [CrossRef]
- Gutenberg, B.; Richter, C.F. Frequency of earthquakes in California. Bull. Seism. Soc. Am. 1944, 34, 185–188. [Google Scholar] [CrossRef]
- Wiemer, S.; Wyss, M. Mapping the frequency–magnitude distribution in asperities: An improved technique to calculate recurrence times? J. Geophys. Res. 1997, 102, 15115–15128. [Google Scholar] [CrossRef]
- Schorlemmer, D.; Wiemer, S.; Wyss, M. Variations in earthquake-size distribution across different stress regimes. Nature 2005, 437, 539–542. [Google Scholar] [CrossRef]
- Scholz, C.H. On the stress dependence of the earthquake b value. Geophys. Res. Lett. 2015, 42, 1399–1402. [Google Scholar] [CrossRef]
- Nuannin, P.; Kulhanek, O.; Persson, L. Spatial and temporal b value anomalies preceding the devastatingoff coast of NW Sumatra earthquake of December 26, 2004. Geophys. Res. Lett. 2005, 32, L11307. [Google Scholar] [CrossRef]
- Schorlemmer, D.; Wiemer, S. Microseismicity data forecast rupture area. Nature 2005, 434, 1086. [Google Scholar] [CrossRef]
- Taroni, M.; Vocalelli, G.; De Polis, A. Gutenberg–Richter B-value time series forecasting: A weighted likelihood approach. Forecasting 2021, 3, 561–569. [Google Scholar] [CrossRef]
- Wang, R.; Chang, Y.; Miao, M.; Zeng, Z.; Chen, H.; Shi, H.; Li, D.; Liu, L.; Su, Y.; Han, P. Assessing Earthquake Forecast Performance Based on b Value in Yunnan Province, China. Entropy 2021, 23, 730. [Google Scholar] [CrossRef]
- Wiemer, S.; Wyss, M. Minimum Magnitude of Completeness in Earthquake Catalogs: Examples from Alaska, the Western United States and Japan. Bull. Seismol. Am. 2000, 90, 859–869. [Google Scholar] [CrossRef]
- Bowman, D.D.; Ouillon, G.; Sammis, C.G.; Sornette, A.; Sornette, D. An observational test of the critical earthquake concept. J. Geophys. Res. 1998, 103, 24359–24372. [Google Scholar] [CrossRef]
- Jaumé, S.; Sykes, L.R. Evolving towards a critical point: A review of accelerating seismic moment/energy release prior to large and great earthquakes. Pure Appl. Geophys. 1999, 155, 279. [Google Scholar] [CrossRef]
- Cianchini, G.; De Santis, A.; Barraclough, D.R.; Wu, L.X.; Qin, K. Magnetic transfer function entropy and the 2009 Mw = 6.3 L’Aquila earthquake (Central Italy). Nonlin. Process. Geophys. 2012, 19, 401–409. [Google Scholar] [CrossRef]
- Bufe, C.G.; Varnes, D.J. Predictive modeling of the seismic cycle of the Greater San Francisco Bay Region. J. Geophys. Res. 1993, 98, 9871–9883. [Google Scholar] [CrossRef]
- Wells, D.L.; Coppersmith, K.J. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bull. Seismol. Am. 1994, 84, 974–1002. [Google Scholar] [CrossRef]
- Xie, T.; Han, Y.; Ye, Q.; Xue, Y. Changes and mechanisms of apparent resistivity before earthquakes of MS6.0–6.9 on the Chinese mainland. Front. Earth Sci. 2023, 11, 1187660. [Google Scholar] [CrossRef]
- Korsunova, L.P.; Khegai, V.V. Analysis of seismo-ionospheric disturbances at the chain of Japanese stations for vertical sounding of the ionosphere. Geomagn. Aeron. 2008, 48, 392–399. [Google Scholar] [CrossRef]
- Perrone, L.; De Santis, A.; Abbattista, C.; Alfonsi, L.; Amoruso, L.; Carbone, M.; Cesaroni, C.; Cianchini, G.; De Franceschi, G.; De Santis, A.; et al. Ionospheric Anomalies Detected by Ionosonde and Possibly Related to Crustal Earthquakes in Greece. Ann. Geophys. 2018, 36, 361–371. [Google Scholar] [CrossRef]
- Kim, V.P.; Khegai, V.V.; Illich-Svitych, P.V. Probability of formation of a metallic ion layer in the nighttime mid-latitude ionospheric E-region before strong earthquakes. Geomagn. Aeron. 1993, 33, 114–119. (In Russian) [Google Scholar]
- Kim, V.P.; Khegai, V.V.; Illich-Svitych, P.V. On one possible ionospheric precursor of earthquakes. Phys. Solid Earth 1994, 30, 223–226. (In Russian) [Google Scholar]
Date | Days before Earthquake | Positive/Negative Anomaly | Location |
---|---|---|---|
9 July | 58 | Negative anomaly | Around the epicenter |
12 July | 55 | Negative anomaly | Southwest and Southeast |
21 July | 46 | Positive anomaly | Southeast |
25 July | 42 | Positive anomaly | Southwest |
9 August | 27 | Negative anomaly | Southwest and Southeast |
23 August | 13 | Positive anomaly | South |
27 August | 9 | Negative anomaly | Southwest |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; De Santis, A.; Liu, J.; Campuzano, S.A.; Yang, N.; Cianchini, G.; Ouyang, X.; D’Arcangelo, S.; Yang, M.; De Caro, M.; et al. Pre-Earthquake Oscillating and Accelerating Patterns in the Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) before the 2022 Luding (China) Ms6.8 Earthquake. Remote Sens. 2024, 16, 2381. https://doi.org/10.3390/rs16132381
Zhang X, De Santis A, Liu J, Campuzano SA, Yang N, Cianchini G, Ouyang X, D’Arcangelo S, Yang M, De Caro M, et al. Pre-Earthquake Oscillating and Accelerating Patterns in the Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) before the 2022 Luding (China) Ms6.8 Earthquake. Remote Sensing. 2024; 16(13):2381. https://doi.org/10.3390/rs16132381
Chicago/Turabian StyleZhang, Xuemin, Angelo De Santis, Jing Liu, Saioa A. Campuzano, Na Yang, Gianfranco Cianchini, Xinyan Ouyang, Serena D’Arcangelo, Muping Yang, Mariagrazia De Caro, and et al. 2024. "Pre-Earthquake Oscillating and Accelerating Patterns in the Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) before the 2022 Luding (China) Ms6.8 Earthquake" Remote Sensing 16, no. 13: 2381. https://doi.org/10.3390/rs16132381
APA StyleZhang, X., De Santis, A., Liu, J., Campuzano, S. A., Yang, N., Cianchini, G., Ouyang, X., D’Arcangelo, S., Yang, M., De Caro, M., Li, X., Fidani, C., Liu, H., Orlando, M., Nie, L., Perrone, L., Piscini, A., Dong, L., Sabbagh, D., ... Xiong, P. (2024). Pre-Earthquake Oscillating and Accelerating Patterns in the Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) before the 2022 Luding (China) Ms6.8 Earthquake. Remote Sensing, 16(13), 2381. https://doi.org/10.3390/rs16132381